Responses of Picea schrenkiana Tree-Ring Density to Climate Extremes at Different Elevations in the Kashi River Basin of the Western Tianshan Mountains
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Tree-Ring Density Measurement
2.3. Meteorological Data
2.4. Statistical Analysis
3. Results
3.1. Chronological Characteristics
3.2. Spearman Correlation Between Tree-Ring Density and Extreme Climatic Indices
3.3. Moving Correlation Between Tree-Ring Density and Main Extreme Climate Indices
4. Discussion
4.1. Ecological Response of Density to Extreme Climatics
4.2. Response of Tree-Ring Density to Extreme Climates over Time
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, B.; Qian, J. Changes of weather and climate extremes in the IPCC AR6. Clim. Change Res. 2021, 17, 713–718. [Google Scholar]
- Fischer, E.M.; Knutti, R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Clim. Change 2015, 5, 560–564. [Google Scholar] [CrossRef]
- Seddon, A.W.R.; Macias-Fauria, M.; Long, P.R.; Benz, D.; Willis, K.J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 2016, 531, 229–232. [Google Scholar] [CrossRef]
- Gampe, D.; Zscheischler, J.; Reichstein, M.; O’Sullivan, M.; Smith, W.K.; Sitch, S.; Buermann, W. Increasing impact of warm droughts on northern ecosystem productivity over recent decades. Nat. Clim. Change 2021, 11, 772–779. [Google Scholar] [CrossRef]
- Liu, Q.; Peng, C.; Schneider, R.; Cyr, D.; McDowell, N.G.; Kneeshaw, D. Drought-induced increase in tree mortality and corresponding decrease in the carbon sink capacity of Canada’s boreal forests from 1970 to 2020. Glob. Change Biol. 2023, 29, 2274–2285. [Google Scholar] [CrossRef]
- Bennett, A.C.; Rodrigues De Sousa, T.; Monteagudo-Mendoza, A.; Esquivel-Muelbert, A.; Morandi, P.S.; Coelho De Souza, F.; Castro, W.; Duque, L.F.; Flores Llampazo, G.; Dos Santos, R.M. Sensitivity of South American tropical forests to an extreme climate anomaly. Nat. Clim. Change 2023, 13, 967–974. [Google Scholar] [CrossRef]
- Hubbart, J.A.; Guyette, R.; Muzika, R.M. More than drought: Precipitation variance, excessive wetness, pathogens and the future of the western edge of the eastern deciduous forest. Sci. Total Environ. 2016, 566–557, 463–467. [Google Scholar] [CrossRef]
- Hufkens, K.; Friedl, M.A.; Keenan, T.F.; Sonnentag, O.; Bailey, A.; O’Keefe, J.; Richardson, A.D. Ecological impacts of a widespread frost event following early spring leaf-out. Glob. Change Biol. 2012, 18, 2365–2377. [Google Scholar] [CrossRef]
- Wang, T.; Yu, D.; Li, J.; Ma, K. Advances in research on the relationship between climatic change and tree-ring width. Chin. J. Plant Ecol. 2003, 27, 23–33. [Google Scholar] [CrossRef]
- Fang, K.; Gou, X.; Chen, F.; Peng, J.; Liu, P. The Advance of Dendroecology. J. Glaciol. Geocryol. 2008, 30, 825–834. [Google Scholar]
- Björklund, J.; Seftigen, K.; Schweingruber, F.H.; Fonti, P.; von Arx, G. Cell size and wall dimensions drive distinct variability of earlywood and latewood density in Northern Hemisphere conifers. New Phytol. 2017, 216, 728–740. [Google Scholar] [CrossRef]
- Li, W. Climate Response and Reconstruction of Earlywood and Latewood Multi-Indicators of Tree Rings in Daowu Mountain, Hunan Province over the Past 214 Years. Master’s Thesis, Fujian Normal University, Fuzhou, China, 2024. [Google Scholar]
