Plant Host Provenances Affect Taxonomic Composition of Root-Associated Culturable Bacteria from Tripterygium wilfordii Hook f. and Their Plant Growth Promoting Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Isolation and Culture of Bacterial Strains
2.3. 16S rRNA Molecular Identification
2.4. Plant Growth Promoting Activities of Isolates
2.5. Data Analyses
3. Results
3.1. Population Abundance
3.2. Taxonomic Composition and Diversity of Isolations
3.3. Common and Specific Taxa Between Different Provenances
3.4. Plant Growth Promoting Traits
4. Discussion
4.1. Isolation of Root-Associated Bacteria
4.2. Influence of Host Provenance and Growing Environment on the Taxonomic Composition
4.3. Plants in Their Native Soil Support Abundant Plant Growth Promoting Bacteria
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PGP | Plant growth promoting |
IAA | Indole acetic acid |
LFJ | Local Fujian T. wilfordii |
NHB | Non-local Hubei T. wilfordii |
NHN | Non-local Hunan T. wilfordii |
LHB | Local Hubei T. wilfordii |
LHN | Local Hunan T. wilfordii |
NA | Nutrient agar |
NB | Nutrient broth |
FW | Fresh weight |
CAS | Chrome Azurol S |
References
- Tian, L.; Lin, X.; Tian, J.; Ji, L.; Chen, Y.; Tran, L.-S.P.; Tian, C. Research advances of beneficial microbiota associated with crop plants. Int. J. Mol. Sci. 2020, 21, 1792. [Google Scholar] [CrossRef] [PubMed]
- Daraz, U.; Ahmad, I.; Li, Q.; Zhu, B.; Saeed, M.; Li, Y.J.; Wang, X. Plant growth promoting rhizobacteria induced metal and salt stress tolerance in Brassica juncea through ion homeostasis. Ecotoxicol. Environ. Saf. 2023, 267, 115657. [Google Scholar] [CrossRef] [PubMed]
- Bulgarelli, D.; Schlaeppi, K.; Spaepen, S.; Themaat, E.V.L.v.; Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 2013, 64, 807–838. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.; Johnson, C.; Santos-Medellin, C.; Lurie, E.; Podishetty, N.K.; Bhatnagar, S.; Eisen, J.A.; Sundaresan, V. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. USA 2015, 112, E911–E920. [Google Scholar] [CrossRef]
- Chen, S.; Tang, J.; Xu, J.; Peng, L.; Wu, P.; Li, Q. The impact of abandoned iron ore on the endophytic bacterial communities and functions in the root systems of three major crops in the local area. Front. Microbiol. 2025, 16, 1536083. [Google Scholar] [CrossRef]
- Deng, S.; Ke, T.; Li, L.; Cai, S.; Zhou, Y.; Liu, Y.; Guo, L.; Chen, L.; Zhang, D. Impacts of environmental factors on the whole microbial communities in the rhizosphere of a metal-tolerant plant: Elsholtzia haichowensis Sun. Environ. Pollut. 2018, 237, 1088–1097. [Google Scholar] [CrossRef]
- Silva, I.; Alves, M.; Malheiro, C.; Silva, A.R.R.; Loureiro, S.; Henriques, I.; Gonzalez-Alcaraz, M.N. Short-term responses of soil microbial communities to changes in air temperature, soil moisture and UV radiation. Genes 2022, 13, 850. [Google Scholar] [CrossRef]
- Tabassum, N.; Ahmed, H.I.; Parween, S.; Sheikh, A.H.; Saad, M.M.; Krattinger, S.G.; Hirt, H. Host genotype, soil composition, and geo-climatic factors shape the fonio seed microbiome. Microbiome 2024, 12, 11. [Google Scholar] [CrossRef]
