Post-Fire Carbon Dynamics in a UK Woodland: A Case Study from the Roaches Nature Reserve
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Satellite Analysis
2.3. Sampling Protocol
2.4. Backdating of Tree Growth and Trees Carbon Dynamics
2.5. Ecosystem CO2 Sequestration Loss
2.6. Soil Processing
2.7. Tree–Soil Carbon Stock (2023)
3. Results
3.1. Spatial Analysis of the Fire Impact
3.2. CO2 Uptake Dynamics and Ecosystem Service Costs
3.2.1. Pinus sylvestris L.
3.2.2. Larix decidua Mill.
3.3. Post-Fire CO2 and Tree–Soil Carbon Stock Balance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A Global Overview of Drought and Heat-Induced Tree Mortality Reveals Emerging Climate Change Risks for Forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- Klein, T.; Hartmann, H. Climate Change Drives Tree Mortality. Science 2018, 362, 758. [Google Scholar] [CrossRef]
- Li, X.; Xi, B.; Wu, X.; Choat, B.; Feng, J.; Jiang, M.; Tissue, D. Unlocking Drought-Induced Tree Mortality: Physiological Mechanisms to Modeling. Front. Plant Sci. 2022, 13, 835921. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, H.; Adams, H.D.; Anderegg, W.R.L.; Jansen, S.; Zeppel, M.J.B. Research Frontiers in Drought-Induced Tree Mortality: Crossing Scales and Disciplines. New Phytol. 2015, 205, 965–969. [Google Scholar] [CrossRef] [PubMed]
- Neumann, M.; Mues, V.; Moreno, A.; Hasenauer, H.; Seidl, R. Climate Variability Drives Recent Tree Mortality in Europe. Glob. Change Biol. 2017, 23, 4788–4797. [Google Scholar] [CrossRef] [PubMed]
- Hood, S.M. Physiological Responses to Fire That Drive Tree Mortality. Plant Cell Environ. 2021, 44, 692–695. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Phillips, O.L.; Houghton, R.A.; Fang, J.; Kauppi, P.E.; Keith, H.; Kurz, W.A.; Ito, A.; Lewis, S.L.; et al. The Enduring World Forest Carbon Sink. Nature 2024, 631, 563–569. [Google Scholar] [CrossRef]
- Souza, C.R.; Maia, V.A.; Mariano, R.F.; Coelho de Souza, F.; Araújo, F.d.C.; de Paula, G.G.P.; Menino, G.C.d.O.; Coelho, P.A.; Santos, P.F.; Morel, J.D.; et al. Tropical Forests in Ecotonal Regions as a Carbon Source Linked to Anthropogenic Fires: A 15-Year Study Case in Atlantic Forest—Cerrado Transition Zone. For. Ecol. Manag. 2022, 519, 120326. [Google Scholar] [CrossRef]
- Kala, C.P. Environmental and Socioeconomic Impacts of Forest Fires: A Call for Multilateral Cooperation and Management Interventions. Nat. Hazards Res. 2023, 3, 286–294. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef]
- Taye, F.A.; Folkersen, M.V.; Fleming, C.M.; Buckwell, A.; Mackey, B.; Diwakar, K.C.; Le, D.; Hasan, S.; Saint Ange, C. The Economic Values of Global Forest Ecosystem Services: A Meta-Analysis. Ecol. Econ. 2021, 189, 107145. [Google Scholar] [CrossRef]
- Roces-Díaz, J.V.; Santín, C.; Martínez-Vilalta, J.; Doerr, S.H. A Global Synthesis of Fire Effects on Ecosystem Services of Forests and Woodlands. Front. Ecol. Environ. 2022, 20, 170–178. [Google Scholar] [CrossRef]
- Gren, I.-M.; Aklilu, A.Z.; Elofsson, K. Forest Carbon Sequestration, Pathogens and the Costs of the EU’s 2050 Climate Targets. Forests 2018, 9, 542. [Google Scholar] [CrossRef]
