Partitioning the Causes of Spatial Variation in Transpiration of Larch (Larix gmelinii var. principis-rupprechtii (Mayr) Pilger) Plantations Between Lower and Upper Positions on a Semiarid Slope in Northwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Plot Setup
2.3. Weather and Soil Moisture Monitoring
2.4. Sap Flow Measurement and Transpiration Estimation
2.5. Main Factors Controlling Transpiration Differences Between Plots and Their Impact Separation
3. Results
3.1. Environmental Conditions
3.2. The Difference in Sap Flow Velocity Between Two Plots
3.3. The Sap Flow Velocity Difference Driven by Terrain Shading Difference
3.4. The Sap Flow Velocity Difference Driven by Soil Water Potential Difference
3.5. Contributions of Individual Factors to the Transpiration Difference Between Two Plots
4. Discussion
4.1. Differences in Sap Flow Velocity Among Slope Positions
4.2. Differences in Stand Transpiration Along Slope Positions
4.3. Limitations of This Study and Recommendations for Future Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Allan, R.; Barlow, M.; Byrne, M.P.; Cherchi, A.; Douville, H.; Fowler, H.J.; Gan, T.Y.; Pendergrass, A.G.; Rosenfeld, D.; Swann, A.L.S.; et al. Advances in Understanding Large-Scale Responses of the Water Cycle to Climate Change. Ann. N. Y. Acad. Sci. 2020, 1472, 49–75. [Google Scholar] [CrossRef]
- Jiang, F.; Xie, X.; Wang, Y.; Liang, S.; Zhu, B.; Meng, S.; Zhang, X.; Chen, Y.; Liu, Y. Vegetation greening intensified transpiration but constrained soil evaporation on the Loess Plateau. J. Hydrol. 2022, 614, 128514. [Google Scholar] [CrossRef]
- Cui, Z.; Zhang, Y.; Wang, A.; Wu, J. Forest evapotranspiration trends and their driving factors under climate change. J. Hydrol. 2024, 644, 132114. [Google Scholar] [CrossRef]
- Lian, X.; Piao, S.; Huntingford, C.; Li, Y.; Zeng, Z.; Wang, X.; Ciais, P.; McVicar, T.R.; Peng, S.; Ottlé, C.; et al. Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nat. Clim. Change 2018, 8, 640–646. [Google Scholar] [CrossRef]
- Jasechko, S.; Sharp, Z.D.; Gibson, J.J.; Birks, S.J.; Yi, Y.; Fawcett, P.J. Terrestrial water fluxes dominated by transpiration. Nature 2013, 496, 347–350. [Google Scholar] [CrossRef] [PubMed]
- Shuttleworth, W.J. Evaporation from Amazonian rainforest. Proc. R. Soc. Lond. B 1988, 233, 321–346. [Google Scholar] [CrossRef]
- McJannet, D.L.; Wallace, J.S.; Fitch, P.; Disher, M.; Reddell, P. Water balance of tropical rainforest canopies in north Queensland, Australia. Hydrol. Process. 2007, 21, 3473–3484. [Google Scholar] [CrossRef]
- Su, J.P.; Kang, B.W. Research Proceeding of Trees Transpiration in China. Res. Soil Water Conserv. 2004, 11, 177–179+186. [Google Scholar] [CrossRef]
- Lloyd, J.; Grace, J.; Miranda, A.C.; Meir, P.; Wong, S.C.; Miranda, H.S.; Wright, I.R.; Gash, J.H.C.; McIntyre, J. A simple calibrated model of Amazon rainforest productivity based on leaf biochemical properties. Plant Cell Environ. 1995, 18, 1129–1145. [Google Scholar] [CrossRef]
- Hanba, Y.T.; Noma, N.; Umeki, K. Relationship between leaf characteristics, tree sizes and species distribution along a slope in a warm temperate forest. Ecol. Res. 2000, 15, 393–403. [Google Scholar] [CrossRef]
- Luizao, R.C.C.; Luizao, F.J.; Paiva, R.Q.; Monteiro, T.F.; Sousa, L.S.; Kruijt, B. Variation of carbon and nitrogen cycling processes along a topographic gradient in a central Amazonian forest. Glob. Change Biol. 2004, 10, 592–600. [Google Scholar] [CrossRef]
