Sex-Specific Differences in the Clonality of Hippophae tibetana at Different Altitudes in Alpine Meadows of the Eastern Qinghai–Tibet Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Plot Setting and Investigation
2.3. Population Counting and Sex Ratio Calculation
2.4. Population Spatial Distribution Types and Spatial Correlation
2.5. DNA Extraction and Detection
2.6. PCR Amplification and SSR Primer Screening
2.7. Data Analysis
3. Results
3.1. Sex Ratio Pattern of H. tibetana at Different Altitudes
3.2. Spatial Distribution Pattern of H. tibetana Populations at Different Altitudes
3.2.1. Population Spatial Distribution Types and Spatial Correlation Analysis
3.2.2. Spatial Correlation Between Male and Female Plants
3.3. Clonal Structure and Clonal Diversity of H. tibetana
3.3.1. SSR Primer Amplification Results
3.3.2. Identification of H. tibetana Clonal Genets
3.3.3. Clonal Diversity of H. tibetana
3.4. Clone Size of H. tibetana
3.5. Clonal Distribution of H. tibetana Population
4. Discussion
4.1. Sex Ratio Pattern of H. tibetana Population at Different Altitudes
4.2. Sex-Related Spatial Distribution Patterns of H. tibetana
4.3. Sex-Related Clonal Diversity and Clonal Structure of H. tibetana
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eckert, C.G.; Lui, K.; Bronson, K.; Corradini, P.; Bruneau, A. Population genetic consequences of extreme variation in sexual and clonal reproduction in an aquatic plant. Mol. Ecol. 2003, 12, 331–344. [Google Scholar] [CrossRef]
- Albert, T.; Raspé, O.; Jacquemart, A.L. Clonal Diversity and Genetic Structure in Vaccinium myrtillus Populations from Different Habitats. Belg. J. Bot. 2004, 137, 155–162. Available online: http://www.jstor.org/stable/20794549 (accessed on 26 December 2023).
- Ren, M.X.; Zhang, Q.G. Clonal diversity and structure of the invasive aquatic plant Eichhornia crassipes in China. Aquat. Bot. 2007, 87, 242–246. [Google Scholar] [CrossRef]
- Bachmann, K. Molecular markers in plant ecology. New Phytol. 1994, 126, 403–418. [Google Scholar] [CrossRef]
- Barrett, S.C.; Yakimowski, S.B.; Field, D.L.; Pickup, M. Ecological genetics of sex ratios in plant populations. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 27, 2549–2557. [Google Scholar] [CrossRef] [PubMed]
- Alberto, F.; Gouveia, L.; Arnaud-Haond, S.; Pérez-Lloréns, J.L.; Duarte, C.M.; Serrão, E.A. Within-population spatial genetic structure, neighbourhood size and clonal subrange in the seagrass Cymodocea nodosa. Mol. Ecol. 2005, 14, 2669–2681. [Google Scholar] [CrossRef]
- Liu, M.; Korpelainen, H.; Li, C. Sexual differences and sex ratios of dioecious plants under stressful environments. J. Plant Ecol. 2021, 14, 920–933. [Google Scholar] [CrossRef]
- Garbarino, M.; Weisberg, P.J.; Bagnara, L.; Urbinati, C. Sex-related spatial segregation along environmental gradients in the dioecious conifer, Taxus baccata. For. Ecol. Manag. 2015, 358, 122–129. [Google Scholar] [CrossRef]
