Patterns of Soil Microbial Residue Carbon Accumulation in Different Plantation Forest Types: A Case Study from Beijing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of Study Area
2.2. Experimental Design and Sample Collection
2.3. Assessment of Soil Physicochemical Characteristics
2.4. Determination of Soil Microbiomass Carbon and Nitrogen
2.5. Determination of Soil Amino Sugars
2.6. Data Processing and Analysis
3. Results
3.1. Differences in Soil Physical and Chemical Properties and Microbial Carbon and Nitrogen Content of Different Plantation Forest Types
3.2. Differences in Soil Microbial Residual Carbon Content Among Plantation Forest Types
3.3. Differences in Contribution of Soil Microbial Residue Carbon to Soil Organic Carbon in Different Plantation Forest Types
3.4. Main Factors Affecting Carbon Accumulation in Microbial Residues
4. Discussion
4.1. Soil Microbial Residue Carbon Accumulation in Different Plantation Forest Types
4.2. Characterization of Contribution of Microbial Residual Carbon to Soil Organic Carbon in Different Plantation Forest Types
4.3. Factors Affecting Microbial Residue Carbon Accumulation and Its Contribution to Soil Organic Carbon
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pan, Y.; Birdsey, R.A.; Phillips, O.L.; Jackson, R.B. The Structure, Distribution, and Biomass of the World’s Forests. Annu. Rev. Ecol. Evol. Syst. 2013, 44, 593–622. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, B.R.; Dou, Y.X.; Xue, Z.J.; Sun, H.; Wang, Y.Q.; Liang, C.; An, S.S. Advances in the research of transformation and stabilization of soil organic carbon from plant and microbe. Chin. J. Appl. Ecol. 2024, 35, 111–123. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.L.; Kolbe, H.; Zhang, R.L. Research Progress of SOC Functions andTransformation Mechanisms. Sci. Agric. Sin. 2020, 53, 317–331. [Google Scholar]
- Liang, C.; Schimel, J.P.; Jastrow, J.D. The Importance of Anabolism in Microbial Control over Soil Carbon Storage. Nat. Microbiol. 2017, 2, 17105. [Google Scholar] [CrossRef]
- Yu, Y.C.; Zhang, X.U.; Dai, X.Q.; Lü, S.D.; Yang, Y. Distributions and influencing factors of microbial residue carbon contents in forest soil profiles in subtropical red soil region. Acta Ecol. Sin. 2022, 42, 1108–1117. [Google Scholar] [CrossRef]
- Cai, M.; Zhao, G.; Zhao, B.; Cong, N.; Zheng, Z.; Zhu, J.; Duan, X.; Zhang, Y. Climate Warming Alters the Relative Importance of Plant Root and Microbial Community in Regulating the Accumulation of Soil Microbial Necromass Carbon in a Tibetan Alpine Meadow. Glob. Change Biol. 2023, 29, 3193–3204. [Google Scholar] [CrossRef]
- Shao, P.S.; Xie, H.T.; Bao, X.L.; Liang, C. Variation of Microbial Residues during Forest Secondary Succession in Topsoil and Subsoil. Acta Pedol. Sin. 2021, 58, 1050–1059. [Google Scholar]
- Shao, P.S.; Han, H.Y.; Zhang, Y.H.; Fang, Y. Variation of Soil Microbial Residues Under Different Salinity Concentrations in the Yellow River Delta. Sci. Geogr. Sin. 2022, 42, 1307–1315. [Google Scholar] [CrossRef]
- Ludwig, M.; Achtenhagen, J.; Miltner, A.; Eckhardt, K.-U.; Leinweber, P.; Emmerling, C.; Thiele-Bruhn, S. Microbial Contribution to SOM Quantity and Quality in Density Fractions of Temperate Arable Soils. Soil Biol. Biochem. 2015, 81, 311–322. [Google Scholar] [CrossRef]