- Enoki, T.; Inoue, T.; Tashiro, N.; Ishii, H. Aboveground productivity of an unsuccessful 140-year-old Cryptomeria japonica plantation in northern Kyushu, Japan. J. For. Res. 2011, 16, 268–274. [Google Scholar] [CrossRef]
- Tateno, R.; Hishi, T.; Takeda, H. Above- and belowground biomass and net primary production in a cool-temperate deciduous forest in relation to topographical changes in soil nitrogen. For. Ecol. Manag. 2004, 193, 297–306. [Google Scholar] [CrossRef]
- Tokuchi, N.; Takeda, H.; Yoshida, K.; Iwatsubo, G. Topographical variations in a plant–soil system along a slope on Mt Ryuoh, Japan. Ecol. Res. 1999, 14, 361–369. [Google Scholar] [CrossRef]
- Grande, M.M.; Kaffas, K.; Verdone, M.; Borga, M.; Cocozza, C.; Dani, A.; Errico, A.; Fabiani, G.; Gourdol, L.; Klaus, J.; et al. Seasonal meteorological forcing controls runoff generation at multiple scales in a mediterranean forested mountain catchment. J. Hydrol. 2024, 639, 131642. [Google Scholar] [CrossRef]
- Yu, P.T. Application of physically-based distributed models in forest hydrology. For. Res. 2000, 13, 431–438. [Google Scholar] [CrossRef]
- Komatsu, H.; Kang, Y.; Kume, T.; Yoshifuji, N.; Hotta, N. Transpiration from a Cryptomeria japonica plantation, part 1: Aerodynamic control of transpiration. Hydrol. Process. 2006, 20, 1309–1320. [Google Scholar] [CrossRef]
- Komatsu, H.; Kang, Y.; Kume, T.; Yoshifuji, N.; Hotta, N. Transpiration from a Cryptomeria japonica plantation, part 2: Responses of canopy conductance to meteorological factors. Hydrol. Process. 2006, 20, 1321–1334. [Google Scholar] [CrossRef]
- Kumagai, T.; Aoki, S.; Nagasawa, H.; Mabuchi, T.; Kubota, K.; Inoue, S.; Utsumi, Y.; Otsuki, K. Sources of error in estimating stand transpiration using allometric relationships between stem diameter and sapwood area for Cryptomeria japonica and Chamaecyparis obtusa. Forest Ecol. Manag. 2005, 206, 191–195. [Google Scholar] [CrossRef]
- Kume, T.; Tsuruta, K.; Komatsu, H.; Shinohara, Y.; Katayama, A.; Ide, J.; Otsuki, K. Differences in sap flux-based stand transpiration between upper and lower slope positions in a Japanese cypress plantation watershed. Ecohydrology 2015, 6, 1105–1116. [Google Scholar] [CrossRef]
- Kumagai, T.; Aoki, S.; Shimizu, T.; Otsuki, K. Sap flow estimates of stand transpiration at two slope positions in a Japanese cedar forest watershed. Tree Physiol. 2007, 27, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Wilson, K.B.; Hanson, P.J.; Mulholland, P.J.; Baldocchi, D.D.; Wullschleger, S.D. A comparison of methods for determining forest evapotranspiration and its components: Sap-flow, soil water budget, eddy covariance and catchment water balance. Agric. For. Meteorol. 2001, 106, 153–168. [Google Scholar] [CrossRef]
- Ford, C.R.; Hubbard, R.M.; Kloeppel, B.D.; Vos, J.M. A comparison of sap flux-based evapotranspiration estimates with catchment-scale water balance. Agric. For. Meteorol. 2007, 145, 176–185. [Google Scholar] [CrossRef]
- Ewers, B.E.; Mackay, D.S.; Gower, T.; Ahl, D.E.; Burrows, S.N.; Samanta, S.S. Tree species effects on stand transpiration in northern Wisconsin. Water Resour. Res. 2002, 38, w1103. [Google Scholar] [CrossRef]