- Barrett, S.C.; Hough, J. Sexual dimorphism in flowering plants. J. Exp. Bot. 2013, 64, 67–82. [Google Scholar] [CrossRef]
- Sinclair, J.P.; Emlen, J.; Freeman, D.C. Biased Sex Ratios in Plants: Theory and Trends. Bot. Rev. 2012, 78, 63–86. [Google Scholar] [CrossRef]
- Munné-Bosch, S. Sex ratios in dioecious plants in the framework of global change. Environ. Exp. Bot. 2015, 109, 99–102. [Google Scholar] [CrossRef]
- Juvany, M.; Munné-Bosch, S. Sex-related differences in stress tolerance in dioecious plants: A critical appraisal in a physiological context. J. Exp. Bot. 2015, 66, 6083–6092. [Google Scholar] [CrossRef]
- Petry, W.K.; Soule, J.D.; Iler, A.M.; Chicas-Mosier, A.; Inouye, D.W.; Miller, T.E.; Mooney, K.A. Sex-specific responses to climate change in plants alter population sex ratio and performance. Science 2016, 353, 69–71. [Google Scholar] [CrossRef]
- Condit, R.; Ashton, P.S.; Baker, P.; Bunyavejchewin, S.; Gunatilleke, S.; Gunatilleke, N.; Hubbell, S.P.; Foster, R.B.; Itoh, A.; LaFrankie, J.V.; et al. Spatial patterns in the distribution of tropical tree species. Science 2000, 288, 1414–1418. [Google Scholar] [CrossRef]
- Fibich, P.; Lepš, J.; Novotný, V.; Klimeš, P.; Těšitel, J.; Molem, K.; Damas, K.; Weiblen, G.D. Spatial patterns of tree species distribution in New Guinea primary and secondary lowland rain forest. J. Veg. Sci. 2016, 27, 328–339. [Google Scholar] [CrossRef]
- Lian, Y.S.; Chen, X.L.; Lian, H. Systematic classification of the genus hippophae L. Seabuckthorn. Res. 1998, 1, 13–23. [Google Scholar]
- Kalia, R.K.; Singh, R.; Rai, M.K.; Mishra, G.P.; Singh, S.R.; Dhawan, A.K. Biotechnological interventions in sea buckthorn (Hippophae L.): Current status and future prospects. Trees 2011, 25, 559–575. [Google Scholar] [CrossRef]
- Wang, R.; Wu, B.; Jian, J.; Tang, Y.; Zhang, T.; Song, Z.; Zhang, W.; Qiong, L. How to survive in the world’s third poplar: Insights from the genome of the highest altitude woody plant, Hippophae tibetana (Elaeagnaceae). Front. Plant Sci. 2022, 13, 1051587. [Google Scholar] [CrossRef]
- Körner, C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Fan, B.; Ma, Z.; Gao, P.; Lu, J.; Ding, N.; Sun, K. Functional Traits of Male and Female Leaves of Hippophae tibetana on the Eastern Edge of the Tibetan Plateau and Their Altitudinal Variability. Plants 2022, 11, 2484. [Google Scholar] [CrossRef]
- Lu, C.; Shan, Y.; Liu, H.; Yang, L.; Ma, G. Natural vitamin king seabuckthorn in the application of food ingredients. China. Food. Addit. 2008, S1, 230–235. [Google Scholar]
- Lei, Y.; Jiang, Y.; Chen, K.; Duan, B.; Zhang, S.; Korpelainen, H.; Niinemets, Ü.; Li, C. Reproductive investments driven by sex and altitude in sympatric Populus and Salix trees. Tree Physiol. 2017, 37, 1503–1514. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhao, W.; Li, L.; You, J.; Ni, B.; Chen, X. Clonal plasticity and diversity facilitates the adaptation of Rhododendron aureum Georgi to alpine environment. PLoS ONE 2018, 13, e0197089. [Google Scholar] [CrossRef]