- Deng, G.; Li, M. Advances of study on the relationship between tree-ring density and climate and climate reconstruction. Prog. Geogr. 2021, 40, 343–356. [Google Scholar] [CrossRef]
- Wu, P.; Wang, L.; Shao, X. Reconstruction of summer temperature variation from maximum density of alpine pine during 1917–2002 for west Sichuan Plateau, China. J. Geogr. Sci. 2008, 18, 201–210. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, L.; Chen, J.; Duan, J. Reconstructing mean maximum temperatures of May–August from tree-ring maximum density in North Da Hinggan Mountains, China. Chin. Sci. Bull. 2012, 57, 2007–2014. [Google Scholar] [CrossRef]
- Chen, F.; Yuan, Y. May–June Maximum Temperature Reconstruction from Mean Earlywood Density in North Central China and Its Linkages to the Summer Monsoon Activities. PLoS ONE 2014, 9, e107501. [Google Scholar] [CrossRef]
- Yang, L.; Qin, C.; Li, G. Climatic signals recorded by Qinghai spruce tree-ring density in the western part of Qilian Mountains, China. Chin. J. Appl. Ecol. 2021, 32, 3636–3642. [Google Scholar] [CrossRef]
- Camarero, J.J.; Fernández-Pérez, L.; Kirdyanov, A.V.; Shestakova, T.A.; Knorre, A.A.; Kukarskih, V.V.; Voltas, J. Minimum wood density of conifers portrays changes in early season precipitation at dry and cold Eurasian regions. Trees 2017, 31, 1423–1437. [Google Scholar] [CrossRef]
- D’Arrigo, R.; Wilson, R.; Liepert, B.; Cherubini, P. On the ‘Divergence Problem’ in Northern Forests: A review of the tree-ring evidence and possible causes. Glob. Planet. Change 2008, 60, 289–305. [Google Scholar] [CrossRef]
- Briffa, K.R.; Schweingruber, F.H.; Jones, P.D.; Osborn, T.J.; Shiyatov, S.G.; Vaganov, E.A. Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature 1998, 391, 678–682. [Google Scholar] [CrossRef]
- Nie, H.; Zhao, Y.; Zhu, J.; Ning, A.; Zheng, W. Ecological Security Pattern Construction in Typical Oasis Area Based on Ant Colony Optimization: A Case Study in Yili River Valley, China. Ecol. Indic. 2024, 169, 112770. [Google Scholar] [CrossRef]
- Chen, J.; Wang, L.; Zhu, H.; Wu, P. Reconstructing mean maximum temperature of growing season from the maximum density of the Schrenk Spruce in Yili, Xinjiang, China. Chin. Sci. Bull. 2009, 54, 1295–1302. [Google Scholar] [CrossRef]
- Ma, Y.; Song, H.; Liu, Y.; Ren, M.; Cai, Q.; Zhang, T.; Duan, X.; Pourtahmasi, K.; Li, P. Drought reconstructions over the past 552 years based on minimum earlywood density in central Tianshan Mountains. Palaeogeography 2025, 667, 112853. [Google Scholar] [CrossRef]
- Yao, J.; Mao, H.; Chen, J.; Dilinuer, T. Signal and impact of wet-to-dry shift over Xinjiang, China. Acta Geogr. Sin. 2021, 76, 57–72. [Google Scholar] [CrossRef]
- Wang, S.; Jiao, L.; Jiang, Y.; Chen, K.; Liu, X.; Qi, C.; Xue, R. Extreme climate historical variation based on tree-ring width record in the Tianshan Mountains of northwestern China. Int. J. Biometeorol. 2020, 64, 2127–2139. [Google Scholar] [CrossRef]
- Yu, S.; Guo, D.; Jiang, S.; Zhang, T.; Fan, Y.; Zhang, R.; Qin, L.; Shang, H.; Zhang, H.; Gou, X.; et al. Ecological Resilience of Picea schrenkiana along Altitude Gradients in the Western Section of the Northern Slope of Tianshan Mountains, China. Desert Oasis Meteorol. 2024, 18, 82–90. [Google Scholar]
