Distribution of Bird Communities and Habitat Corridor Composition Shaped by Environmental Factors in Urbanized Landscapes: A Case Study in Beijing, China
Abstract
:1. Introduction
- (1)
- Using ArcGIS 10.8.2 for kernel density analysis, the spatial density distribution is evaluated to assess bird distribution, and MaxEnt 3.4.1 is used to predict the spatial distribution of representative species of six bird communities based on environmental factors.
- (2)
- Using the ROC curve to evaluate the availability of bird habitats based on the proportion of critical habitats, and analyzing the contribution rate of environmental factors to the prediction results using the Jackknife method in MaxEnt 3.4.1.
- (3)
- Employing a least-cost distance model to construct potential ecological corridors, tailored to the movement and habitat needs of different bird species, and overlay the potential habitat corridors for birds and important habitat spaces with the policy-planned ecological corridors for comparative analysis.
2. Materials and Methods
2.1. Study Area
2.2. Assessment Framework
2.3. Data Sources
2.4. Selection of Research Subjects
2.5. Data Analysis Methods
2.5.1. Evaluation Methods and Distribution Characteristics of Birds
2.5.2. Prediction of Potential Bird Distribution
2.5.3. Contributions of Environmental Factors
2.5.4. Construction of Potential Habitat Corridors for Various Bird Species
3. Results
3.1. Spatiotemporal Variation in Density Distribution of Birds in Beijing
3.1.1. Spatiotemporal Variation in Density Distribution of Bird Communities
3.1.2. Predicted Spatiotemporal Variation in Density Distribution of Representative Bird Species
3.2. Analysis of the Critical Habitats and Habitat Corridors
3.2.1. The Potential Corridor Area of Different Bird Species
3.2.2. The Availability of Critical Habitats
3.2.3. The Contribution of Environmental Factors to the Prediction Results of Potential Bird Habitat Corridors
3.3. Comparison of Critical Habitats and Habitat Corridors in the Light of Planning
4. Discussion
4.1. Bird Distribution and Urban Adaptability
4.2. The Influence of Environmental Factors Influencing Bird Habitats and Potential Habitat Corridors
4.3. Effectiveness of Current Conservation Policies in Urbanized Areas
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Devos, P. The Bird Dawn Chorus Strength of an Urban Soundscape and Its Potential to Assess Urban Green Spaces. Sustainability 2023, 15, 7002. [Google Scholar] [CrossRef]
- McCloy, M.W.; Andringa, R.K.; Maness, T.J.; Smith, J.A.; Grace, J.K. Promoting urban ecological resilience through the lens of avian biodiversity. Front. Ecol. Evol. 2024, 12, 1302002. [Google Scholar] [CrossRef]
- Wosnick, N.; Leite, R.D.; Giareta, E.P.; Nunes, A.R.O.P.; Nunes, J.L.S.; Charvet, P.; Monteiro-Filho, E.L.A. Evaluating Conservation Status and Governmental Efforts towards Regional Flagship Species in Brazil. J. Environ. Manag. 2021, 292, 112732. [Google Scholar] [CrossRef] [PubMed]
- Swan, C.M.; Brown, B.; Borowy, D.; Cavender-Bares, J.; Jeliazkov, A.; Knapp, S.; Lososova, Z.; Padulles Cubino, J.; Pavoine, S.; Ricotta, C.; et al. A Framework for Understanding How Biodiversity Patterns Unfold across Multiple Spatial Scales in Urban Ecosystems. Ecosphere 2021, 12, e03650. [Google Scholar] [CrossRef]
- Rosenberg, K.V.; Dokter, A.M.; Blancher, P.J.; Sauer, J.R.; Smith, A.C.; Smith, P.A.; Stanton, J.C.; Panjabi, A.; Helft, L.; Parr, M.; et al. Decline of the North American Avifauna. Science 2019, 366, 120–124. [Google Scholar] [CrossRef]
- Burns, F.; Eaton, M.A.; Burfield, I.J.; Klvariova, A.; Silarova, E.; Staneva, A.; Gregory, R.D. Abundance Decline in the Avi-fauna of the European Union Reveals Cross-Continental Similarities in Biodiversity Change. Ecol. Evol. 2021, 11, 16647–16660. [Google Scholar] [CrossRef]