- Pang, D.; Xu, H. Carbon Sequestration and Stability and Soil Erosion in Forest Ecosystems. Forests 2024, 15, 1961. [Google Scholar] [CrossRef]
- Bar-On, Y.M.; Li, X.; O’Sullivan, M.; Wigneron, J.-P.; Sitch, S.; Ciais, P.; Frankenberg, C.; Fischer, W.W. Recent Gains in Global Terrestrial Carbon Stocks Are Mostly Stored in Nonliving Pools. Science 2025, 387, 1291–1295. [Google Scholar] [CrossRef] [PubMed]
- Canadell, J.G. Looking beyond the Trees for Carbon Storage. Science 2025, 387, 1252–1253. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Carbon Sequestration. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 815–830. [Google Scholar] [CrossRef]
- Fernandes, P.M. Fire-Smart Management of Forest Landscapes in the Mediterranean Basin under Global Change. Landsc. Urban Plan. 2013, 110, 175–182. [Google Scholar] [CrossRef]
- Goldammer, J.G.; Stocks, B.J.; Schwela, D.; Andreae, M.O.; Pyne, S.J.; Justice, C.; Frost, P.G.H. Forest Fires—A Global Perspective. In Proceedings of the Incendios Forestales: Amenazas y Desafíos en un Escenario de Calentamiento Global 2007, Concepción, Chile, 8–9 November 2007. [Google Scholar]
- Ribeiro-Kumara, C.; Köster, E.; Aaltonen, H.; Köster, K. How Do Forest Fires Affect Soil Greenhouse Gas Emissions in Upland Boreal Forests? A Review. Environ. Res. 2020, 184, 109328. [Google Scholar] [CrossRef]
- Niccoli, F.; Altieri, S.; Kabala, J.P.; Battipaglia, G. Fire Affects Tree Growth, Water Use Efficiency and Carbon Sequestration Ecosystem Service of Pinus Nigra Arnold: A Combined Satellite and Ground-Based Study in Central Italy. Forests 2023, 14, 2033. [Google Scholar] [CrossRef]
- Certini, G.; Nocentini, C.; Knicker, H.; Arfaioli, P.; Rumpel, C. Wildfire Effects on Soil Organic Matter Quantity and Quality in Two Fire-Prone Mediterranean Pine Forests. Geoderma 2011, 167–168, 148–155. [Google Scholar] [CrossRef]
- Bartowitz, K.J.; Walsh, E.S.; Stenzel, J.E.; Kolden, C.A.; Hudiburg, T.W. Forest Carbon Emission Sources Are Not Equal: Putting Fire, Harvest, and Fossil Fuel Emissions in Context. Front. For. Glob. Change 2022, 5, 867112. [Google Scholar] [CrossRef]
- Andela, N.; Morton, D.C.; Giglio, L.; Paugam, R.; Chen, Y.; Hantson, S.; van der Werf, G.R.; Randerson, J.T. The Global Fire Atlas of Individual Fire Size, Duration, Speed and Direction. Earth Syst. Sci. Data 2019, 11, 529–552. [Google Scholar] [CrossRef]
- Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M.J.S. Climate-Induced Variations in Global Wildfire Danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.W.; Kelley, D.I.; Burton, C.A.; Di Giuseppe, F.; Barbosa, M.L.F.; Brambleby, E.; Hartley, A.J.; Lombardi, A.; Mataveli, G.; McNorton, J.R.; et al. State of Wildfires 2023–2024. Earth Syst. Sci. Data 2024, 16, 3601–3685. [Google Scholar] [CrossRef]
- EFFIS European Forest Fire Information System—Statistics Portal. Data Sourced May 2025. Available online: https://forest-fire.emergency.copernicus.eu/apps/effis.statistics/ (accessed on 1 May 2025).