- Torresan, C.; Hilmers, T.; Avdagi, A.; Di Giuseppe, E.; Klopi, M.; Lévesque, M.; Motte, F.; Uhl, E.; Zlatanov, T.; Pretzsch, H. Changes in tree-ring wood density of European beech (Fagus sylvatica L.), silver fir (Abies alba Mill.), and Norway spruce (Picea abies (L.) H. Karst.) in European mountain forests between 1901 and 2016. Ann. For. Sci. 2024, 81, 49. [Google Scholar] [CrossRef]
- Martínez-Meier, A.; Sanchez, L.; Pastorino, M.; Gallo, L.; Rozenberg, P. What is hot in tree rings? The wood density of surviving Douglas-firs to the 2003 drought and heat wave. For. Ecol. Manag. 2008, 256, 837–843. [Google Scholar] [CrossRef]
- Zeng, K.; Yang, Y.; Hu, Y.; Feng, X. Isotopic characteristics and water vapor sources of precipitation in the Kashi River Basin. Arid Zone Res. 2021, 38, 1263–1273. [Google Scholar] [CrossRef]
- Yu, Y.; Mu, Z. Influence of DEM Resolution on Runoff Simulation Accuracy of Kashi River Basin. Water Resour. Power 2016, 34, 19–23. [Google Scholar] [CrossRef]
- Du, H.; Chang, S.; Song, C.; Zhang, Y. Diversity of Mycorrhizal Fungi of Picea schrenkiana Forest and Its Affecting Factors in the Tianshan Mountains. Arid Zone Res. 2019, 36, 1194–1201. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, H.; Yu, D.; Yang, M.; Shi, B.; Wang, L. Tree Ring-width Response of Picea schrenkiana to Climate Change. Bull. Bot. Res. 2017, 37, 340–350. [Google Scholar]
- Stokes, M.A. An Introduction to Tree-Ring Dating; University of Arizona Press: Tucson, AZ, USA, 1996; pp. 1–61. [Google Scholar]
- Holmes, R.L. Computer-assisted quality control in tree ring dating and measurement. Tree-Ring Bull. 1983, 43, 69–78. [Google Scholar]
- Wang, L.; Duan, J.; Chen, J.; Huang, L.; Shao, X. Temperature reconstruction from tree-ring maximum density of Balfour spruce in eastern Tibet, China. Int. J. Climatol. 2010, 30, 972–979. [Google Scholar] [CrossRef]
- Cleaveland, M.K. X-ray Densitometric Measurement of Climatic Influence on the Intra-Annual Characteristics of Southern Semiarid Conifer Tree Rings. Ph.D. Thesis, Department of Geosciences, University of Arizona, Tucson, AZ, USA, 1983. [Google Scholar]
- Conkey, L.E. Response of tree-ring density to climate in Maine, USA. Tree-Ring Bull. 1979, 39, 29–38. [Google Scholar]
- Zeng, X. Climate Response and Reconstruction Based on Tree-Ring Width and Wood Density in the Monsoon Marginal Zone and the Qinling Mountains. Ph.D. Thesis, Chinese Academy of Sciences, Beijing, China, 2022. [Google Scholar] [CrossRef]
- Karl, T.R.; Nicholls, N.; Ghazi, A. Clivar/GCOS/WMO Workshop on Indices and Indicators for Climate Extremes Workshop Summary. Clim. Change 1999, 42, 3–7. [Google Scholar] [CrossRef]
- International CLIVAR Project Office. Report on the Activities of the Working Group on Climate Change Detection and Related Rapporteurs 1998–2001; International CLIVAR Project Office: Qingdao, China, 2001. [Google Scholar]
- Xu, R.; Gao, P.; Mu, X.; Chai, X.; Gu, Z. Dynamic of Streamflow and Sediment Load and Its Response to Human Activities in the Weihe River Basin. Yellow River 2020, 42, 17–24. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Li, Z.; Fang, G.; Wang, C.; Zhang, X.; Li, Y.; Guo, Y. Climatic factor-driven time-lag effects of extreme precipitation in the Tienshan Mountains of Central Asia. J. Hydrol. 2025, 654, 132902. [Google Scholar] [CrossRef]
- World Meteorological Organization. Calculation of Monthly and Annual 30-Year Standard Normals; World Meteorological Organization: Geneva, Switzerland, 1989. [Google Scholar]