- Lees, A.C.; Haskell, L.; Allinson, T.; Bezeng, S.B.; Burfield, I.J.; Renjifo, L.M.; Rosenberg, K.V.; Viswanathan, A.; Butchart, S.H.M. State of the World’s Birds. Annu. Rev. Environ. Resour. 2022, 47, 231–260. [Google Scholar] [CrossRef]
- Hadi, M.A.; Narayana, S.; Yahya, M.S.; Jamian, S.; Lechner, A.M.; Azhar, B. Enhancing Bird Conservation in Tropical Urban Parks through Land Sparing and Sharing Strategies: Evidence from Occupancy Data. Urban For. Urban Green 2024, 98, 128415. [Google Scholar] [CrossRef]
- Li, L.; Yan, M.; Hong, Y.; Feng, W.; Xie, D.; Pagani-Núñez, E. Protecting China’s Major Urban Bird Diversity Hotspots. Ambio 2024, 53, 339–350. [Google Scholar] [CrossRef]
- Yang, X.; Tan, X.; Chen, C.; Wang, Y. The Influence of Urban Park Characteristics on Bird Diversity in Nanjing, China. Avian Res. 2020, 11, 45. [Google Scholar] [CrossRef]
- Fidino, M.; Magle, S.B. Trends in Long-Term Urban Bird Research. In Ecology and Conservation of Birds in Urban Environments; Murgui, E., Hedblom, M., Eds.; Springer: Cham, Switzerland, 2017; pp. 161–184. [Google Scholar] [CrossRef]
- Heymans, A.; Breadsell, J.; Morrison, G.M.; Byrne, J.J.; Eon, C. Ecological Urban Planning and Design: A Systematic Literature Review. Sustainability 2019, 11, 3723. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, G. Urban ornithological research in China: A review. Acta Ecol. Sin. 2018, 38, 3357–3367. [Google Scholar] [CrossRef]
- Guo, S.; Zhaiteng, X.; Xiayuan, Y.; Cao, Y. The Mechanism of Urban Built Environment lmpact on Avian Diversity—A Systematic Review. Chin. Landsc. Archit. 2022, 38, 71–76. [Google Scholar] [CrossRef]
- Kullenberg, C.; Kasperowski, D. What Is Citizen Science?—A Scientometric Meta-Analysis. PLoS ONE 2016, 11, e0147152. [Google Scholar] [CrossRef]
- Morneau, D. Citizen science in environmental and ecological sciences. Nat. Rev. Methods Primers 2022, 2, 65. [Google Scholar] [CrossRef]
- Cao, L.; Meng, F.; Zhao, Q. Understanding Effects of Large-scale Development on Bird Migration andHabitats Through Cutting Edge Avian Monitoring Techniques. Bull. Chin. Acad. Sci. 2021, 36, 436–447. [Google Scholar] [CrossRef]
- Pocock, M.J.O.; Chandler, M.; Bonney, R.; Thornhill, I.; Albin, A.; August, T.; Bachman, S.; Brown, P.M.J.; Fernandes Cunha, D.G.; Grez, A.; et al. A Vision for Global Biodiversity Monitoring with Citizen Science. In Next Generation Biomonitoring; Bohan, D.A., Dumbrell, A.J., Woodward, G., Jackson, M., Eds.; Elsevier Academic Press Inc.: Amsterdam, The Netherlands, 2018; Volume 59, pp. 169–223. [Google Scholar]
- Fu, G.; Xiao, N. Spatial-temporal changes of landscape fragmentation patterns in Beijing inthe last two decades. Acta Ecol. Sin. 2016, 37, 2551–2562. [Google Scholar] [CrossRef]
- Grafius, D.R.; Corstanje, R.; Siriwardena, G.M.; Plummer, K.E.; Harris, J.A. A bird’s eye view: Using circuit theory to study urban landscape connectivity for birds. Landsc. Ecol. 2017, 32, 1771–1787. [Google Scholar] [CrossRef]
- Li, H.; Li, L.; Wu, G.; Zhou, Y.; Li, W.; Mei, Z. Analysis of the landscape-level connectivity of the Yunnan snub-nosed monkey habitat based on circuit theory. Acta Ecol. Sin. 2018, 38, 2221–2228. [Google Scholar]
- Elsa, N. Comparison Between Three Landscape Analysis Tools to Aid Conservation Efforts. Master’s Thesis, Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden, 2016. [Google Scholar]
- Beijing Capital Greening Commission. List of Birds and Wildlife in Beijing, Beijing Terrestrial Wild Animal List; Beijing Capital Greening Commission: Beijing, China, 2024.