- San-Miguel-Ayanz, J.; Durrant, T.; Boca, R.; Maianti, P.; Liberta’, G.; Oom, D.; Branco, A.; De Rigo, D.; Suarez Moreno, M.; Ferrari, D.; et al. Advance Report on Forest Fires in Europe, Middle East and North Africa 2024; Publications Office of the European Union: Luxembourg, 2025. [Google Scholar] [CrossRef]
- Arnell, N.W.; Freeman, A. The Effect of Climate Change on Agro-Climatic Indicators in the UK. Clim. Change 2021, 165, 40. [Google Scholar] [CrossRef]
- Perry, M.C.; Vanvyve, E.; Betts, R.A.; Palin, E.J. Past and Future Trends in Fire Weather for the UK. Nat. Hazards Earth Syst. Sci. 2022, 22, 559–575. [Google Scholar] [CrossRef]
- Belcher, C.M.; Brown, I.; Clay, G.D.; Doerr, S.H.; Elliott, A.; Gazzard, R.; Kettridge, N.; Morison, J.; Perry, M.; Santin, C.; et al. UK Wildfires and Their Climate Challenges. 2021. Available online: https://www.ukclimaterisk.org/wp-content/uploads/2021/06/UK-Wildfires-and-their-Climate-Challenges.pdf (accessed on 1 June 2025).
- Ivison, K.; Little, K.; Orpin, A.; Belcher, C.M.; Clay, G.D.; Doerr, S.H.; Smith, T.E.L.; Andersen, R.; Graham, L.J.; Kettridge, N. Unprecedented UK Heatwave Harmonised Drivers of Fuel Moisture Creating Extreme Temperate Wildfire Risk. Commun. Earth Environ. 2025, 6, 727. [Google Scholar] [CrossRef]
- Veeraswamy, A.; Galea, E.R.; Filippidis, L.; Lawrence, P.J.; Haasanen, S.; Gazzard, R.J.; Smith, T.E.L. The Simulation of Urban-Scale Evacuation Scenarios with Application to the Swinley Forest Fire. Saf. Sci. 2018, 102, 178–193. [Google Scholar] [CrossRef]
- Forestry Commission, UK Government. Forest Research Climate Change Adaptation Reporting: Fourth Round—Forestry Commission Annexes; Forestry Commission, UK Government: Bristol, UK, 2021.
- Walker, A.P.; De Kauwe, M.G.; Bastos, A.; Belmecheri, S.; Georgiou, K.; Keeling, R.F.; McMahon, S.M.; Medlyn, B.E.; Moore, D.J.P.; Norby, R.J.; et al. Integrating the Evidence for a Terrestrial Carbon Sink Caused by Increasing Atmospheric CO2. New Phytol. 2021, 229, 2413–2445. [Google Scholar] [CrossRef]
- Hallaj, Z.; Bijani, M.; Karamidehkordi, E.; Yousefpour, R.; Yousefzadeh, H. Forest Land Use Change Effects on Biodiversity Ecosystem Services and Human Well-Being: A Systematic Analysis. Environ. Sustain. Indic. 2024, 23, 100445. [Google Scholar] [CrossRef]
- Barrios, E.; Valencia, V.; Jonsson, M.; Brauman, A.; Hairiah, K.; Mortimer, P.E.; Okubo, S. Contribution of Trees to the Conservation of Biodiversity and Ecosystem Services in Agricultural Landscapes. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2018, 14, 1–16. [Google Scholar] [CrossRef]
- Daskalova, G.N.; Myers-Smith, I.H.; Bjorkman, A.D.; Blowes, S.A.; Supp, S.R.; Magurran, A.E.; Dornelas, M. Landscape-Scale Forest Loss as a Catalyst of Population and Biodiversity Change. Science 2020, 368, 1341–1347. [Google Scholar] [CrossRef] [PubMed]
- Office for National Statistics (ONS). Woodland Natural Capital Accounts. Available online: https://www.ons.gov.uk/economy/environmentalaccounts/bulletins/woodlandnaturalcapitalaccountsuk/2024 (accessed on 1 September 2025).