- Ewers, B.E.; Gower, S.T.; Bond-Lamberty, B.; Wang, C.K. Effects of stand age and tree species on canopy transpiration and average stomatal conductance of boreal forests. Plant Cell Environ. 2005, 28, 660–678. [Google Scholar] [CrossRef]
- Mackay, D.S.; Ahl, D.E.; Ewers, B.E.; Gower, S.T.; Burrows, S.N.; Samanta, S.; Davis, K.J. Effects of aggregated classifications of forest composition on estimates of evapotranspiration in a northern Wisconsin forest. Glob. Change Biol. 2002, 8, 1253–1265. [Google Scholar] [CrossRef]
- Pataki, D.E.; Oren, R. Species differences in stomatal control of water loss at the canopy scale in a mature bottomland deciduous forest. Adv. Water Resour. 2003, 26, 1267–1278. [Google Scholar] [CrossRef]
- Bladon, K.D.; Silins, U.; LandhäUsser, S.M.; Lieffers, V.J. Differential transpiration by three boreal tree species in response to increased evaporative demand after variable retention harvesting. Agric. For. Meteorol. 2006, 138, 104–119. [Google Scholar] [CrossRef]
- Kumagai, T.; Aoki, S.; Nagasawa, H.; Mabuchi, T.; Kubota, K.; Inoue, S.; Utsumi, Y.; Otsuki, K. Effects of tree-to-tree and radial variations on sapflow estimates of transpiration in Japanese cedar. Agric. For. Meteorol. 2005, 135, 110–116. [Google Scholar] [CrossRef]
- Zang, D.; Beadle, C.L.; White, D.A. Variation of sap flow velocity in Eucalyptus globulus with position in sapwood and use of a correction coefficient. Tree Physiol. 1996, 16, 697–703. [Google Scholar] [CrossRef]
- Lu, P.; Müller, W.J.; Chacko, E.K. Spatial variations in xylem sap flux density in the trunk of orchard-grown, mature mango trees under changing soil water conditions. Tree Physiol. 2000, 20, 683–692. [Google Scholar] [CrossRef]
- Wullschleger, S.D.; King, A.W. Radial variation in sap velocity as a function of stem diameter and sapwood thickness in a yellow-poplar trees. Tree Physiol. 2000, 20, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Delzon, S.; Sartore, M.; Granier, A.; Loustau, D. Radial profiles of sap flow with increasing tree size in maritime pine. Tree Physiol. 2004, 24, 1285–1293. [Google Scholar] [CrossRef]
- Granier, A.; Biron, P.; Bréda, N.; Pontailler, J.Y.; Saugier, B. Transpiration of trees and forest stands: Short and long-term monitoring using sapflow methods. Glob. Change Biol. 1996, 2, 265–274. [Google Scholar] [CrossRef]
- Wullschleger, S.D.; Hanson, P.J.; Todd, D.E. Transpiration from a multi-species deciduous forest as estimated by xylem sap flow techniques. For. Ecol. Manag. 2001, 143, 205–213. [Google Scholar] [CrossRef]
- Zhai, J.J.; Wang, L.; Liu, Y.; Wang, C.Y.; Mao, X.G. Assessing the effects of China’s three-north shelter forest program over 40 years. Sci. Total Environ. 2023, 857, 159354. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Ouyang, H.; Maclaren, V.; Yin, Y.; Shao, B.; Boland, A.; Tian, Y. Evaluation of economic and social impacts of the sloping land conversion program: A case study in Dunhua County, China. Forest Policy Econ. 2012, 14, 50–57. [Google Scholar] [CrossRef]
- Zeng, Z.Z.; Peng, L.Q.; Piao, S.L. Response of terrestrial evapotranspiration to Earth’s greening. Curr. Opin. Environ. Sustain. 2018, 33, 9–25. [Google Scholar] [CrossRef]
- Fu, F.Y.; Wang, S.; Wu, X.T.; Wei, F.L.; Chen, P.; Grünzweig, J.M. Locating hydrologically unsustainable areas for supporting ecological restoration in China’s drylands. Earth’s Future 2024, 12, e2023EF004216. [Google Scholar] [CrossRef]
