Research on the Factors Influencing the Thermoplastic Rheological Properties of Wood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Specimens
2.3. Wood Moisture Content Adjustment
2.4. Compression Test Method
2.5. Method for Measuring the Proportion of Wood Cell Tissue
2.6. Method for Measuring the Morphological Characteristics of Wood Fiber
2.7. Method for Measuring the Content of Chemical Components of Wood
3. Results and Discussion
3.1. Compression Test
3.1.1. The Effect of Moisture Content on the Thermoplastic Rheological Properties of Wood
3.1.2. The Effect of Thickness on the Thermoplastic Rheological Properties of Wood
3.1.3. The Effect of Fiber Direction on the Thermoplastic Rheological Properties of Wood
3.1.4. Thermal Analysis of the Effect of Temperature on the Thermoplastic Rheological Properties of Wood
3.1.5. The Effect of Compression Rate on the Thermoplastic Rheological Properties of Wood
3.1.6. The Effect of Preheating Time on the Thermoplastic Rheological Properties of Wood
3.2. Microcosmic Analysis
3.2.1. Wood Cell Tissue Proportion Analysis
3.2.2. Wood Tissue Proportion Analysis
3.2.3. Analysis of the Content of Chemical Components in Wood
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Zhu, Z.; Zhang, X. A new species of the genus Pseudourostyla (Hymenoptera, Staphylinidae) from China. Macro layout and utilization of China’s timber resources--Based on Lorentz coefficient analysis. For. Ind. 2023, 60, 82–87. [Google Scholar] [CrossRef]
- Zeng, W.; Yang, X. Analysis of timber forest resources and timber safety in China. For. Resour. Manag. 2023, 1, 17–24. [Google Scholar] [CrossRef]
- Tian, M.; Du, L.; Wang, F.; Ma, S.; Liu, D. Forecast and Analysis of Timber Production Capacity of China ‘s Forest Resources. China For. Prod. Ind. 2022, 59, 57–63. [Google Scholar] [CrossRef]
- Sugino, H.; Tanaka, S.; Kasamatsu, Y.; Okubayashi, S.; Seki, M.; Miki, T.; Umemura, K.; Kanayama, K. Flow forming of wood irradiated with electron beam―Molding load of irradiated wood and mechanical properties of the molded material. BioResources 2021, 16, 3895–3906. [Google Scholar] [CrossRef]
- Seki, M.; Tanaka, S.; Miki, T.; Shigematsu, I.; Kanayama, K. Forward extrusion of bulk wood containing polymethylmethacrylate: Effect of polymer content and die angle on the flow characteristics. J. Mater. Process. Technol. 2017, 239, 140–146. [Google Scholar] [CrossRef]
- Kajikawa, S.; Horikoshi, M.; Tanaka, S.; Umemura, K.; Kanayama, K. Molding of wood powder with a natural binder. Procedia Eng. 2017, 207, 113–118. [Google Scholar] [CrossRef]
- Lian, M.; Huang, Y.; Liu, Y.; Jiang, D.; Wu, Z.; Li, B.; Xu, Q.; Murugadoss, V.; Jiang, Q.; Huang, M.; et al. An overview of regenerable wood-based composites: Preparation and applications for flame retardancy, enhanced mechanical properties, biomimicry, and transparency energy saving. Adv. Compos. Hybrid Mater. 2022, 5, 1612–1657. [Google Scholar] [CrossRef]
- Yang, Y.; Kang, X.; Yang, Y.; Ye, H.; Jiang, J.; Zheng, G.; Wei, K.; Ge, S.; Lam, S.S.; Ouyang, H.; et al. Research progress in green preparation of advanced wood-based composites. Adv. Compos. Hybrid Mater. 2023, 6, 202. [Google Scholar] [CrossRef]