- Klimešová, J.; Doležal, J. Are clonal plants more frequent in cold environments than elsewhere? Plant Ecol. Divers. 2011, 4, 373–378. [Google Scholar] [CrossRef]
- Miao, F.H.; Guo, Y.J.; Miao, P.F.; Guo, Z.G.; Shen, Y.Y. Influence of enclosure on community characteristics of alpine meadow in the northeastern edge region of the Qinghai-Tibetan plateau. Acta Prataculturae Sin. 2012, 21, 11. (In Chinese) [Google Scholar]
- Allen, G.A.; Antos, J.A. Sex ratio variation in the dioecious shrub Oemleria cerasiformis. Am. Nat. 1993, 141, 537–553. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Zhou, X.; Zhou, L.; Jiang, X.; Kang, X. Population structure and dynamics of an endangered desert shrub endemic to Northwestern China. Pak. J. Bot. 2021, 53, 1361–1370. [Google Scholar] [CrossRef] [PubMed]
- Ripley, B.D. Modelling spatial patterns. J. R. Stat. Soc. Ser. B (Methodol.) 1977, 39, 172–192. [Google Scholar] [CrossRef]
- Besag, J. Contribution to the discussion of Dr. Ripley’ s paper. J. R. Stat. Soc. Ser. B (Methodol.) 1977, 39, 193–195. [Google Scholar]
- Lotwick, H.W.; Silverman, B.W. Methods for Analysing Spatial Processes of Several Types of Points. Journal of the royal statistical society series. Transp. Res. B-Meth 1982, 44, 406–413. [Google Scholar] [CrossRef]
- Diggle, P.J. Statistical Analysis of Spatial Point Patterns; Academic Press: New York, NY, USA, 1983. [Google Scholar]
- Zhang, L.; Gao, Y.; Li, J.; Zhang, C.; Li, M.; Hu, Z.; Cui, X. Effects of grazing disturbance of spatial distribution pattern and interspecies relationship of two desert shrubs. J. For. Res. 2021, 33, 507–518. [Google Scholar] [CrossRef]
- Doyle, J.J.A. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- Wang, A.; Zhang, Q.; Wan, D.; Yang, Y.; Liu, J. Nine microsatellite DNA primers for Hippophae rhamnoides ssp. sinensis (Elaeagnaceae). Conserv. Genet. 2008, 9, 969–971. [Google Scholar] [CrossRef]
- Taberlet, P.; Gielly, L.; Pautou, G.; Bouvet, J. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol. Biol. 1991, 17, 1105–1109. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Xu, L.; Wang, H.; La, Q.; Sun, K.; Zhang, W. Development of Polymorphic Microsatellite Markers from Hippophae tibetana Using 5′-Anchored PCR Methods and Magnetic Beads Hybridization. J. Fudan Univ. 2014, 53, 543–549. [Google Scholar]
- Marshall, T.C.; Slate, J.; Kruuk, L.E.; Pemberton, J.M. Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 1998, 7, 639–655. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.O.; Pielou, E.G. An introduction to mathematical ecology. J. Ecol. 1970, 58, 896. [Google Scholar] [CrossRef]
- Fager, E.W. Diversity: A Sampling Study. Am. Nat. 1972, 106, 293–310. [Google Scholar] [CrossRef]
- Parker, E.D. Ecological Implications of Clonal Diversity in Parthenogenetic Morphospecies. Am. Zool. 1979, 19, 753–762. [Google Scholar] [CrossRef]
- Field, D.L.; Pickup, M.; Barrett, S.C. Comparative analyses of sex-ratio variation in dioecious flowering plants. Evolution 2013, 67, 661–672. [Google Scholar] [CrossRef] [PubMed]