- Wang, Q.M.; Liu, H.Y.; Liang, B.Y.; Shi, L.; Wu, L.; Cao, J. Will large-scale forestation lead to a soil water deficit crisis in China’s drylands? Sci. Bull. 2024, 69, 1506–1514. [Google Scholar] [CrossRef]
- Zhou, J.X.; Wang, Y.Q.; Li, R.J.; He, H.R.; Sun, H.; Zhou, Z.X.; Zhao, Y.L.; Zhang, P.P.; Li, Z.M. Response of deep soil water deficit to afforestation, soil depth, and precipitation gradient. Agric. For. Meteorol. 2024, 352, 110024. [Google Scholar] [CrossRef]
- Gao, Y.Q. Present situation, existing problems and development suggestions of artificial coniferous forest in Liupan Mountain. Bull. Agric. Sci. Tech. 2023, 23, 7–9. [Google Scholar]
- Liu, Z.B. Spatio-temporal Variations and Scale Transition of Hydrological Impact of Larix principis-ruprechtii Plantation on a Slope of Liupan Mountains. Ph.D. Thesis, Chinese Academy of Forestry, Beijing, China, 2018; p. 120. [Google Scholar]
- Wang, Y.B.; Wang, Y.H.; Li, Z.H.; Han, X.S. Interannual variation of transpiration and its modeling of a larch plantation in semiarid northwest China. Forests 2020, 11, 1303. [Google Scholar] [CrossRef]
- Campbell, G.S.; Norman, J.M. Water Vapor and Other Gases. In An Introduction to Environmental Biophysics; Springer: New York, NY, USA, 1998; pp. 37–51. [Google Scholar] [CrossRef]
- Kumagai, T.; Tateishi, M.; Shimizu, T.; Otsuki, K. Transpiration and canopy conductance at two slope positions in a Japanese ceder forest watershed. Agric. For. Meteorol. 2008, 148, 1444–1455. [Google Scholar] [CrossRef]
- Engel, V.C.; Stieglitz, M.; Williams, M.; Griffin, K.L. Forest canopy hydraulic properties and catchment water balance: Observations and modelling. Ecol. Model. 2002, 154, 263–288. [Google Scholar] [CrossRef]
- Liu, J.; Chen, W.R.; Xu, J.L.; Zou, J.; Jiang, J.M.; Li, Y.J.; Diao, S.F. Trunk sap flow dynamic changes in response to the slopes of plantation of Toona ciliata var. pubescens. Chin. J. Appl. Ecol. 2014, 25, 2209–2214. [Google Scholar] [CrossRef]
- Loranty, M.M.; Mackay, D.S.; Ewers, B.E.; Adelman, J.D.; Kruger, E.L. Environmental drivers of spatial variation in whole-tree transpiration in an aspen-dominated upland-to-wetland forest gradient. Water Resour. Res. 2008, 44, W02441. [Google Scholar] [CrossRef]
- Fabiani, G.; Schoppach, R.; Penna, D.; Klaus, J. Transpiration patterns and water use strategies of beech and oak trees along a hillslope. Ecohydrology 2022, 15, e2382. [Google Scholar] [CrossRef]
- Fabiani, G.; Klaus, J.; Penna, D. Contrasting water use strategies of beech trees along two hillslopes with different slope and climate. Hydrol. Earth Syst. Sci. Discuss. 2023. in review. [Google Scholar] [CrossRef]
- Loustau, D.; Granier, A.; Bréda, N. A generic model of forest canopy conductance dependent on climate, soil water availability and leaf area index. Ann. For. Sci. 2000, 57, 755–765. [Google Scholar] [CrossRef]
- Sadras, V.O.; Milroy, S.P. Soil-water thresholds for the responses of leaf expansion and gas exchange: A review. Field Crop. Res. 1996, 47, 253–266. [Google Scholar] [CrossRef]
- Granier, A.; Bréda, N.; Biron, P.; Villette, S. A lumped water balance model to evaluate duration and intensity of drought constraints in forest stands. Ecol. Model. 1999, 116, 269–283. [Google Scholar] [CrossRef]
- Mitchell, P.J.; Benyon, R.G.; Lane, P.N.J. Responses of evapotranspiration at different topographic positions and catchment water balance following a pronounced drought in a mixed species eucalypt forest, Australia. J. Hydrol. 2012, 440–441, 62–74. [Google Scholar] [CrossRef]