- Aldhous, J.R.; Scott, A.H.A. Forest Fire Protection in the UK: Experience in the Period 1950–1990. Commonw. For. Rev. 1993, 72, 39–47. [Google Scholar]
- Morton, R.D.; Marston, C.G.; O’Neil, A.W.; Rowland, C.S. Land Cover Map 2020 (25m Rasterised Land Parcels, GB); (Dataset); NERC EDS Environmental Information Data Centre: Lancaster, UK, 2021. [Google Scholar]
- Marfella, L.; Ashby, M.A.; Hennessy, G.; Rowe, J.; Marzaioli, R.; Rutigliano, F.A.; Glanville, H.C. Mid-Term (5 Years) Impacts of Wildfire on Soil Chemical and Biological Properties in a UK Peatland. Appl. Soil Ecol. 2025, 207, 105953. [Google Scholar] [CrossRef]
- Niccoli, F.; Marfella, L.; Kabala, J.P.; Rowe, J.; Marzaioli, R.; Rutigliano, F.A.; Glanville, H.C.; Battipaglia, G. Different Responses of Pinus sylvestris L. and Larix Decidua Mill. to Forest Fire in Central England (UK). Agric. For. Meteorol. 2025, 374, 110804. [Google Scholar] [CrossRef]
- SWT Staffordshire Wildlife Trust Website. Diseased Larch Tree Felling at Moorlands Beauty Spot. Available online: https://www.staffs-wildlife.org.uk/news/diseased-larch-tree-felling-moorlands-beauty-spot (accessed on 6 July 2025).
- SWT Staffordshire Wildlife Trust Website. Winter Work at the Roaches. Available online: https://www.staffs-wildlife.org.uk/explore/our-nature-reserves/winter-work-roaches (accessed on 6 July 2025).
- García, M.J.L.; Caselles, V. Mapping Burns and Natural Reforestation Using Thematic Mapper Data. Geocarto Int. 1991, 6, 31–37. [Google Scholar] [CrossRef]
- Key, C.H.; Benson, N.C. Landscape Assessment (LA) Sampling and Analysis Methods; USDA Forest Service—General Technical Report RMRS-GTR; USDA Forest Service: Washington, DC, USA, 2006.
- Keeley, J.E. Fire Intensity, Fire Severity and Burn Severity: A Brief Review and Suggested Usage. Int. J. Wildland Fire 2009, 18, 116–126. [Google Scholar] [CrossRef]
- Sentinel-hub Copernicus Data Space Ecosystem Portal. Available online: https://www.sentinel-hub.com/explore/copernicus-data-space-ecosystem (accessed on 1 May 2025).
- Schweingruber, F.H. Tree Rings—Basics and Applications of Dendrochronology; Kluwer Academic: Dordrecht, The Netherlands, 1998. [Google Scholar]
- Eckstein, D.; Bauch, J. Beitrag Zur Rationalisierung Eines Dendrochronologischen Verfahrens Und Zur Analyse Seiner Aussagesicherheit. Forstwiss. Cent. 1969, 88, 230–250. [Google Scholar] [CrossRef]
- Siipilehto, J.; Sarkkola, S.; Nuutinen, Y.; Mehtätalo, L. Predicting Height-Diameter Relationship in Uneven-Aged Stands in Finland. For. Ecol. Manag. 2023, 549, 121486. [Google Scholar] [CrossRef]
- Mehtätalo, L.; Lappi, J. Biometry for Forestry and Environmental Data; Series: Chapman & Hall/CRC Applied Environmental Statistics; Chapman and Hall/CRC Press: Boca Raton, FL, USA, 2020; ISBN 9780429173462. [Google Scholar]
- Pretzsch, H. Forest Dynamics, Growth and Yield; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 978-3-540-88306-7. [Google Scholar]
- Zianis, D.; Muukkonen, P.; Mäkipää, R.; Mencuccini, M. Biomass and Stem Volume Equations for Tree Species in Europe. Silva Fenn. 2005, 39, 1–63. [Google Scholar] [CrossRef]
- Jagodziński, A.M.; Dyderski, M.K.; Gęsikiewicz, K.; Horodecki, P. Tree- and Stand-Level Biomass Estimation in a Larix Decidua Mill. Chronosequence. Forests 2018, 9, 587. [Google Scholar] [CrossRef]