- Peng, Z.; Jiang, X.; Si, C.; Joao Cárdenas-Oscanoa, A.; Huang, C. Advances of Modified Lignin as Substitute to Develop Lignin-Based Phenol-Formaldehyde Resin Adhesives. ChemSusChem 2023, 16, e202300174. [Google Scholar] [CrossRef]
- Seki, M.; Kiryu, T.; Miki, T.; Tanaka, S.; Shigematsu, I.; Kanayama, K. Extrusion of Solid Wood Impregnated with Phenol Formaldehyde (PF) Resin: Effect of Resin Content and Moisture Content on Extrudability and Mechanical Properties of Extrudate. BioResources 2016, 11, 7697–7709. [Google Scholar] [CrossRef]
- Zade, A.; Kuppusamy, R.R.P. A Comprehensive Review on Single- and Multi-Objective Optimization of Liquid Composite Moulding Process. In Recent Advances in Smart Manufacturing and Materials; Agrawal, R., Jain, J.K., Yadav, V.S., Manupati, V.K., Varela, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 57–66. [Google Scholar] [CrossRef]
- Nakai, K.; Tanaka, S.; Kanayama, K.; Yoshimura, T. Flow deformation characteristics of African blackwood, Dalbergia melanoxylon. J. Wood Sci. 2020, 66, 67. [Google Scholar] [CrossRef]
- Tanaka, S.; Seki, M.; Miki, T.; Shigematsu, I.; Kanayama, K. Solute diffusion into cell walls in solution-impregnated wood under conditioning process I: Effect of relative humidity on solute diffusivity. J. Wood Sci. 2015, 61, 543–551. [Google Scholar] [CrossRef]
- Tanaka, S.; Seki, M.; Miki, T.; Umemura, K.; Kanayama, K. Solute diffusion into cell walls in solution-impregnated wood under conditioning process IV: Effect of temperature on solute diffusivity. J. Wood Sci. 2017, 63, 644–651. [Google Scholar] [CrossRef]
- Li, C. Study on the Key Factors Affecting the Microstructure of Chinese Fir Plantation on Physical and Mechanical Properties. Master’s Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2021. [Google Scholar] [CrossRef]
- GB/T 1933-2009; Method for Determination of the Density of Wood. National Technical Committee for Wood Standardization: Beijing, China; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China; Standardization Administration of China: Beijing, China, 2009.
- Hao, G.; Xing, L.; Liang, Q. Moisture fixed point of saturated saline solution (1)—Principle and preparation. Sens. World 1999, 11, 1–4. [Google Scholar] [CrossRef]
- Hao, G.; Xing, L.; Liang, Q. Moisture fixed point of saturated salt solution (2)—Data source and salt solution selection. Sens. World 1999, 12, 10–14. [Google Scholar] [CrossRef]
- Miki, T.; Seki, M.; Shigematsu, I.; Kanayama, K. Preparation of Three Dimensional Products Using Flow Deformability of Wood Treated by Small Molecular Resins. Adv. Mater. Res. 2013, 856, 79–86. [Google Scholar] [CrossRef]
- Abe, M.; Enomoto, Y.; Seki, M.; Miki, T. Esterification of solid wood for plastic forming. BioResources 2020, 15, 6282–6298. [Google Scholar] [CrossRef]
Species | Air-Dry Density (g/cm3) |
---|---|
Populus ussuriensis | 0.52 |
Fraxinus chinensis | 0.66 |
Swietenia macrophylla | 0.71 |
Cunninghamia konishii | 0.43 |
Larix gmelinii | 0.68 |