- State Forestry and Grassland Administration. List of Terrestrial Wild Animals That Were Beneficial or Have Important Economic and Scientific Research Value and Are Nationally Protected; National Forestry and Grassland Administration Announcement (No. 17 of 2023); State Forestry and Grassland Administration: Beijing, China, 2024.
- Zhen, G. A Checklist on the Classification and Distribution of the Birds of China, 3rd ed.; China Science Publishing & Media Ltd.: Beijing, China, 2017. [Google Scholar]
- Cai, Q. Beijing Bird Records; Beijing Publishing House: Beijing, China, 1988. [Google Scholar]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Ciarle, R.; Burns, K.C. Island Biogeography of Birds in the South West Pacific: Direct and Indirect Effects of Physical Geog-raphy and Co-Occurring Vegetation. J. Biogeogr. 2024, 51, 1623–1631. [Google Scholar] [CrossRef]
- Callaghan, C.T.; Bino, G.; Major, R.E.; Martin, J.M.; Lyons, M.B.; Kingsford, R.T. Heterogeneous Urban Green Areas Are Bird Diversity Hotspots: Insights Using Continental-Scale Citizen Science. Data Landsc. Ecol. 2019, 34, 1231–1246. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, Y.; Yang, H.; Liu, Z. Urban Green Infrastructure Affects Bird Biodiversity in the Coastal Megalopolis Region of Shenzhen City. Appl. Geogr. 2023, 151, 102860. [Google Scholar] [CrossRef]
- Li, Y.-Y.; Zhang, Y.-Z.; Jiang, Z.-Y.; Guo, C.-X.; Zhao, M.-Y.; Yang, Z.-G.; Guo, M.-Y.; Wu, B.-Y.; Chen, Q.-L. Integrating morphological spatial pattern analysis and the minimal cumulative resistance model to optimize urban ecological networks: A case study in Shenzhen City, China. Ecol. Process. 2021, 10, 63. [Google Scholar] [CrossRef]
- Lin, G.; Yang, Z.; Xu, L.; Zhang, F.; Yang, R. Urban ecological network construction in Loess Plateau regions in China-case study of Huanxian city. Alex. Eng. J. 2023, 74, 153–169. [Google Scholar] [CrossRef]
- Shen, Z.; Wu, W.; Chen, M.; Tian, S.; Wang, J. Linking Greenspace Ecological Networks Optimization into Urban Expan-sion Planning: Insights from China’s Total Built Land Control Policy. Land 2021, 10, 1046. [Google Scholar] [CrossRef]
- Brumm, H. Animal Communication: City Birds Have Changed Their Tune. Curr. Biol. 2006, 16, R1003–R1004. [Google Scholar] [CrossRef]
- Nemeth, E.; Brumm, H. Blackbirds Sing Higher-Pitched Songs in Cities: Adaptation to Habitat Acoustics or Side-Effect of Urbanization? Anim. Behav. 2009, 78, 637–641. [Google Scholar] [CrossRef]
- Schrimpf, M.B.; Des Brisay, P.G.; Johnston, A.; Smith, A.C.; Sanchez-Jasso, J.; Robinson, B.G.; Warrington, M.H.; Mahony, N.A.; Horn, A.G.; Strimas-Mackey, M.; et al. Reduced human activity during COVID-19 alters avian land use across North America. Sci. Adv. 2021, 7, eabf5073. [Google Scholar] [CrossRef]
- Xu, H.; Zhao, X.; Jia, R.; Chen, L.; Yang, Z.; Zhang, G. Behavioral plasticity mediates adaptation to changes in food provi-sioning following the COVID-19 lockdown in black-headed gulls (Larus ridibundus). Front. Ecol. Evol. 2022, 10, 1013244. [Google Scholar] [CrossRef]
- Xie, S.; Wang, X.; Ren, Y.; Su, Z.; Su, Y.; Wang, S.; Zhou, W.; Lu, F.; Qian, Y.; Gong, C.; et al. Factors Responsible for Forest and Water Bird Distributions in Rivers and Lakes along an Urban Gradient in Beijing. Sci. Total Environ. 2020, 735, 139308. [Google Scholar] [CrossRef] [PubMed]
- Silva, T.L.D.; Oliveira, M.D.S.; Rocha, R.J.D.S.; Pitelli, R.A. Water-level controlled reservoir as refugia for waterbirds in an urban landscape. Ornithol. Res. 2020, 28, 151–160. [Google Scholar] [CrossRef]