- Peiffer, J.A.; Spor, A.; Koren, O.; Jin, Z.; Tringe, S.G.; Dangl, J.L.; Buckler, E.S.; Ley, R.E. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl. Acad. Sci. USA 2013, 110, 6548–6553. [Google Scholar] [CrossRef]
- Hartman, K.; Tringe, S.G. Interactions between plants and soil shaping the root microbiome under abiotic stress. Biochem. J. 2019, 476, 2705–2724. [Google Scholar] [CrossRef]
- Matthews, A.C.; Pierce, S.; Hipperson, H.; Raymond, B. Rhizobacterial community assembly patterns vary between crop species. Front. Microbiol. 2019, 10, 581. [Google Scholar] [CrossRef] [PubMed]
- Morella, N.M.; Weng, F.C.-H.; Joubert, P.M.; Metcalf, C.J.E.; Lindow, S.; Koskella, B. Successive passaging of a plant-associated microbiome reveals robust habitat and host genotype-dependent selection. Proc. Natl. Acad. Sci. USA 2020, 117, 1148–1159. [Google Scholar] [CrossRef] [PubMed]
- Maestro-Gaitán, I.; Granado-Rodríguez, S.; Redondo-Nieto, M.; Battaglia, A.; Poza-Viejo, L.; Matías, J. Unveiling changes in rhizosphere-associated bacteria linked to the genotype and water stress in quinoa. Microb. Biotechnol. 2023, 16, 2326–2344. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Kim, Y.S.; Lee, Y.H. Characteristics of rhizosphere and endogenous bacterial community of Ulleung-sanmaneul, an endemic plant in Korea: Application for alleviating salt stress. Sci. Rep. 2022, 12, 21124. [Google Scholar] [CrossRef]
- Bouffaud, M.-L.; Poirier, M.-A.; Muller, D.; Moenne-Loccoz, Y. Root microbiome relates to plant host evolution in maize and other Poaceae. Environ. Microbiol. 2014, 16, 2804–2814. [Google Scholar] [CrossRef]
- Bressan, M.; Roncato, M.-A.; Bellvert, F.; Comte, G.; Haichar, F.e.Z.; Achouak, W.; Berge, O. Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. ISME J. 2009, 3, 1243–1257. [Google Scholar] [CrossRef]
- Karina, B.; Rodolfo, D.; David, S.; Paul, B. Ontogenetic switches from plant resistance to tolerance: Minimizing costs with age? Ecol. Lett. 2007, 10, 177–187. [Google Scholar] [CrossRef]
- Pongrac, P.; Vogel-Mikus, K.; Regvar, M.; Tolra, R.; Poschenrieder, C.; Barcelo, J. Glucosinolate profiles change during the life cycle and mycorrhizal colonization in a Cd/Zn hyperaccumulator Thlaspi praecox (Brassicaceae). J. Chem. Ecol. 2008, 34, 1038–1044. [Google Scholar] [CrossRef]
- Wagner, M.R.; Lundberg, D.S.; Del Rio, T.G.; Tringe, S.G.; Dangl, J.L.; Mitchell-Olds, T. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat. Commun. 2016, 7, 12151. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.X.; Zhang, N.; Hu, B.; Jin, T.; Xu, H.; Qin, Y.; Yan, P.; Zhang, X.; Guo, X.; et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat. Biotechnol. 2019, 37, 676–684. [Google Scholar] [CrossRef]
- Stringlis, I.A.; Yu, K.; Feussner, K.; de Jonge, R.; van Bentum, S.; Van Verk, M.C.; Berendsen, R.L.; Bakker, P.A.H.M.; Feussner, I.; Pieterse, C.M.J. MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proc. Natl. Acad. Sci. USA 2018, 115, E5213–E5222. [Google Scholar] [CrossRef] [PubMed]
- Lebeis, S.L.; Paredes, S.H.; Lundberg, D.S.; Breakfield, N.; Gehring, J.; McDonald, M.; Malfatti, S.; del Rio, T.G.; Jones, C.D.; Tringe, S.G.; et al. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 2015, 349, 860–864. [Google Scholar] [CrossRef] [PubMed]