- Ni, X.; Liao, S.; Tan, S.; Peng, Y.; Wang, D.; Yue, K.; Wu, F.; Yang, Y. The Vertical Distribution and Control of Microbial Necromass Carbon in Forest Soils. Glob. Ecol. Biogeogr. 2020, 29, 1829–1839. [Google Scholar] [CrossRef]
- Shi, K.; Liao, J.; Zou, X.; Chen, H.Y.H.; Delgado-Baquerizo, M.; Yan, Z.; Ren, T.; Ruan, H. Accumulation of Soil Microbial Extracellular and Cellular Residues during Forest Rewilding: Implications for Soil Carbon Stabilization in Older Plantations. Soil Biol. Biochem. 2024, 188, 109250. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, X.; Zhong, A.; Guo, S.; Zhang, H. Variations in Microbial Residue and Its Contribution to SOC between Organic and Mineral Soil Layers along an Altitude Gradient in the Wuyi Mountains. Forests 2023, 14, 1678. [Google Scholar] [CrossRef]
- Xu, F.; Li, C.; Chen, Y.; Wu, J.; Bai, H.; Fan, S.; Yang, Y.; Zhang, Y.; Li, S.; Su, J. Soil Microbial Community Structure and Soil Fertility Jointly Regulate Soil Microbial Residue Carbon during the Conversion from Subtropical Primary Forest to Plantations. Geoderma 2024, 441, 116767. [Google Scholar] [CrossRef]
- Ding, X.; Zhang, B.; Lü, X.; Wang, J.; Horwath, W.R. Parent Material and Conifer Biome Influence Microbial Residue Accumulation in Forest Soils. Soil Biol. Biochem. 2017, 107, 1–9. [Google Scholar] [CrossRef]
- Chen, G.; Ma, S.; Tian, D.; Xiao, W.; Jiang, L.; Xing, A.; Zou, A.; Zhou, L.; Shen, H.; Zheng, C.; et al. Patterns and Determinants of Soil Microbial Residues from Tropical to Boreal Forests. Soil Biol. Biochem. 2020, 151, 108059. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Soong, J.L.; Horton, A.J.; Campbell, E.E.; Haddix, M.L.; Wall, D.H.; Parton, W.J. Formation of Soil Organic Matter via Biochemical and Physical Pathways of Litter Mass Loss. Nat. Geosci. 2015, 8, 776–779. [Google Scholar] [CrossRef]
- Wang, B.; Liang, C.; Yao, H.; Yang, E.; An, S. The Accumulation of Microbial Necromass Carbon from Litter to Mineral Soil and Its Contribution to Soil Organic Carbon Sequestration. Catena 2021, 207, 105622. [Google Scholar] [CrossRef]
- Bao, S.D. Soil Agrochemical Analysis; China Agricultural Press: Beijing, China, 2001. [Google Scholar]
- Zhang, H.Y.; Zhang, X.D.; Li, J.; Wang, D.M. Outline of Soil Microbial Biomass Measurement Methods. J. Microbiol. 2005, 25, 95–99. [Google Scholar]
- Zhang, X.; Amelung, W. Gas Chromatographic Determination of Muramic Acid, Glucosamine, Mannosamine, and Galactosamine in Soils. Soil Biol. Biochem. 1996, 28, 1201–1206. [Google Scholar] [CrossRef]
- Jing, Y.; Ding, X.; Zhao, X.; Tian, P.; Xiao, F.; Wang, Q. Non-Additive Effects of Nitrogen and Phosphorus Fertilization on Microbial Biomass and Residue Distribution in a Subtropical Plantation. Eur. J. Soil Biol. 2022, 108, 103376. [Google Scholar] [CrossRef]
- Zhao, Y.; Liang, C.; Shao, S.; Chen, J.; Qin, H.; Xu, Q. Linkages of Litter and Soil C:N:P Stoichiometry with Soil Microbial Resource Limitation and Community Structure in a Subtropical Broadleaf Forest Invaded by Moso Bamboo. Plant Soil 2021, 465, 473–490. [Google Scholar] [CrossRef]