- Decker, K.L.; Pilson, D. Biased sex ratios in the dioecious annual Croton texensis (Euphorbiaceae) are not due to environmental sex determination. Am. J. Bot. 2000, 87, 221–229. [Google Scholar] [CrossRef]
- Li, C.; Xu, G.; Zang, R.; Korpelainen, H.; Berninger, F. Sex-related differences in leaf morphological and physiological responses in Hippophae rhamnoides along an altitudinal gradient. Tree Physiol. 2007, 27, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Delph, L.F. Sexual dimorphism in life history. In Gender and Sexual Dimorphism in Flowering Plants; Springer: Berlin/Heidelberg, Germany, 1999; pp. 149–173. [Google Scholar]
- Rocheleau, A.F.; Houle, G. Different cost of reproduction for the males and females of the rare dioecious shrub Corema conradii (Empetraceae). Am. J. Bot. 2001, 88, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Zhang, S.; Lei, Y.; Xu, G.; Zhang, D. Alternative Growth and Defensive Strategies Reveal Potential and Gender Specific Trade-Offs in Dioecious Plants Salix paraplesia to Nutrient Availability. Front. Plant Sci. 2016, 20, 1064. [Google Scholar] [CrossRef] [PubMed]
- Harris, M.S.; Pannell, J.R. Roots, shoots and reproduction: Sexual dimorphism in size and costs of reproductive allocation in an annual herb. Proc. Biol. Sci. 2008, 22, 2595–2602. [Google Scholar] [CrossRef]
- Slade, A.J.; Hutchings, M.J. The effects of nutrient availability on foraging in the clonal herb Glechoma hederacea. J. Ecol. 1987, 78, 95–112. [Google Scholar] [CrossRef]
- Wiegand, T.; Moloney, K.A. Rings, circles, and null-models for point pattern analysis in ecology. Oikos 2004, 104, 209–229. [Google Scholar] [CrossRef]
- Matsushita, M.; Takao, M.; Makita, A. Sex-different response in growth traits to resource heterogeneity explains male-biased sex ratio. Acta Oecologica 2016, 75, 8–14. [Google Scholar] [CrossRef]
- Eriksson, O. Clonal life histories and the evolution of seed recruitment. In The Ecology and Evolution of Clonal Plants; Backhuys Publishers: Leiden, The Netherlands, 1997; pp. 211–226. [Google Scholar]
- Verburg, R.; Grava, D. Differences in allocation patterns in clonal and sexual offspring in a woodland pseudo-annual. Oecologia 1998, 115, 472–477. [Google Scholar] [CrossRef]
- Kreher, S.A.; Fore, S.A.; Collins, B.S. Genetic variation within and among patches of the clonal species, Vaccinium stamineum L. Mol. Ecol. 2000, 9, 1247–1252. [Google Scholar] [CrossRef] [PubMed]
Altitude | Habitat | Female | Male | Total | (Female/Male) Ratio | p |
---|---|---|---|---|---|---|
low | meadow | 85 | 336 | 421 | 0.25 | <0.001 |
middle | meadow | 321 | 151 | 472 | 2.13 | <0.001 |
high | meadow | 196 | 228 | 424 | 0.86 | 0.120 |
Altitude | Genets | Total Ramets | Genotype Ratio | Simpson (D) | Evenness (E) |
---|---|---|---|---|---|
Low | 72 | 190 | 0.379 | 0.973 | 0.953 |
Middle | 43 | 154 | 0.279 | 0.932 | 0.900 |