- Hacquard, S.; Spaepen, S.; Garrido-Oter, R.; Schulze-Lefert, P. Interplay between innate immunity and the plant microbiota. Annu. Rev. Phytopathol. 2017, 55, 565–589. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.B.; Pulkkinen, P. Genotype-environment interaction and stability in growth of aspen hybrid clones. For. Ecol. Manag. 2003, 173, 25–35. [Google Scholar] [CrossRef]
- Fanai, A.; Bohia, B.; Lalremruati, F.; Lalhriatpuii, N.; Lalmuanpuii, R.; Singh, P.K. Plant growth promoting bacteria (PGPB)-induced plant adaptations to stresses: An updated review. PeerJ 2024, 12, e17882. [Google Scholar] [CrossRef]
- Engelhard, M.; Hurek, T.; Reinhold-Hurek, B. Preferential occurrence of diazotrophic endophytes, Azoarcus spp., in wild rice species and land races of Oryza sativa in comparison with modern races. Environ. Microbiol. 2000, 2, 131–141. [Google Scholar] [CrossRef]
- Kumar, D.S.S.; Cheung, H.Y.; Lau, C.S.; Chen, F.; Hyde, K.D. In vitro studies of endophytic fungi from Tripterygium wilfordii with anti-proliferative activity on human peripheral blood mononuclear cells. J. Ethnopharmacol. 2004, 94, 295–300. [Google Scholar] [CrossRef]
- Liang, A.; Yu, C.; Wu, C.; Tu, Y.-h.; Lin, Z.-s.; Hong, W.; Li, J. Seasonal dynamics of nutrient and tripolide contents in leaves of Tripterygium wilfordii from different provenances. Chin. J. Appl. Environ. Biol. 2018, 24, 299–306. [Google Scholar]
- Lin, Z.; Tian, Y.; Tu, Y. Comparison of the growing diversities of Tripterygium wilfordii seedling in different clones. J. Fujian Coll. For. 2012, 32, 226–231. [Google Scholar]
- Long, F.; Chen, X.; Wu, C.-z.; Tu, Y.-h.; Lin, Z.-s.; Hong, W.; Li, J. Comparison of the photosynthetic characteristics of Tripterygium wilfordii from 24 different provenances. J. Xiamen Univ. (Nat. Sci.) 2017, 56, 525–530. [Google Scholar]
- Lin, Z.; Tian, Y.; Tu, Y.; Wu, C. Breeding methods for seedlings of Tripterygium wilfordii Hook f. Pract. For. Technol. 2013, 23–25. [Google Scholar] [CrossRef]
- Glickmann, E.; Dessaux, Y. A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl. Environ. Microbiol. 1995, 61, 793–796. [Google Scholar] [CrossRef] [PubMed]
- Nautiyal, C. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 1999, 170, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Schwyn, B.; Neilands, J. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 1987, 160, 47–56. [Google Scholar] [CrossRef]
- Ricotta, C. Bridging the gap between ecological diversity indices and measures of biodiversity with Shannon’s entropy: Comment to Izsák and Papp. Ecol. Model. 2002, 152, 1–3. [Google Scholar] [CrossRef]
- Jaccard, P. Étude comparative de la distribution florale dans une portion des Alpes et du Jura. Bull. Soc. Vaud. Sci. Nat. 1901, 37, 547–579. [Google Scholar]
- Chao, A.; Chazdon, R.; Colwell, R.K.; Shen, T.-J. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol. Lett. 2005, 8, 148–159. [Google Scholar] [CrossRef]
- Oksanen, J.; Simpsonj, G.L.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. Vegan: Community Ecology Package, R Package Version 2.6-10. Available online: https://CRAN.R-project.org/package=vegan (accessed on 15 February 2025).