- Li, M.; Duan, J.; Wang, L. Differences in responses of tree-ring width and density of Larix mastersiana to climatic factors in the west Sichuan Plateau. Quat. Sci. 2024, 44, 963–975. [Google Scholar]
- Yu, S.; Yuan, Y.; Chen, F.; Shang, H.; Zhang, T.; Zhang, B. Tree-ring Density Chronology Features of Gongnaisi Riverhead Area in Western Tianshan Mountain. Desert Oasis Meteorol. 2010, 4, 6–11. [Google Scholar] [CrossRef]
- Wigley, T.M.L.; Briffa, K.R.; Jones, P.D. On the Average Value of Correlated Time Series, with Applications in Dendroclimatology and Hydrometeorology. J. Appl. Meteorol. Climatol. 1984, 23, 201–213. [Google Scholar] [CrossRef]
- Fredriksson, M.; Pedersen, N.B.; Thygesen, L.G. The Cell Wall Composition of Norway Spruce Earlywood and Latewood Revisited. Holzforschung 2018, 72, 1073–1084. [Google Scholar] [CrossRef]
- Wu, Y.; Gan, M.; Yu, R.; Yang, M.; Guo, Y.; Zhao, P. Process-based modeling radial growth of Picea schrenkiana in the eastern Tianshan Mountains. Arid Land Geogr. 2020, 43, 64–71. [Google Scholar]
- Zhang, R. Tree-Ring-Based Droughts Variability in Western Tianshan Mountains, Central Asia. Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2017. [Google Scholar]
- Duan, J. Advances in Tree-Ring Density Study. Quat. Sci. 2015, 35, 1271–1282. [Google Scholar]
- Hosoo, Y.; Yoshida, M.; Imai, T.; Okuyama, T. Diurnal difference in the amount of immunogold-labeled glucomannans detected with field emission scanning electron microscopy at the innermost surface of developing secondary walls of differentiating conifer tracheids. Planta 2002, 215, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Duan, Z. Analysis of Occurrence Time of Maximum and Minimum Temperature. Meteorol. Environ. Sci. 2014, 37, 86–89. [Google Scholar] [CrossRef]
- Xu, J.; Lv, J.; Bao, F.; Huang, R.; Liu, X.; Evans, R.; Zhao, Y. Response of wood density of Picea crassifolia to climate change in Qilian Mountains of northwestern China. J. Beijing For. Univ. 2011, 33, 115–121. [Google Scholar] [CrossRef]
- Jiao, L.; Wang, S.; Chen, K.; Liu, X. Dynamic response to climate change in the radial growth of Picea schrenkiana in western Tien Shan, China. J. For. Res. 2022, 33, 147–157. [Google Scholar] [CrossRef]
- Abudureheman, R.; Zhang, T.; Wang, Y.; Yu, S.; Zhang, R.; Yuan, Y.; Guo, D. A 219-year reconstruction of April–June mean minimum temperature from the tree-ring earlywood density on the Changbai Mountains, China. Int. J. Climatol. 2023, 43, 6150–6163. [Google Scholar] [CrossRef]
- Liang, H.; Lyu, L.; Wahab, M. A 382-year reconstruction of August mean minimum temperature from tree-ring maximum latewood density on the southeastern Tibetan Plateau, China. Dendrochronologia 2016, 37, 1–8. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, L.; Yin, H. Effects of Climatic Factors on Tree-ring Maximum Latewood Density of Picea schrenkiana in Xinjiang, China. Agric. Sci. Technol. 2016, 17, 1479–1487. [Google Scholar] [CrossRef]
- Dannenberg, M.P.; Wise, E.K.; Smith, W.K. Reduced Tree Growth in the Semiarid United States Due to Asymmetric Responses to Intensifying Precipitation Extremes. Sci. Adv. 2019, 5, eaaw0667. [Google Scholar] [CrossRef]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 2006, 111, D05109. [Google Scholar] [CrossRef]