- Laganière, J.; Angers, D.A.; Paré, D. Carbon Accumulation in Agricultural Soils after Afforestation: A Meta-Analysis. Glob. Change Biol. 2010, 16, 439–453. [Google Scholar] [CrossRef]
- Chen, S.; Wang, W.; Xu, W.; Wang, Y.; Wan, H.; Chen, D.; Tang, Z.; Tang, X.; Zhou, G.; Xie, Z.; et al. Plant Diversity Enhances Productivity and Soil Carbon Storage. Proc. Natl. Acad. Sci. USA 2018, 115, 4027–4032. [Google Scholar] [CrossRef]
- Liu, X.; Trogisch, S.; He, J.-S.; Niklaus, P.A.; Bruelheide, H.; Tang, Z.; Erfmeier, A.; Scherer-Lorenzen, M.; Pietsch, K.A.; Yang, B.; et al. Tree Species Richness Increases Ecosystem Carbon Storage in Subtropical Forests. Proc. R. Soc. B Biol. Sci. 2018, 285, 20181240. [Google Scholar] [CrossRef]
- Pei, B.; Gao, G.R. Impact of Forest Litter Decomposition on Soil Carbon Pool: A Review. Chin. Agric. Sci. Bull. 2018, 34, 58–64. [Google Scholar]
- Wang, B.; An, S.; Liang, C.; Liu, Y.; Kuzyakov, Y. Microbial Necromass as the Source of Soil Organic Carbon in Global Ecosystems. Soil Biol. Biochem. 2021, 162, 108422. [Google Scholar] [CrossRef]
- Bailey, V.L.; Smith, J.L.; Bolton, H. Fungal-to-Bacterial Ratios in Soils Investigated for Enhanced C Sequestration. Soil Biol. Biochem. 2002, 34, 997–1007. [Google Scholar] [CrossRef]
- He, L.; Mazza Rodrigues, J.L.; Soudzilovskaia, N.A.; Barceló, M.; Olsson, P.A.; Song, C.; Tedersoo, L.; Yuan, F.; Yuan, F.; Lipson, D.A.; et al. Global Biogeography of Fungal and Bacterial Biomass Carbon in Topsoil. Soil Biol. Biochem. 2020, 151, 108024. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, Q.; Ding, X.L.; He, H.B.; Zhang, X.D. Research Progress on Accumulation, Turnover and Stabilization of Microbial Residues in Soil. Acta Pedol. Sin. 2022, 59, 1479–1491. [Google Scholar]
- Song, H.W. Effects of Soil Warming on Litter Decomposition in Subtropical Forests and Its Microbial Mechanism. Master’s Thesis, Fujian Normal University, Fuzhou, China, 2022. [Google Scholar]
- Li, T.; Zhang, J.; Wang, X.; Hartley, I.P.; Zhang, J.; Zhang, Y. Fungal Necromass Contributes More to Soil Organic Carbon and More Sensitive to Land Use Intensity than Bacterial Necromass. Appl. Soil Ecol. 2022, 176, 104492. [Google Scholar] [CrossRef]
- Zheng, T.; Miltner, A.; Liang, C.; Nowak, K.M.; Kästner, M. Turnover of Bacterial Biomass to Soil Organic Matter via Fungal Biomass and Its Metabolic Implications. Soil Biol. Biochem. 2023, 180, 108995. [Google Scholar] [CrossRef]
- Hu, Y.; Zheng, Q.; Noll, L.; Zhang, S.; Wanek, W. Direct Measurement of the in Situ Decomposition of Microbial-Derived Soil Organic Matter. Soil Biol. Biochem. 2020, 141, 107660. [Google Scholar] [CrossRef]
- Li, N.; Wang, Y.; Wei, L.; Wang, X.; Zhang, Q.; Guo, T.; Xu, X.; Zhao, N.; Xu, S. Variations in Microbial Residue Carbon and Its Contribution to Soil Organic Carbon after Vegetation Restoration on Farmland: The Case of Guinan County. Org. Geochem. 2024, 189, 104753. [Google Scholar] [CrossRef]
- Moritz, L.K.; Liang, C.; Wagai, R.; Kitayama, K.; Balser, T.C. Vertical Distribution and Pools of Microbial Residues in Tropical Forest Soils Formed from Distinct Parent Materials. Biogeochemistry 2009, 92, 83–94. [Google Scholar] [CrossRef]