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Hallmann, J.; Quadt-Hallmann, A.; Mahaffee, W.; Kloepper, J. Bacterial endophytes in agricultural crops. Can. J. Microbiol. 1997, 43, 895–914. [Google Scholar] [CrossRef]
- McInroy, J.A.; Kloepper, J.W. Studies on indigenous endophytic bacteria of sweet corn and cotton. In Molecular Ecology of Rhizosphere Microorganisms: Biotechnology and the Release of GMOs; O’Gara, D.D.F., Boesten, B., Eds.; VCH Verlagsgesellschaft: Weinheim, Germany, 1994; pp. 19–28. [Google Scholar]
- Krechel, A.; Faupel, A.; Hallmann, J.; Ulrich, A.; Berg, G. Potato-associated bacteria and their antagonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid & White) Chitwood. Can. J. Microbiol. 2002, 48, 772–786. [Google Scholar] [CrossRef]
- Szymanska, S.; Plociniczak, T.; Piotrowska-Seget, Z.; Hrynkiewicz, K. Endophytic and rhizosphere bacteria associated with the roots of the halophyte Salicornia europaea L.—community structure and metabolic potential. Microbiol. Res. 2016, 192, 37–51. [Google Scholar] [CrossRef]
- Nadeem, S.M.; Shaharoona, B.; Arshad, M.; Crowley, D.E. Population density and functional diversity of plant growth promoting rhizobacteria associated with avocado trees in saline soils. Appl. Soil Ecol. 2012, 62, 147–154. [Google Scholar] [CrossRef]
- Ginting, M.; Manalu, K.; Nasution, R.A. Population and characterization of rhyzospheric bacteria of pineapple plant (Ananas comosus L. Merr) on the highland land of Lumban Sihite Village, Regency Dairi. J. Biol. Trop. 2024, 24, 535–540. [Google Scholar] [CrossRef]
- Adams, P.D.; Kloepper, J.W. Effect of host genotype on indigenous bacterial endophytes of cotton (Gossypium hirsutum L.). Plant Soil 2002, 240, 181–189. [Google Scholar] [CrossRef]
- Cordero, J.; de Freitas, J.R.; Germida, J.J. Bacterial microbiome associated with the rhizosphere and root interior of crops in Saskatchewan, Canada. Can. J. Microbiol. 2020, 66, 71–85. [Google Scholar] [CrossRef]
- Brigham, L.M.; de Mesquita, C.P.B.; Spasojevic, M.J.; Farrer, E.C.; Porazinska, D.L.; Smith, J.G.; Schmidt, S.K.; Suding, K.N. Drivers of bacterial and fungal root endophyte communities: Understanding the relative influence of host plant, environment, and space. FEMS Microbiol. Ecol. 2023, 99, fiad034. [Google Scholar] [CrossRef]
- Mushtaq, S.; Shafiq, M.; Tariq, M.R.; Sami, A.; Nawaz-ul-Rehman, M.S.; Bhatti, M.H.T.; Haider, M.S.; Sadiq, S.; Abbas, M.T.; Hussain, M.; et al. Interaction between bacterial endophytes and host plants. Front. Plant Sci. 2023, 13, 1092105. [Google Scholar] [CrossRef]
- Pereira, S.; Monteiro, C.; Vega, A.; Castro, P.M. Endophytic culturable bacteria colonizing Lavandula dentata L. plants: Isolation, characterization and evaluation of their plant growth-promoting activities. Ecol. Eng. 2016, 87, 91–97. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, D.; Ding, W.; Ying, Y. Isolation of endophytic bacteria in roots of Panax ginseng and screening of antagonistic strains against phytopathogens prevalent in P. ginseng. China J. Chin. Mater. Medica 2012, 37, 1532–1535. [Google Scholar]