- Jiao, L.; Jiang, Y.; Zhang, W.; Wang, M.; Wang, S.; Liu, X. Assessing the stability of radial growth responses to climate change by two dominant conifer trees species in the Tianshan Mountains, northwest China. For. Ecol. Manag. 2019, 433, 667–677. [Google Scholar] [CrossRef]
- Guo, D.; Zhang, T.; Hasimu, T.; Zhang, R.; Yu, S.; Liu, K.; Gou, X.; Liu, R.; Jiahan, S.; Wang, Z.; et al. Radial growth of two coniferous species in the western Kunlun Mountains and its response to climate change. Acta Ecol. Sin. 2022, 42, 10226–10240. [Google Scholar] [CrossRef]
- Xu, K.; Wei, J.; Zhang, Y.; Miao, N.; Peng, T.; Liu, S. Drought in May Inhibited Conifer Growth More Seriously with Climate Warming in the Southeastern Tibetan Plateau. Agric. For. Meteorol. 2025, 375, 110860. [Google Scholar] [CrossRef]
- Liu, Y.; Gou, X.; Zhang, F.; Yin, D.; Wang, X.; Li, Q.; Du, M. Effects of warming on radial growth of Picea crassifolia in the eastern Qilian Mountains, China. Chin. J. Appl. Ecol. 2021, 32, 3576–3584. [Google Scholar] [CrossRef]
- Yan, W.; He, Y.; Cai, Y.; Cui, X.; Qu, X. Analysis of Spatiotemporal Variability in Extreme Climate and Potential Driving Factors on the Yunnan Plateau (Southwest China) during 1960–2019. Atmosphere 2021, 12, 1136. [Google Scholar] [CrossRef]
- Zhang, H.; Immerzeel, W.; Zhang, F.; Kok, R.; Yan, W. 2021. Snow cover persistence reverses the altitudinal patterns of warming above and below 5000 m on the Tibetan Plateau. Sci. Total Environ. 2021, 803, 149889. [Google Scholar] [CrossRef]
- Liu, H.; Yin, Y.; Wang, Q.; He, S. Climatic effects on plant species distribution within the forest–steppe ecotone in northern China. Appl. Veg. Sci. 2014, 18, 43–49. [Google Scholar] [CrossRef]
- Tian, S.; Zhao, S.; Zheng, X.; Wang, Y.; Li, Y. Water source of spruce (Picea schrenkiana) at different altitudes in the Tianshan Mountains during the growing season. Arid Zone Res. 2023, 40, 436–444. [Google Scholar] [CrossRef]
- Wu, X.; Liao, L.; Liu, X.; Xue, R.; Qi, C.; Du, D. Ecological Adaptation of Two Dominant Conifer Species to Extreme Climate in the Tianshan Mountains. Forests 2023, 14, 1434. [Google Scholar] [CrossRef]
- Fang, Y.; Liang, Z.; Zhang, Y.; Shi, Q.; Sun, X.; Li, J.; Li, X.; Dong, Z. Characteristics of Altitudinal Gradient Changes in Water Retention of Tianshan Spruce Forest Ecosystems. Ecol. Environ. Sci. 2023, 32, 1574–1584. [Google Scholar] [CrossRef]
- Wang, J.; Yang, B.; Ljungqvist, F.C.; Zhao, Y. The Relationship Between the Atlantic Multidecadal Oscillation and Temperature Variability in China During the Last Millennium. J. Quat. Sci. 2013, 28, 653–658. [Google Scholar] [CrossRef]
- Xu, G.; Liu, X.; Qin, D.; Chen, T.; Sun, W.; An, W.; Wang, W.; Wu, G.; Zeng, X.; Ren, J. Drought history inferred from tree ring δ13C and δ18O in the central Tianshan Mountains of China and linkage with the North Atlantic Oscillation. Theor. Appl. Climatol. 2014, 116, 385–401. [Google Scholar] [CrossRef]
- Li, T. Climatological Study Based on Tree-Ring Multiproxy in the Tianshan Mountains, East Central Asia. Ph.D. Thesis, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, China, 2023. [Google Scholar] [CrossRef]








| Stands | Latitude (N) | Longitude (E) | Elevation (m) | Slope Direction Aspect | Slope (°) | Trees/ Cores |
|---|---|---|---|---|---|---|
| KS2 | 43°37′12″ | 84°7′00″ | 2400 | E | 30° | 26/52 |
| KS3 | 43°39′00″ | 84°8′24″ | 2300 | NE | 40° | 26/52 |
| KS4 | 43°41′24″ | 84°8′24″ | 2200 | NE | 43° | 23/46 |