- Bahram, M.; Hildebrand, F.; Forslund, S.K.; Anderson, J.L.; Soudzilovskaia, N.A.; Bodegom, P.M.; Bengtsson-Palme, J.; Anslan, S.; Coelho, L.P.; Harend, H.; et al. Structure and Function of the Global Topsoil Microbiome. Nature 2018, 560, 233–237. [Google Scholar] [CrossRef]
- Sokol, N.W.; Sanderman, J.; Bradford, M.A. Pathways of Mineral-Associated Soil Organic Matter Formation: Integrating the Role of Plant Carbon Source, Chemistry, and Point of Entry. Glob. Change Biol. 2019, 25, 12–24. [Google Scholar] [CrossRef]
- Jing, Y.L.; Li, X.H.; Zhang, Y.; Zhang, X.Y.; Liu, M.; Feng, Q.H. Effects of thinning on accumulation of soil microbial residue carbon of Picea asperata plantations in sub-alpine region of western Sichuan, China. Chin. J. Appl. Ecol. 2024, 35, 169–176. [Google Scholar] [CrossRef]
- Hu, J.W.; Liu, C.F.; Gou, M.M.; Chen, H.L.; Lei, L.; Xiao, W.F.; Zhu, S.F.; Hu, R.Y. Influencing mechanism of stand age to the accumulation of microbial residue carbon in the Pinus masso-niana plantations. Chin. J. Appl. Ecol. 2024, 35, 153–160. [Google Scholar] [CrossRef]
- Lu, X.; Hou, E.; Guo, J.; Gilliam, F.S.; Li, J.; Tang, S.; Kuang, Y. Nitrogen Addition Stimulates Soil Aggregation and Enhances Carbon Storage in Terrestrial Ecosystems of China: A Meta-Analysis. Glob. Chang. Biol. 2021, 27, 2780–2792. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, X.; Zhang, X.; Ju, W.; Duan, C.; Guo, X.; Wang, Y.; Fang, L. Soil Moisture Mediates Microbial Carbon and Phosphorus Metabolism during Vegetation Succession in a Semiarid Region. Soil Biol. Biochem. 2020, 147, 107814. [Google Scholar] [CrossRef]
Plantation Type | Soil Layer (cm) | Soil Type | Soil Texture | Soil Bulk Density (g/cm3) |
---|---|---|---|---|
Populus alba | 0–10 | Luvisols | Loam | 1.51 |
10–30 | Luvisols | Loam | 1.51 | |
30–60 | Luvisols | Loam | 1.53 | |
Salix matsudana Koidz | 0–10 | Luvisols | Loam | 1.50 |
10–30 | Luvisols | Loam | 1.52 | |
30–60 | Luvisols | Loam | 1.53 | |
Pinus tabuliformis | 0–10 | Luvisols | Loam | 1.50 |
10–30 | Luvisols | Loam | 1.51 | |
30–60 | Luvisols | Loam | 1.53 |
Name | Explains % | Contribution % | Pseudo-F | p |
---|---|---|---|---|
NO3− | 55.8 | 59.9 | 8.8 | 0.014 |
AK | 28.1 | 30.2 | 10.5 | 0.002 |
pH | 4.4 | 4.8 | 1.9 | 0.176 |
SOC | 2.8 | 3 | 1.3 | 0.328 |
AP | 1.1 | 1.2 | 0.4 | 0.598 |
AN | 0.9 | 0.9 | 0.3 | 0.792 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, X.; Li, S.; Sun, X.; Wang, C.; Li, J.; Xu, J. Patterns of Soil Microbial Residue Carbon Accumulation in Different Plantation Forest Types: A Case Study from Beijing. Forests 2025, 16, 288. https://doi.org/10.3390/f16020288
Kang X, Li S, Sun X, Wang C, Li J, Xu J. Patterns of Soil Microbial Residue Carbon Accumulation in Different Plantation Forest Types: A Case Study from Beijing. Forests. 2025; 16(2):288. https://doi.org/10.3390/f16020288
Chicago/Turabian StyleKang, Xixian, Suyan Li, Xiangyang Sun, Chenchen Wang, Jie Li, and Jinhang Xu. 2025. "Patterns of Soil Microbial Residue Carbon Accumulation in Different Plantation Forest Types: A Case Study from Beijing" Forests 16, no. 2: 288. https://doi.org/10.3390/f16020288
APA StyleKang, X., Li, S., Sun, X., Wang, C., Li, J., & Xu, J. (2025). Patterns of Soil Microbial Residue Carbon Accumulation in Different Plantation Forest Types: A Case Study from Beijing. Forests, 16(2), 288. https://doi.org/10.3390/f16020288