- Chiniquy, D.; Barnes, E.M.; Zhou, J.; Hartman, K.; Li, X.; Sheflin, A.; Pella, A.; Marsh, E.; Prenni, J.; Deutschbauer, A.M.; et al. Microbial community field surveys reveal abundant Pseudomonas population in sorghum rhizosphere composed of many closely related phylotypes. Front. Microbiol. 2021, 12, 598180. [Google Scholar] [CrossRef]
- Ali, M.; Walait, S.; Ul Haque, M.F.; Mukhtar, S. Antimicrobial activity of bacteria associated with the rhizosphere and phyllosphere of Avena fatua and Brachiaria reptans. Environ. Sci. Pollut. Res. 2021, 28, 68846–68861. [Google Scholar] [CrossRef]
- Schillaci, M.; Raio, A.; Sillo, F.; Zampieri, E.; Mahmood, S.; Anjum, M.; Khalid, A.; Centritto, M. Pseudomonas and Curtobacterium strains from olive rhizosphere characterized and evaluated for plant growth promoting traits. Plants 2022, 11, 2245. [Google Scholar] [CrossRef] [PubMed]
- Hol, W.; Bezemer, T.M.; Biere, A. Getting the ecology into interactions between plants and the plant growth-promoting bacterium Pseudomonas fluorescens. Front. Plant Sci. 2013, 4, 81. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Wei, Z.; Weidner, S.; Friman, V.-P.; Xu, Y.-C.; Shen, Q.-R.; Jousset, A. Probiotic Pseudomonas communities enhance plant growth and nutrient assimilation via diversity-mediated ecosystem functioning. Soil Biol. Biochem. 2017, 113, 122–129. [Google Scholar] [CrossRef]
- Hu, J.; Wei, Z.; Friman, V.-P.; Gu, S.-h.; Wang, X.-f.; Eisenhauer, N.; Yang, T.-j.; Ma, J.; Shen, Q.-r.; Xu, Y.-c. Probiotic diversity enhances rhizosphere microbiome function and plant disease suppression. mBio 2016, 7, e1790-16. [Google Scholar]
- Susilowati, A.; Wahyudi, A.T.; Lestari, Y.; Suwanto, A.; Wiyono, S. Potential Pseudomonas isolated from soybean rhizosphere as biocontrol against soilborne phytopathogenic fungi. HAYATI J. Biosci. 2011, 18, 51–56. [Google Scholar] [CrossRef]
- Jasim, B.; Jimtha, C.J.; Jyothis, M.; Radhakrishnan, E. Plant growth promoting potential of endophytic bacteria isolated from Piper nigrum. Plant Growth Regul. 2013, 71, 1–11. [Google Scholar] [CrossRef]
- Miller, K.I.; Qing, C.; Sze, D.M.Y.; Neilan, B.A. Investigation of the biosynthetic potential of endophytes in traditional Chinese anticancer herbs. PLoS ONE 2012, 7, e35953. [Google Scholar] [CrossRef]
- Rengel, Z. Genetic control of root exudation. Plant Soil 2002, 245, 59–70. [Google Scholar] [CrossRef]
- Rosenblueth, M.; Martinez-Romero, E. Bacterial endophytes and their interactions with hosts. Mol. Plant-Microbe Interact. 2006, 19, 827–837. [Google Scholar] [CrossRef]
- Chaparro, J.M.; Badri, D.V.; Bakker, M.G.; Sugiyama, A.; Manter, D.K.; Vivanco, J.M. Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS ONE 2013, 8, e55731. [Google Scholar] [CrossRef]
- Gaiero, J.R.; McCall, C.A.; Thompson, K.A.; Day, N.J.; Best, A.S.; Dunfield, K.E. Inside the root microbiome: Bacterial root endophytes and plant growth promotion. Am. J. Bot. 2013, 100, 1738–1750. [Google Scholar] [CrossRef] [PubMed]