- Tsuruta, K.; Yamamoto, H.; Kosugi, Y.; Makita, N.; Katsuyama, M.; Kosugi, K.; Tani, M. Slope position and water use by trees in a headwater catchment dominated by Japanese cypress: Implications for catchment-scale transpiration estimates. Ecohydrology 2020, 13, e2245. [Google Scholar] [CrossRef]
- Liu, W.; Nie, Y.; Luo, Z.; Wang, Z.; Huang, L.; He, F.; Chen, H. Transpiration rates decline under limited moisture supply along hillslopes in a humid karst terrain. Sci. Total Environ. 2023, 894, 164977. [Google Scholar] [CrossRef]
Item | Upper Slope | Lower Slope |
---|---|---|
Geographic coordinates | 106°08′53″ E, 35°58′05″ N | 106°08′50″ E, 35°58′09″ N |
Elevation (m) | 2145 | 2040 |
Horizontal distance from slope top (m) | 45.5 | 200 |
Soil thickness (cm) | 100 | 200 |
Soil bulk density of 0–100 cm (g/cm−3) | 1.13 | 1.07 |
Soil total porosity of 0–100 cm (%) | 51.5 | 57.1 |
Stand density (trees·ha−1) | 1775 | 1875 |
Mean tree height (m) | 8.21 ± 1.95 | 8.15 ± 2.80 |
Mean DBH (cm) | 11.50 ± 3.33 | 10.05 ± 4.18 |
Sapwood area (m2·ha−1) | 11.87 | 9.77 |
Slope Position | Sample Trees | Tree Height/m | DBH/cm | Sapwood Thickness/cm | Sapwood Area/cm2 | Clean Bole Height/m | Canopy Diameter/m |
---|---|---|---|---|---|---|---|
Upper slope | 1-10 | 8.6 | 10.28 | 2.28 | 56.71 | 1.8 | 1.25 |
1-25 | 9.3 | 12.40 | 2.53 | 77.50 | 2.1 | 1.64 | |
1-38 | 9.3 | 14.15 | 2.72 | 96.55 | 2.0 | 1.54 | |
1-40 | 10.4 | 11.78 | 2.46 | 71.15 | 1.7 | 1.34 | |
1-53 | 8.0 | 10.22 | 2.27 | 56.16 | 1.5 | 1.42 | |
Lower slope | 3-21 | 8.5 | 9.68 | 2.21 | 51.31 | 1.9 | 1.71 |
3-25 | 11.9 | 13.70 | 2.67 | 91.49 | 1.8 | 2.50 | |
3-32 | 7.0 | 8.80 | 2.10 | 43.77 | 1.6 | 1.38 | |
3-33 | 11.2 | 16.60 | 2.98 | 125.97 | 3.6 | 1.68 | |
3-41 | 10.5 | 12.80 | 2.57 | 81.70 | 1.9 | 2.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, Y.; Xiong, W.; Yao, Y.; Zhang, T.; Li, Z.; Han, X.; Ru, H. Partitioning the Causes of Spatial Variation in Transpiration of Larch (Larix gmelinii var. principis-rupprechtii (Mayr) Pilger) Plantations Between Lower and Upper Positions on a Semiarid Slope in Northwest China. Forests 2025, 16, 767. https://doi.org/10.3390/f16050767
Wang Y, Wang Y, Xiong W, Yao Y, Zhang T, Li Z, Han X, Ru H. Partitioning the Causes of Spatial Variation in Transpiration of Larch (Larix gmelinii var. principis-rupprechtii (Mayr) Pilger) Plantations Between Lower and Upper Positions on a Semiarid Slope in Northwest China. Forests. 2025; 16(5):767. https://doi.org/10.3390/f16050767
Chicago/Turabian StyleWang, Yanbing, Yanhui Wang, Wei Xiong, Yiqiang Yao, Tong Zhang, Zhenhua Li, Xinsheng Han, and Hao Ru. 2025. "Partitioning the Causes of Spatial Variation in Transpiration of Larch (Larix gmelinii var. principis-rupprechtii (Mayr) Pilger) Plantations Between Lower and Upper Positions on a Semiarid Slope in Northwest China" Forests 16, no. 5: 767. https://doi.org/10.3390/f16050767
APA StyleWang, Y., Wang, Y., Xiong, W., Yao, Y., Zhang, T., Li, Z., Han, X., & Ru, H. (2025). Partitioning the Causes of Spatial Variation in Transpiration of Larch (Larix gmelinii var. principis-rupprechtii (Mayr) Pilger) Plantations Between Lower and Upper Positions on a Semiarid Slope in Northwest China. Forests, 16(5), 767. https://doi.org/10.3390/f16050767