- Raptis, D.I.; Papadopoulou, D.; Psarra, A.; Fallias, A.A.; Tsitsanis, A.G.; Kazana, V. Height-Diameter Models for King Boris Fir (Abies Borisii Regis Mattf.) and Scots Pine (Pinus sylvestris L.) in Olympus and Pieria Mountains, Greece. J. Mt. Sci. 2024, 21, 1475–1490. [Google Scholar] [CrossRef]
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2006; Volume 4 Agriculture, Forestry and Other Land Use, Chapter 4 Forest Land. 2006. Forestry 2006. [Google Scholar]
- Winrock International Review of Aboveground Biomass Estimation Techniques (High Carbon Stock Science Study, Report 3). Available online: https://winrock.org/wp-content/uploads/2015/12/hcs-consulting-report-3-review-of-aboveground-biomass-estimation-techniques.pdf (accessed on 1 September 2025).
- Teobaldelli, M.; Somogyi, Z.; Migliavacca, M.; Usoltsev, V.A. Generalized Functions of Biomass Expansion Factors for Conifers and Broadleaved by Stand Age, Growing Stock and Site Index. For. Ecol. Manag. 2009, 257, 1004–1013. [Google Scholar] [CrossRef]
- Gryc, V.; Vavrčík, H.; Horn, K. Density of Juvenile and Mature Wood of Selected Coniferous Species. J. For. Sci. (Prague) 2011, 57, 123–130. [Google Scholar] [CrossRef]
- Nwankwo, C.; Tse, A.C.; Nwankwoala, H.O.; Giadom, F.D.; Acra, E.J. Below Ground Carbon Stock and Carbon Sequestration Potentials of Mangrove Sediments in Eastern Niger Delta, Nigeria: Implication for Climate Change. Sci. Afr. 2023, 22, e01898. [Google Scholar] [CrossRef]
- European Commission. Report from the Commission to the European Parliament and the Council on the Functioning of the European Carbon Market in 2023; European Commission: Brussels, Belgium, 2024. [Google Scholar]
- Kauffman, J.B.; Donato, D.C. Protocols for the Measurement, Monitoring and Reporting of Structure, Biomass and Carbon Stocks in Mangrove Forests; CIFOR: Bogor, Indonesia, 2012. [Google Scholar]
- Kirby, K.R.; Potvin, C. Variation in Carbon Storage among Tree Species: Implications for the Management of a Small-Scale Carbon Sink Project. For. Ecol. Manag. 2007, 246, 208–221. [Google Scholar] [CrossRef]
- Navarrete-Poyatos, M.A.; Navarro-Cerrillo, R.M.; Lara-Gómez, M.A.; Duque-Lazo, J.; Varo, M.d.l.A.; Palacios Rodriguez, G. Assessment of the Carbon Stock in Pine Plantations in Southern Spain through ALS Data and K-Nearest Neighbor Algorithm Based Models. Geosciences 2019, 9, 442. [Google Scholar] [CrossRef]
- Campbell, C.A.; Biederbeck, V.O.; Zentner, R.P.; Lafond, G.P. Effect of Crop Rotations and Cultural Practices on Soil Organic Matter, Microbial Biomass and Respiration in a Thin Black Chernozem. Can. J. Soil Sci. 1991, 71, 363–376. [Google Scholar] [CrossRef]
- Kim, Y.; Ullah, S.; Moore, T.R.; Roulet, N.T. Dissolved Organic Carbon and Total Dissolved Nitrogen Production by Boreal Soils and Litter: The Role of Flooding, Oxygen Concentration, and Temperature. Biogeochemistry 2014, 118, 35–48. [Google Scholar] [CrossRef]
- Sokal, R.R.; Rohlf, F.J. Biometry: The Principles and Practice of Statistics in Biological Research, 4th ed.; W.H. Freeman and Company: New York, NY, USA, 2011; 937p. [Google Scholar]
- Ashokri, H.A.; Rozainah, M.Z. CARBON STOCK EVALUATION AND ITS POTENTIAL CARBON MARKET VALUE IN CAREY ISLAND MANGROVE FOREST, SELANGOR, MALAYSIA. MATTER. Int. J. Sci. Technol. 2015, 1, 240–258. [Google Scholar] [CrossRef]