- Aleklett, K.; Leff, J.W.; Fierer, N.; Hart, M. Wild plant species growing closely connected in a subalpine meadow host distinct root-associated bacterial communities. PeerJ 2015, 3, e804. [Google Scholar] [CrossRef] [PubMed]
- Zhen, R.; Shukun, T.; Yi, J.; Mingxing, J.; Shangyong, Z.; Wenjing, L.; Zhili, Y.; Shuping, S.; Zebin, C.; Tiyuan, X.; et al. High-throughput sequencing analysis of endophytic bacteria diversity in fruits of white and red pitayas from three different origins. Pol. J. Microbiol. 2018, 67, 27–35. [Google Scholar] [CrossRef]
- Blain, N.P.; Helgason, B.L.; Germida, J.J. Endophytic root bacteria associated with the natural vegetation growing at the hydrocarbon-contaminated Bitumount Provincial Historic site. Can. J. Microbiol. 2017, 63, 502–515. [Google Scholar] [CrossRef]
- Bonito, G.; Reynolds, H.; Robeson, M.S.; Nelson, J.; Hodkinson, B.P.; Tuskan, G.; Schadt, C.W.; Vilgalys, R. Plant host and soil origin influence fungal and bacterial assemblages in the roots of woody plants. Mol. Ecol. 2014, 23, 3356–3370. [Google Scholar] [CrossRef]
- Pacheco-Moreno, A.; Bollmann-Giolai, A.; Chandra, G.; Brett, P.; Davies, J.; Thornton, O.; Poole, P.; Ramachandran, V.; Brown, J.K.M.; Nicholson, P.; et al. The genotype of barley cultivars influences multiple aspects of their associated microbiota via differential root exudate secretion. PLoS Biol. 2024, 22, e3002232. [Google Scholar] [CrossRef]
- Lundberg, D.S.; Teixeira, P.J.P.L. Root-exuded coumarin shapes the root microbiome. Proc. Natl. Acad. Sci. USA 2018, 115, 5629–5631. [Google Scholar] [CrossRef]
- Wen, T.; Zhao, M.; Yuan, J.; Kowalchuk, G.A.; Shen, Q. Root exudates mediate plant defense against foliar pathogens by recruiting beneficial microbes. Soil Ecol. Lett. 2020, 3, 42–51. [Google Scholar] [CrossRef]
- Wu, W.; Chen, W.; Liu, S.; Wu, J.; Zhu, Y.; Qin, L.; Zhu, B. Beneficial relationships between endophytic bacteria and medicinal plants. Front. Plant Sci. 2021, 12, 646146. [Google Scholar] [CrossRef]
- Garbeva, P.; van Veen, J.A.; van Elsas, J.D. Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu. Rev. Phytopathol. 2004, 42, 243–270. [Google Scholar] [CrossRef]
- Schemske, D.W. Understanding the origin of species. Evolution 2000, 54, 1069–1073. [Google Scholar] [CrossRef]
- Adair, K.L.; Douglas, A.E. Making a microbiome: The many determinants of host-associated microbial community composition. Curr. Opin. Microbiol. 2017, 35, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; De Frenne, P.; Boon, N.; Brunet, J.; Cousins, S.A.O.; Decocq, G.; Kolb, A.; Lemke, I.; Liira, J.; Naaf, T.; et al. Plant species identity and soil characteristics determine rhizosphere soil bacteria community composition in European temperate forests. FEMS Microbiol. Ecol. 2019, 95, fiz063. [Google Scholar] [CrossRef] [PubMed]
- Munfi, A. Studies on the importance of endophytic bacteria for the biological control of the root-knot nematode Meloidogyne incognita on tomato. Bachelor’s Thesis, University of Bonn, Bonn, Germany, 2001. [Google Scholar]