Groups | Moisture Content (%) | Thickness (mm) | Fiber Direction | Temperature (°C) | Compression Rate (mm/min) | Preheating Time (min) |
---|---|---|---|---|---|---|
Group 1 | 0 | 9 | Perpendicular to the load direction | 120 | 3 | 1 |
10 | ||||||
20 | ||||||
30 | ||||||
Water-impregnated | ||||||
Group 2 | 30 | 3 | Perpendicular to the load direction | 120 | 3 | 1 |
6 | ||||||
9 | ||||||
12 | ||||||
15 | ||||||
Group 3 | 30 | 9 | Perpendicular to the load direction | 120 | 3 | 1 |
Parallel to the load direction | ||||||
Group 4 | 30 | 9 | Perpendicular to the load direction | 100 | 3 | 1 |
120 | ||||||
140 | ||||||
160 | ||||||
Group 5 | 30 | 9 | Perpendicular to the load direction | 120 | 1 | 1 |
2 | ||||||
3 | ||||||
4 | ||||||
5 | ||||||
Group 6 | 30 | 9 | Perpendicular to the load direction | 120 | 3 | 1 |
2 | ||||||
3 | ||||||
4 | ||||||
5 |
Species | Moisture Content (%) |
---|---|
Populus ussuriensis | 150 |
Fraxinus chinensis | 96 |
Swietenia macrophylla | 42 |
Cunninghamia konishii | 182 |
Larix gmelinii | 58 |
Species | Wood Fiber (%) | Wood Ray (%) | Vessel (%) | Axial Parenchyma (%) |
---|---|---|---|---|
Populus ussuriensis | 62.65 | 4. 18 | 30.69 | 2.48 |
Fraxinus chinensis | 64.30 | 13.63 | 12.17 | 9.90 |
Swietenia macrophylla | 72.39 | 12.01 | 9.86 | 5.74 |
Species | Axial Tracheid (%) | Wood Ray (%) | Resin Canal (%) | Axial Parenchyma (%) |
---|---|---|---|---|
Cunninghamia konishii | 97.12 | 2.59 | 0.24 | 0.29 |
Larix gmelinii | 97.60 | 2.03 | 0.23 | 0.14 |
Species | Length (μm) | Diameter (μm) | Diameter of the Cavity (μm) | Wall Thickness (μm) | Length–Diameter Ratio | Wall–Cavity Ratio |
---|---|---|---|---|---|---|
Populus ussuriensis | 1262.70 | 27.01 | 16.23 | 10.79 | 45.57 | 0.66 |
Fraxinus chinensis | 952.62 | 17.20 | 10.93 | 6.28 | 55.73 | 0.57 |
Swietenia macrophylla | 1368.71 | 15.94 | 8.19 | 7.75 | 86.48 | 1.02 |
Cunninghamia konishii | 2696.59 | 35.74 | 26.92 | 8.82 | 75.87 | 0.35 |
Larix gmelinii | 3670.80 | 35.37 | 14.19 | 21.18 | 104.57 | 1.76 |
Species | Lignin (%) | Cellulose (%) | Hemicellulose (%) |
---|---|---|---|
Populus ussuriensis | 27.26 | 46.09 | 18.87 |
Fraxinus chinensis | 25.25 | 45.38 | 18.81 |
Swietenia macrophylla | 35.56 | 46.23 | 11.85 |
Cunninghamia konishii | 36.91 | 44.59 | 14.41 |
Larix gmelinii | 30.07 | 40.70 | 25.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Qi, Y.; Zhao, Z. Research on the Factors Influencing the Thermoplastic Rheological Properties of Wood. Forests 2025, 16, 118. https://doi.org/10.3390/f16010118
Wang Y, Qi Y, Zhao Z. Research on the Factors Influencing the Thermoplastic Rheological Properties of Wood. Forests. 2025; 16(1):118. https://doi.org/10.3390/f16010118
Chicago/Turabian StyleWang, Yujie, Yiyang Qi, and Zhongyuan Zhao. 2025. "Research on the Factors Influencing the Thermoplastic Rheological Properties of Wood" Forests 16, no. 1: 118. https://doi.org/10.3390/f16010118
APA StyleWang, Y., Qi, Y., & Zhao, Z. (2025). Research on the Factors Influencing the Thermoplastic Rheological Properties of Wood. Forests, 16(1), 118. https://doi.org/10.3390/f16010118