- Zahabnazouri, S.; Belmont, P.; David, S.; Wigand, P.E.; Elia, M.; Capolongo, D. Detecting Burn Severity and Vegetation Recovery After Fire Using DNBR and DNDVI Indices: Insight from the Bosco Difesa Grande, Gravina in Southern Italy. Sensors 2025, 25, 3097. [Google Scholar] [CrossRef] [PubMed]
- Saulino, L.; Rita, A.; Migliozzi, A.; Maffei, C.; Allevato, E.; Garonna, A.P.; Saracino, A. Detecting Burn Severity across Mediterranean Forest Types by Coupling Medium-Spatial Resolution Satellite Imagery and Field Data. Remote Sens. 2020, 12, 741. [Google Scholar] [CrossRef]
- Varner, J.M.; Hood, S.M.; Aubrey, D.P.; Yedinak, K.; Hiers, J.K.; Jolly, W.M.; Shearman, T.M.; McDaniel, J.K.; O’Brien, J.J.; Rowell, E.M. Tree Crown Injury from Wildland Fires: Causes, Measurement and Ecological and Physiological Consequences. New Phytol. 2021, 231, 1676–1685. [Google Scholar] [CrossRef] [PubMed]
- Reich, P.B.; Abrams, M.D.; Ellsworth, D.S.; Kruger, E.L.; Tabone, T.J. Fire Affects Ecophysiology and Community Dynamics of Central Wisconsin Oak Forest Regeneration. Ecology 1990, 71, 2179–2190. [Google Scholar] [CrossRef]
- Verma, S.; Singh, D.; Mani, S.; Jayakumar, S. Effect of Forest Fire on Tree Diversity and Regeneration Potential in a Tropical Dry Deciduous Forest of Mudumalai Tiger Reserve, Western Ghats, India. Ecol. Process. 2017, 6, 32. [Google Scholar] [CrossRef]
- Powers, E.M.; Marshall, J.D.; Zhang, J.; Wei, L. Post-Fire Management Regimes Affect Carbon Sequestration and Storage in a Sierra Nevada Mixed Conifer Forest. For. Ecol. Manag. 2013, 291, 268–277. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Vega, J.A.; Jiménez, E.; Rigolot, E. Fire Resistance of European Pines. For. Ecol. Manag. 2008, 256, 246–255. [Google Scholar] [CrossRef]
- Paula, S.; Arianoutsou, M.; Kazanis, D.; Tavsanoglu, Ç.; Lloret, F.; Buhk, C.; Ojeda, F.; Luna, B.; Moreno, J.M.; Rodrigo, A.; et al. Fire-related Traits for Plant Species of the Mediterranean Basin. Ecology 2009, 90, 1420. [Google Scholar] [CrossRef]
- Hood, S.M.; Varner, J.M.; Van Mantgem, P.; Cansler, C.A. Fire and Tree Death: Understanding and Improving Modeling of Fire-Induced Tree Mortality. Environ. Res. Lett. 2018, 13, 113004. [Google Scholar] [CrossRef]
- Teshome, D.T.; Zharare, G.E.; Naidoo, S. The Threat of the Combined Effect of Biotic and Abiotic Stress Factors in Forestry Under a Changing Climate. Front. Plant Sci. 2020, 11, 601009. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Cerrillo, R.M.; González-Moreno, P.; Ruiz-Gómez, F.J.; Sánchez-Cuesta, R.; Gazol, A.; Camarero, J.J. Drought Stress and Pests Increase Defoliation and Mortality Rates in Vulnerable Abies Pinsapo Forests. For. Ecol. Manag. 2022, 504, 119824. [Google Scholar] [CrossRef]
- Reed, C.C.; Hood, S.M.; Ramirez, A.R.; Sala, A. Fire Directly Affects Tree Carbon Balance and Indirectly Affects Hydraulic Function: Consequences for Post-fire Mortality in Two Conifers. New Phytol. 2025, 247, 595–611. [Google Scholar] [CrossRef] [PubMed]
- McDowell, N.G. Mechanisms Linking Drought, Hydraulics, Carbon Metabolism, and Vegetation Mortality. Plant Physiol. 2011, 155, 1051–1059. [Google Scholar] [CrossRef]
- Roaches Website. The Roaches Where Buzzards Fly…& Wallabies May or May Not Roam…. Available online: https://www.roaches.org.uk/fire2018.html (accessed on 8 August 2025).