- Chen, L.; Xin, X.; Zhang, J.; Marc, R.-G.; Nie, G.; Wang, Q. Soil characteristics overwhelm cultivar effects on the structure and assembly of root-associated microbiomes of modern maize. Pedosphere 2019, 29, 360–373. [Google Scholar] [CrossRef]
- Schlaeppi, K.; Dombrowski, N.; Oter, R.G.; van Themaat, E.V.L.; Schulze-Lefert, P. Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc. Natl. Acad. Sci. USA 2014, 111, 585–592. [Google Scholar] [CrossRef]
- Afzal, I.; Shinwari, Z.K.; Sikandar, S.; Shahzad, S. Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiol. Res. 2019, 221, 36–49. [Google Scholar] [CrossRef]
- Ling, N.; Wang, T.; Kuzyakov, Y. Rhizosphere bacteriome structure and functions. Nat. Commun. 2022, 13, 836. [Google Scholar] [CrossRef]
- Saikkonen, K.; Ion, D.; Gyllenberg, M. The persistence of vertically transmitted fungi in grass metapopulations. Proc. R. Soc. Lond. Ser. Biol. Sci. 2002, 269, 1397–1403. [Google Scholar] [CrossRef]
- Venkatachalam, S.; Ranjan, K.; Prasanna, R.; Ramakrishnan, B.; Thapa, S.; Kanchan, A. Diversity and functional traits of culturable microbiome members, including cyanobacteria in the rice phyllosphere. Plant Biol. 2016, 18, 627–637. [Google Scholar] [CrossRef]
- Beneduzi, A.; Moreira, F.; Costa, P.B.; Vargas, L.K.; Lisboa, B.B.; Favreto, R.; Baldani, J.I.; Passaglia, L.M.P. Diversity and plant growth promoting evaluation abilities of bacteria isolated from sugarcane cultivated in the South of Brazil. Appl. Soil Ecol. 2013, 63, 94–104. [Google Scholar] [CrossRef]
- Ganesh, J.; Singh, V.; Hewitt, K.; Kaundal, A. Exploration of the rhizosphere microbiome of native plant Ceanothus velutinus—an excellent resource of plant growth-promoting bacteria. Front. Plant Sci. 2022, 13, 979069. [Google Scholar] [CrossRef] [PubMed]
- Chialva, M.; Salvioli di Fossalunga, A.; Daghino, S.; Ghignone, S.; Bagnaresi, P.; Chiapello, M.; Novero, M.; Spadaro, D.; Perotto, S.; Bonfante, P. Native soils with their microbiotas elicit a state of alert in tomato plants. New Phytol. 2018, 220, 1296–1308. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Liu, X.; Qin, Y.; Feng, G.; Zhou, Y.; Zhu, H.; Yao, Q. Cooperation of arbuscular mycorrhizal fungi and bacteria to facilitate the host plant growth dependent on soil pH. Front. Microbiol. 2023, 14, 1116943. [Google Scholar] [CrossRef] [PubMed]
Sampling Location | Altitude (m) | Mean Annual Rainfall (mm) | Mean Annual Temperature (°C) | Mean Annual Soil Temperature (°C) | Soil | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | AP 1 (mg/kg) | AN 2 (mg/kg) | AK 3 (mg/kg) | TP 4 (g/kg) | TN 5 (%) | TC 6 (%) | OM 7 (g/kg) | |||||
Sanming, Fujian | 665 | 1688 | 19.6 | 18.7 | 4.67 | 9.67 | 150.56 | 105.42 | 0.23 | 1.57 | 0.16 | 25.09 |
Xiangtan, Hunan | 52 | 1425 | 17.5 | 16.5 | 4.79 | 7.70 | 148.67 | 129.08 | 0.23 | 1.51 | 0.16 | 17.76 |
Xianning, Hubei | 240 | 1577 | 16.8 | 15.1 | 4.72 | 18.56 | 177.59 | 182.99 | 0.39 | 1.92 | 0.18 | 29.03 |