Altitude | Population | Genets | Total Ramets | Genotype Ratio (PD) | Simpson (D) | Evenness (E) |
---|---|---|---|---|---|---|
Low | Female | 36 | 98 | 0.367 | 0.939 | 0.891 |
Male | 29 | 83 | 0.349 | 0.943 | 0.918 | |
Middle | Female | 15 | 57 | 0.263 | 0.845 | 0.797 |
Male | 28 | 97 | 0.289 | 0.912 | 0.874 |
Population | Genet Styles | Ramets | Total Ramets (N) | Clone Size (N/G) |
---|---|---|---|---|
Low | L-1 | 10 | 190 | 2.6 |
L-2 | 12 | |||
L-3 | 14 | |||
L-4 | 17 | |||
L-5~L-6 | 7 | |||
L-7~L-8 | 6 | |||
L-9~L-10 | 5 | |||
L-11~L-14 | 4 | |||
L-15~L-20 | 3 | |||
L-21~L-39 | 2 | |||
L-40~L-72 | 1 | |||
Middle | M-1 | 5 | 154 | 3.6 |
M-2 | 11 | |||
M-3 | 13 | |||
M-4 | 15 | |||
M-5 | 17 | |||
M-6 | 20 | |||
M-7~M-9 | 6 | |||
M-10~M-14 | 4 | |||
M-15~M-20 | 2 | |||
M-21~M-43 | 1 |
Population | Genet Styles | Ramets | Total Ramets (N) | Clone Size (N/G) |
---|---|---|---|---|
Low-female | L-F-1 | 5 | 98 | 2.7 |
L-F-2 | 10 | |||
L-F-3 | 12 | |||
L-F-4 | 17 | |||
L-F-5~L-F-7 | 4 | |||
L-F-8~L-F-10 | 3 | |||
L-F-11~L-F-17 | 2 | |||
L-F-18~L-F-36 | 1 | |||
Low-male | L-M-1 | 4 | 83 | 2.9 |
L-M2 | 5 | |||
L-M-3 | 14 | |||
L-M-4~L-M-5 | 6 | |||
L-M-6~L-M-7 | 7 | |||
L-M-8~L-M-10 | 3 | |||
L-M-11~L-M-16 | 2 | |||
L-M-17~L-M-29 | 1 |
Population | Genet Styles | Ramets | Total Ramets (N) | Clone Size (N/G) |
---|---|---|---|---|
Middle-female | M-F-1 | 4 | 57 | 3.8 |
M-F-2 | 5 | |||
M-F-3 | 6 | |||
M-F-4 | 13 | |||
M-F-5 | 17 | |||
M-F-6~M-F-7 | 2 | |||
M-F-8~M-F-15 | 1 | |||
Middle-male | M-M-1 | 11 | 97 | 3.5 |
M-M2 | 15 | |||
M-M-3 | 20 | |||
M-M-4~M-M-5 | 6 | |||
M-M-6~M-M-9 | 4 | |||
M-M-10~M-M-13 | 2 | |||
M-M-14~M-M-28 | 1 |
Population | Genet Styles | Ramets | lmax | lmin | L | M |
---|---|---|---|---|---|---|
Female | 16, 41 | 2 | 3.12 | – | 3.12 | 1.56 |
64, 136 | 2 | 1.92 | – | 1.92 | 0.96 | |
20, 21, 60 | 3 | 1.48 | 0.24 | 1.72 | 0.57 | |
63, 126, 128, 62 | 4 | 1.80 | 0.20 | 2.44 | 0.61 | |
14, 19, 22, 23, 25, 26, 27, 29, 30, 35 | 10 | 3.20 | 0.20 | 4.76 | 0.48 | |
47, 175, 106, 104, 102, 105, 107, 103, 182, 186, 180, 181 | 12 | 3.44 | 0.20 | 6.12 | 0.51 | |
48, 125, 123, 121, 119, 117, 122, 113, 120, 118, 116, 114, 96, 95, 49, 51, 53 | 17 | 2.24 | 0.14 | 7.40 | 0.44 | |
54, 112, 110, 109, 111 | 5 | 1.92 | 0.16 | 2.2 | 0.44 | |
97, 129, 127, 115 | 4 | 1.84 | 0.48 | 3.2 | 0.8 | |
61, 91, 187, 176 | 4 | 3.32 | 1.00 | 4.24 | 1.06 | |
98, 99 | 2 | 0.12 | – | 0.12 | 0.06 | |
101, 108 | 2 | 1.32 | – | 1.32 | 0.66 | |
65, 76, 66 | 3 | 1.32 | 0.60 | 1.92 | 0.64 | |
13, 18, 28 | 3 | 2.72 | 0.96 | 2.72 | 0.91 | |
87, 137 | 2 | 1.08 | – | 1.08 | 0.54 | |
88, 90 | 2 | 0.20 | – | 0.2 | 0.10 | |
57, 58 | 2 | 0.24 | – | 0.24 | 0.12 | |
Male | 2, 3, 4, 5, 6, 10 | 6 | 0.68 | 0.12 | 1.24 | 0.21 |
82, 83, 84, 93 | 4 | 1.40 | 0.28 | 1.76 | 0.44 | |
154, 177 | 2 | 2.68 | – | 2.68 | 1.34 | |
189, 190 | 2 | 0.24 | – | 0.24 | 0.12 | |
72, 75 | 2 | 0.28 | – | 0.28 | 0.14 | |
141, 145 | 2 | 0.52 | – | 0.52 | 0.26 | |
86, 139 | 2 | 1.12 | – | 1.12 | 0.56 | |