| KS5 | 43°43′48″ | 84°2′24″ | 2095 | NE | 35° | 24/48 |
| KS6 | 43°45′00″ | 83°37′48″ | 2006 | W | 40° | 25/50 |
| KS7 | 43°42′00″ | 83°50′24″ | 1900 | NE | 40° | 25/50 |
| KS8 | 43°42′00″ | 83°36′36″ | 1804 | WNW | 30° | 25/50 |
| Class | Indicator Name | ID | Definitions | Units | Mutation Year | p Value of Pettitt Test |
|---|---|---|---|---|---|---|
| Extreme temperature warm indexes | Max Tmax | TXx | Monthly maximum value of daily maximum temp | °C | 1971 | p = 0.126 |
| Min Tmax | TXn | Monthly minimum value of daily maximum temp | °C | 1981 | p < 0.001 | |
| Warm days | TX90p | Percentage of days when TX > 90th percentile | Days | 1994 | p < 0.001 | |
| Warm nights | TN90p | Percentage of days when TN > 90th percentile | Days | 1996 | p < 0.001 | |
| Warm spell duration indicator | WSDI | Annual count of days with at least 6 consecutive days when TX > 90th percentile | Days | 1996 | p = 0.182 | |
| Summer days | SU25 | Annual count when TX(daily maximum) > 25 °C | Days | 2014 | p < 0.001 | |
| Tropical nights | TR20 | Annual count when TN(daily minimum) > 20 °C | Days | 2014 | p = 1.828 | |
| Extreme temperature cold indexes | Max Tmin | TNx | Monthly maximum value of daily minimum temp | °C | 1994 | p < 0.001 |
| Min Tmin | TNn | Monthly minimum value of daily minimum temp | °C | 1981 | p < 0.01 | |
| Cool days | TX10p | Percentage of days when TX < 10th percentile | Days | 1996 | p < 0.001 | |
| Cool nights | TN10p | Percentage of days when TN < 10th percentile | Days | 1996 | p < 0.001 | |
| Cold spell duration indicator | CSDI | Annual count of days with at least 6 consecutive days when TN < 10th percentile | Days | 1987 | p = 0.054 | |
| Frost days | FD0 | Annual count when TN(daily minimum) < 0 °C (Days) | Days | 1996 | p < 0.001 | |
| Ice days | ID0 | Annual count when TX(daily maximum) < 0 °C | Days | 1994 | p < 0.001 | |
| Other temperature indexes | Growing season length | GSL | Annual (1st January to 31st December in NH, 1st July to 30th June in SH) count between first span of at least 6 days with TG > 5 °C and first span after 1 July (1 January in SH) of 6 days with TG < 5 °C | Days | 1996 | p < 0.01 |
| Diurnal temperature range | DTR | Monthly mean difference between TX and TN | °C | 1997 | p < 0.01 | |
| Precipitation frequency indexes | Number of heavy precipitation days | R10 | Annual count of days when PRCP ≥ 10 mm | Days | 1986 | p < 0.05 |
| Number of very heavy precipitation days | R20 | Annual count of days when PRCP ≥ 20 mm | Days | 1983 | p < 0.01 | |
| Consecutive dry days | CDD | Maximum number of consecutive days with RR < 1 mm | Days | 1998 | p = 0.164 | |
| Consecutive wet days | CWD | Maximum number of consecutive days with RR ≥ 1 mm | Days | 1979 | p = 1.075 | |
| Precipitation magnitude indexes | Max1-day precipitation amount | RX1day | Monthly maximum 1-day precipitation | Mm | 1983 | p < 0.01 |
| Max5-day precipitation amount | RX5day | Monthly maximum consecutive 5-day precipitation | Mm | 1986 | p < 0.001 | |
| Very wet days | R95p | Annual total PRCP when RR > 95th percentile | Mm | 1984 | p < 0.001 | |
| Extremely wet days | R99p | Annual total PRCP when RR > 99th percentile | Mm | 1986 | p = 0.052 | |
| Annual total wet-day precipitation | PRCPtot | Annual total PRCP in wet days (RR ≥ 1 mm) | Mm | 1986 | p < 0.05 | |