- Marfella, L.; Mairota, P.; Marzaioli, R.; Glanville, H.C.; Pazienza, G.; Rutigliano, F.A. Long-Term Impact of Wildfire on Soil Physical, Chemical and Biological Properties within a Pine Forest. Eur. J. For. Res. 2024, 143, 1125–1142. [Google Scholar] [CrossRef]
- Moya, D.; González-De Vega, S.; Lozano, E.; García-Orenes, F.; Mataix-Solera, J.; Lucas-Borja, M.E.; de las Heras, J. The Burn Severity and Plant Recovery Relationship Affect the Biological and Chemical Soil Properties of Pinus Halepensis Mill. Stands in the Short and Mid-Terms after Wildfire. J. Environ. Manag. 2019, 235, 250–256. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Z.; Li, J.; Wen, Y.; Liu, F.; Zhang, W.; Liu, H.; Ren, C.; Han, X. Effects of Fire on the Soil Microbial Metabolic Quotient: A Global Meta-Analysis. Catena 2023, 224, 106957. [Google Scholar] [CrossRef]
- Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.W.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; Blanco, G.; et al. IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Stephenson, N.L.; Das, A.J.; Condit, R.; Russo, S.E.; Baker, P.J.; Beckman, N.G.; Coomes, D.A.; Lines, E.R.; Morris, W.K.; Rüger, N.; et al. Rate of Tree Carbon Accumulation Increases Continuously with Tree Size. Nature 2014, 507, 90–93. [Google Scholar] [CrossRef]
- Dye, A.W.; Houtman, R.M.; Gao, P.; Anderegg, W.R.L.; Fettig, C.J.; Hicke, J.A.; Kim, J.B.; Still, C.J.; Young, K.; Riley, K.L. Carbon, Climate, and Natural Disturbance: A Review of Mechanisms, Challenges, and Tools for Understanding Forest Carbon Stability in an Uncertain Future. Carbon Balance Manag. 2024, 19, 35. [Google Scholar] [CrossRef]
- Lutz, J.; Matchett, J.; Tarnay, L.; Smith, D.; Becker, K.; Furniss, T.; Brooks, M. Fire and the Distribution and Uncertainty of Carbon Sequestered as Aboveground Tree Biomass in Yosemite and Sequoia & Kings Canyon National Parks. Land 2017, 6, 10. [Google Scholar] [CrossRef]
- Dawe, D.A.; Parisien, M.-A.; Van Dongen, A.; Whitman, E. Initial Succession after Wildfire in Dry Boreal Forests of Northwestern North America. Plant Ecol. 2022, 223, 789–809. [Google Scholar] [CrossRef]
- Moris, J.V.; Vacchiano, G.; Ravetto Enri, S.; Lonati, M.; Motta, R.; Ascoli, D. Resilience of European Larch (Larix Decidua Mill.) Forests to Wildfires in the Western Alps. New For. 2017, 48, 663–683. [Google Scholar] [CrossRef]
- Waring, B.; Neumann, M.; Prentice, I.C.; Adams, M.; Smith, P.; Siegert, M. Forests and Decarbonization—Roles of Natural and Planted Forests. Front. For. Glob. Change 2020, 3, 58. [Google Scholar] [CrossRef]
- Streck, C.; Scholz, S.M. The Role of Forests in Global Climate Change: Whence We Come and Where We Go. Int. Aff. 2006, 82, 861–879. [Google Scholar] [CrossRef]