94, 140, 184 | 3 | 2.32 | 1.20 | 3.52 | 1.17 | |
164, 162, 161 | 3 | 0.60 | 0.16 | 0.64 | 0.21 | |
15, 34, 33 | 3 | 2.60 | 0.20 | 2.60 | 0.87 | |
165, 170, 166, 169, 167 | 5 | 0.60 | 0.20 | 1.32 | 0.26 | |
185, 133, 138, 134, 130, 131 | 6 | 2.32 | 0.24 | 3.44 | 0.57 | |
188, 178, 174, 179, 152, 150, 148, 149, 155, 153, 151, 147, 70, 71 | 14 | 4.48 | 0.16 | 7.56 | 0.54 | |
146, 156, 157, 158, 159, 160, 173 | 7 | 1.80 | 0.20 | 2.08 | 0.30 | |
78, 79, 80, 81, 92, 124, 77 | 7 | 3.60 | 0.24 | 4.88 | 0.70 | |
7, 8 | 2 | 0.24 | – | 0.24 | 0.12 |
Population | Genet Styles | Ramets | lmax | lmin | L | M |
---|---|---|---|---|---|---|
Female | 6, 9, 10, 11 | 4 | 0.62 | 0.29 | 1.05 | 0.26 |
66, 67 | 2 | 0.33 | – | 0.33 | 0.17 | |
116, 146 | 2 | 2.38 | – | 2.38 | 1.19 | |
46, 50, 140, 51, 53, 54, 107, 101, 106, 55, 56, 57, 59 | 13 | 3.29 | 0.24 | 11.57 | 0.89 | |
82, 142, 137, 132, 143, 115, 111, 109, 100, 89, 86, 83, 99, 87, 108, 84, 141 | 17 | 4.14 | 0.19 | 8.67 | 0.51 | |
62, 150, 131, 153, 70, 65 | 6 | 5.00 | 0.48 | 7.71 | 1.29 | |
91, 147, 128, 123, 130 | 5 | 4.14 | 1.29 | 6.71 | 1.34 | |
Male | 1, 16 | 2 | 1.81 | – | 1.81 | 0.91 |
36, 45 | 2 | 0.62 | – | 0.62 | 0.31 | |
43, 44 | 2 | 0.40 | – | 0.40 | 0.20 | |
31, 41 | 2 | 1.43 | – | 1.43 | 0.72 | |
92, 138, 117, 96 | 4 | 2.52 | 0.90 | 3.76 | 0.94 | |
2, 13, 15, 18 | 4 | 2.24 | 0.57 | 2.86 | 0.72 | |
4, 5, 7, 8 | 4 | 0.95 | 0.24 | 1.10 | 0.28 | |
28, 145, 68, 73, 76, 48 | 6 | 3.52 | 0.24 | 6.48 | 1.08 | |
149, 151, 152, 154 | 4 | 1.29 | 0.19 | 1.38 | 0.35 | |
77, 144, 114, 113, 110, 112, 103, 98, 94, 93, 85, 81, 79, 102, 97, 95, 90, 88, 80, 136 | 20 | 4.76 | 0.19 | 11.95 | 0.60 | |
32, 139, 135, 133, 134, 104, 105, 69, 58, 52, 60, 61, 47, 33, 49 | 15 | 4.81 | 0.24 | 10.14 | 0.68 | |
148, 129, 126, 124, 122, 120, 118, 127, 125, 121, 119 | 11 | 3.33 | 0.19 | 5.05 | 0.46 | |
26, 27, 29, 30, 72, 74 | 6 | 2.67 | 0.19 | 3.43 | 0.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, Y.; Ding, N.; Tian, T.; Sun, K.; Fan, B. Sex-Specific Differences in the Clonality of Hippophae tibetana at Different Altitudes in Alpine Meadows of the Eastern Qinghai–Tibet Plateau. Forests 2025, 16, 107. https://doi.org/10.3390/f16010107
Wan Y, Ding N, Tian T, Sun K, Fan B. Sex-Specific Differences in the Clonality of Hippophae tibetana at Different Altitudes in Alpine Meadows of the Eastern Qinghai–Tibet Plateau. Forests. 2025; 16(1):107. https://doi.org/10.3390/f16010107
Chicago/Turabian StyleWan, Yongkuan, Nana Ding, Tingting Tian, Kun Sun, and Baoli Fan. 2025. "Sex-Specific Differences in the Clonality of Hippophae tibetana at Different Altitudes in Alpine Meadows of the Eastern Qinghai–Tibet Plateau" Forests 16, no. 1: 107. https://doi.org/10.3390/f16010107
APA StyleWan, Y., Ding, N., Tian, T., Sun, K., & Fan, B. (2025). Sex-Specific Differences in the Clonality of Hippophae tibetana at Different Altitudes in Alpine Meadows of the Eastern Qinghai–Tibet Plateau. Forests, 16(1), 107. https://doi.org/10.3390/f16010107