| Simple daily intensity index | SDII | Annual total precipitation divided by the number of wet days(defined as PRCP ≥ 1.0 mm) in the year | Mm/day | 1986 | p < 0.001 |
| Stands Parameters | KS2 | KS3 | KS4 | KS5 | KS6 | KS7 | KS8 |
|---|---|---|---|---|---|---|---|
| Signal-to-noise ratio (SNR) | 3.338 | 6.129 | 7.195 | 3.547 | 1.274 | 8.163 | 3.487 |
| Standard deviation (SD) | 0.07 | 0.083 | 0.103 | 0.08 | 0.097 | 0.093 | 0.091 |
| Mean sensitivity (MS) | 0.038 | 0.026 | 0.04 | 0.034 | 0.036 | 0.044 | 0.04 |
| Mean correlation among trees (R1) | 0.118 | 0.185 | 0.149 | 0.116 | 0.044 | 0.239 | 0.132 |
| Mean correlation within trees (R2) | 0.423 | 0.251 | 0.304 | 0.343 | 0.496 | 0.319 | 0.508 |
| Mean correlation between trees (R3) | 0.112 | 0.183 | 0.145 | 0.107 | 0.032 | 0.237 | 0.123 |
| First principal comment (PC1) | 0.423 | 0.888 | 0.828 | 0.826 | 0.865 | 0.712 | 0.832 |
| Expressed population signal (EPS) | 0.769 | 0.86 | 0.878 | 0.78 | 0.56 | 0.891 | 0.777 |
| Common interval | 1890–2006 | 1780–1996 | 1911–2011 | 1883–2012 | 1900–2009 | 1918–2013 | 1867–2007 |
| The first year of subsample signal strength > 0.85 | 1800 | 1692 | 1769 | 1841 | 1883 | 1882 | 1841 |
| Stands Parameters | KS2 | KS3 | KS4 | KS5 | KS6 | KS7 | KS8 |
|---|---|---|---|---|---|---|---|
| Signal-to-noise ratio (SNR) | 3.124 | 6.615 | 5.245 | 2.913 | 2.91 | 5.407 | 5.566 |
| Standard deviation (SD) | 0.051 | 0.067 | 0.067 | 0.055 | 0.088 | 0.071 | 0.056 |
| Mean sensitivity (MS) | 0.035 | 0.037 | 0.037 | 0.034 | 0.035 | 0.043 | 0.031 |
| Mean correlation among trees (R1) | 0.111 | 0.197 | 0.113 | 0.102 | 0.094 | 0.172 | 0.1 |
| Mean correlation within trees (R2) | 0.463 | 0.337 | 0.312 | 0.317 | 0.48 | 0.214 | 0.487 |
| Mean correlation between trees (R3) | 0.104 | 0.197 | 0.113 | 0.094 | 0.085 | 0.171 | 0.091 |
| First principal comment (PC1) | 0.463 | 0.749 | 0.672 | 0.699 | 0.735 | 0.652 | 0.701 |
| Expressed population signal (EPS) | 0.757 | 0.869 | 0.84 | 0.744 | 0.744 | 0.844 | 0.72 |
| Common interval | 1890–2006 | 1780–1996 | 1911–2011 | 1883–2012 | 1900–2009 | 1918–2013 | 1867–2007 |
| The first year of subsample signal strength > 0.85 | 1800 | 1691 | 1769 | 1842 | 1878 | 1886 | 1841 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiahan, S.; Zhang, T.; Yu, S.; Liu, R.; Wang, Z.; Guo, D.; Chen, C. Responses of Picea schrenkiana Tree-Ring Density to Climate Extremes at Different Elevations in the Kashi River Basin of the Western Tianshan Mountains. Forests 2025, 16, 1679. https://doi.org/10.3390/f16111679
Jiahan S, Zhang T, Yu S, Liu R, Wang Z, Guo D, Chen C. Responses of Picea schrenkiana Tree-Ring Density to Climate Extremes at Different Elevations in the Kashi River Basin of the Western Tianshan Mountains. Forests. 2025; 16(11):1679. https://doi.org/10.3390/f16111679
Chicago/Turabian StyleJiahan, Shirenna, Tongwen Zhang, Shulong Yu, Rui Liu, Zhaopeng Wang, Dong Guo, and Chen Chen. 2025. "Responses of Picea schrenkiana Tree-Ring Density to Climate Extremes at Different Elevations in the Kashi River Basin of the Western Tianshan Mountains" Forests 16, no. 11: 1679. https://doi.org/10.3390/f16111679
APA StyleJiahan, S., Zhang, T., Yu, S., Liu, R., Wang, Z., Guo, D., & Chen, C. (2025). Responses of Picea schrenkiana Tree-Ring Density to Climate Extremes at Different Elevations in the Kashi River Basin of the Western Tianshan Mountains. Forests, 16(11), 1679. https://doi.org/10.3390/f16111679