Samples | Number of Colonies (cfu/g FW) | Number of Isolates | ||
---|---|---|---|---|
Endophytic Bacteria | Rhizobacteria | Endophytic Bacteria | Rhizobacteria | |
LFJ | 1.37 × 105 | 2.61 × 106 | 23 | 22 |
NHN | 2.88 × 104 | 2.17 × 105 | 17 | 16 |
NHB | 3.86 × 102 | 1.58 × 106 | 31 | 22 |
LHN | 8.10 × 103 | 1.85 × 106 | 22 | 20 |
LHB | 5.51 × 103 | 3.33 × 105 | 22 | 32 |
Phylum | Genus | Species Richness | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Endophytic Bacteria | Rhizobacteria | ||||||||||
LFJ | NHN | NHB | LHN | LHB | LFJ | NHN | NHB | LHN | LHB | ||
Pseudomonadota | Rhizobium | 1 | |||||||||
Novosphingobium | 1 | ||||||||||
Ensifer | 1 | ||||||||||
Variovorax | 1 | 1 | 1 | 1 | |||||||
Burkholderia | 1 | 1 | 2 | 1 | 1 | 1 | 4 | 2 | |||
Ralstonia | 2 | 1 | 1 | ||||||||
Herbaspirillum | 1 | 1 | |||||||||
Cupriavidus | 1 | ||||||||||
Pseudomonas | 6 | 4 | 1 | 4 | 3 | 6 | 8 | 3 | 3 | 5 | |
Klebsiella | 1 | 1 | 1 | ||||||||
Stenotrophomonas | 1 | 2 | 1 | ||||||||
Enterobacter | 2 | 1 | 2 | 2 | 1 | 1 | 2 | ||||
Pantoea | 1 | 2 | 1 | 3 | |||||||
Rahnella | 1 | 1 | |||||||||
Leclercia | 1 | 1 | |||||||||
Ewingella | 1 | ||||||||||
Serratia | 2 | 1 | 1 | ||||||||
Cedecea | 1 | ||||||||||
Raoultella | 1 | 1 | |||||||||
Rouxiella | 1 | ||||||||||
Flavobacterium | 1 | ||||||||||
Paraburkholderia | 1 | 1 | |||||||||
Dyella | 1 | ||||||||||
Psychrobacillus | 1 | ||||||||||
Bacillota | Bacillus | 8 | 3 | 1 | |||||||
Brevibacterium | 1 | ||||||||||
Lysinibacillus | 1 | 1 | |||||||||
Actinomycetota | Arthrobacter | 1 | 1 | 1 | 3 | ||||||
Paenarthrobacter | 2 | ||||||||||
Leifsonia | 1 | ||||||||||
Total | 30 | 14 | 9 | 13 | 15 | 12 | 15 | 14 | 12 | 14 | 19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, P.; Duan, R.; Yang, C.; Wang, Y.; Ma, D.; Lin, Z.; Wu, C.; Feng, L. Plant Host Provenances Affect Taxonomic Composition of Root-Associated Culturable Bacteria from Tripterygium wilfordii Hook f. and Their Plant Growth Promoting Properties. Forests 2025, 16, 637. https://doi.org/10.3390/f16040637
Song P, Duan R, Yang C, Wang Y, Ma D, Lin Z, Wu C, Feng L. Plant Host Provenances Affect Taxonomic Composition of Root-Associated Culturable Bacteria from Tripterygium wilfordii Hook f. and Their Plant Growth Promoting Properties. Forests. 2025; 16(4):637. https://doi.org/10.3390/f16040637
Chicago/Turabian StyleSong, Ping, Rongyu Duan, Cheng Yang, Yihui Wang, Dongdong Ma, Zhaoshou Lin, Chengzhen Wu, and Lei Feng. 2025. "Plant Host Provenances Affect Taxonomic Composition of Root-Associated Culturable Bacteria from Tripterygium wilfordii Hook f. and Their Plant Growth Promoting Properties" Forests 16, no. 4: 637. https://doi.org/10.3390/f16040637
APA StyleSong, P., Duan, R., Yang, C., Wang, Y., Ma, D., Lin, Z., Wu, C., & Feng, L. (2025). Plant Host Provenances Affect Taxonomic Composition of Root-Associated Culturable Bacteria from Tripterygium wilfordii Hook f. and Their Plant Growth Promoting Properties. Forests, 16(4), 637. https://doi.org/10.3390/f16040637