- Singh, S. Forest Fire Emissions: A Contribution to Global Climate Change. Front. For. Glob. Change 2022, 5, 925480. [Google Scholar] [CrossRef]
- Cavallero, L.; López, D.R.; Raffaele, E.; Aizen, M.A. Structural–Functional Approach to Identify Post-Disturbance Recovery Indicators in Forests from Northwestern Patagonia: A Tool to Prevent State Transitions. Ecol. Indic. 2015, 52, 85–95. [Google Scholar] [CrossRef]
- Dian, Y.; Guo, Z.; Liu, H.; Lin, H.; Huang, L.; Han, Z.; Zhou, J.; Teng, M.; Cui, H.; Wang, P. A New Index Integrating Forestry and Ecology Models for Quantitatively Characterizing Forest Carbon Sequestration Potential Ability in a Subtropical Region. Ecol. Indic. 2024, 158, 111358. [Google Scholar] [CrossRef]
- Hurteau, M.D.; Brooks, M.L. Short- and Long-Term Effects of Fire on Carbon in US Dry Temperate Forest Systems. BioScience 2011, 61, 139–146. [Google Scholar] [CrossRef]
- Marfella, L.; Marzaioli, R.; Pazienza, G.; Mairota, P.; Glanville, H.C.; Rutigliano, F.A. Medium-Term Effects of Wildfire Severity on Soil Physical, Chemical and Biological Properties in Pinus Halepensis Mill. Woodland (Southern Italy): An Opportunity for Invasive Acacia Saligna Colonization? For. Ecol. Manag. 2023, 542, 121010. [Google Scholar] [CrossRef]
- González-Pérez, J.A.; González-Vila, F.J.; Almendros, G.; Knicker, H. The Effect of Fire on Soil Organic Matter—A Review. Environ. Int. 2004, 30, 855–870. [Google Scholar] [CrossRef]
- Titterton, P.; Crouch, T.; Pilkington, M. A Case Study into the Estimated Amount of Carbon Released as a Result of the Wildfire That Occurred on the Roaches in August 2018; Moors for the Future Partnership: Edale, UK, 2019; pp. 1–20. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niccoli, F.; Marfella, L.; Glanville, H.C.; Rutigliano, F.A.; Battipaglia, G. Post-Fire Carbon Dynamics in a UK Woodland: A Case Study from the Roaches Nature Reserve. Forests 2025, 16, 1547. https://doi.org/10.3390/f16101547
Niccoli F, Marfella L, Glanville HC, Rutigliano FA, Battipaglia G. Post-Fire Carbon Dynamics in a UK Woodland: A Case Study from the Roaches Nature Reserve. Forests. 2025; 16(10):1547. https://doi.org/10.3390/f16101547
Chicago/Turabian StyleNiccoli, Francesco, Luigi Marfella, Helen C. Glanville, Flora A. Rutigliano, and Giovanna Battipaglia. 2025. "Post-Fire Carbon Dynamics in a UK Woodland: A Case Study from the Roaches Nature Reserve" Forests 16, no. 10: 1547. https://doi.org/10.3390/f16101547
APA StyleNiccoli, F., Marfella, L., Glanville, H. C., Rutigliano, F. A., & Battipaglia, G. (2025). Post-Fire Carbon Dynamics in a UK Woodland: A Case Study from the Roaches Nature Reserve. Forests, 16(10), 1547. https://doi.org/10.3390/f16101547