- Dale, S. Urban bird community composition influenced by size of urban green spaces, presence of native forest, and ur-banization. Urban Ecosyst. 2018, 21, 1–14. [Google Scholar] [CrossRef]
- Yang, K.; Cao, Y.; Feng, Z.; Gen, B.; Feng, Y.; Wang, S. Spatial Characteristics of Urban Development in Beijing Using NighttimeLight Data. Remote Sens. Inf. 2019, 34, 41–50. [Google Scholar]
- Dorn, N.J.; Cook, M.I.; Herring, G.; Boyle, R.A.; Nelson, J.; Gawlik, D.E. Swimming Prey Switching and Urban Foraging by the White Ibis Eudocimus Albus Are Determined by Wetland Hydrological Conditions. IBIS 2011, 153, 323–335. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, C.; Bai, Z.; Hao, Z. Changes of bird community under urbanization and its relationship with urban vege-tation. Acta Ecol. Sin. 2020, 41, 479–489. [Google Scholar] [CrossRef]
- Sultana, M.; Mueller, M.; Meyer, M.; Storch, I. Neighboring Green Network and Landscape Metrics Explain Biodiversity within Small Urban Green Areas-A Case Study on Birds. Sustainability 2022, 14, 6394. [Google Scholar] [CrossRef]
- Winarni, N.L.; Fuad, H.A.H.; Anugra, B.G.; Kaunain, N.N.; Anisafitri, S.; Atria, M.; Putrika, A. Potential Ecological Distri-butions of Urban Adapters and Urban Exploiters for the Sustainability of the Urban Bird Network. Isprs Int. J. Geo-Inf. 2022, 11, 474. [Google Scholar] [CrossRef]
- Mayer, M.; Natusch, D.; Frank, S. Water Body Type and Group Size Affect the Flight Initiation Distance of European Wa-terbirds. PLoS ONE 2019, 14, e0219845. [Google Scholar] [CrossRef]
- Murray, C.G.; Kasel, S.; Loyn, R.H.; Hepworth, G.; Hamilton, A.J. Waterbird Use of Artificial Wetlands in an Australian Urban Landscape. Hydrobiologia 2013, 716, 131–146. [Google Scholar] [CrossRef]
- Wang, J.-S.; Tuanmu, M.-N.; Hung, C.-M. Effects of Artificial Light at Night on the Nest-Site Selection, Reproductive Success and Behavior of a Synanthropic Bird. Environ. Pollut. 2021, 288, 117805. [Google Scholar] [CrossRef] [PubMed]
- Sacco, A.G.; Rui, A.M.; Bergmann, F.B.; Mueller, S.C.; Hartz, S.M. Reduction in Taxonomic and Functional Bird Diversity in an Urban Area in Southern Brazil. Iheringia Ser. Zool. 2015, 105, 276–287. [Google Scholar] [CrossRef]
- Machar, I.; Simek, P.; Schlossarek, M.; Pechanec, V.; Petrovic, F.; Brus, J.; Spinlerova, Z.; Sejak, J. Comparison of Bird Di-versity between Temperate Floodplain Forests and Urban Parks. Urban For. Urban Green. 2022, 67, 127427. [Google Scholar] [CrossRef]
- Beninde, J.; Veith, M.; Hochkirch, A. Biodiversity in cities needs space: A meta-analysis of factors determining intra-urban biodiversity variation. Ecol. Lett. 2015, 18, 581–592. [Google Scholar] [CrossRef]
- Aronson, M.F.J.; Lepczyk, C.A.; Evans, K.L.; Goddard, M.A.; Lerman, S.B.; MacIvor, J.S.; Nilon, C.H.; Vargo, T. Biodiversity in the city: Key challenges for urban green space management. Front. Ecol. Environ. 2017, 15, 189–196. [Google Scholar] [CrossRef]
- Wang, L.; Wang, H.; Wang, Y.; Che, Y.; Ge, Z.; Mao, L. The relationship between green roofs and urban biodiversity: A systematic review. Biodivers. Conserv. 2022, 31, 1771–1796. [Google Scholar] [CrossRef]
- Yang, K.; Cao, Y.; Feng, Z.; Gen, B.; Feng, Y.; Wang, S. Research Progress of Ecological Security Pattern Construction Based onMinimum Cumulative Resistance Model. J. Ecol. Rural Environ. 2021, 37, 555–565. [Google Scholar] [CrossRef]
- Fidino, M.; Magle, S.B. Challenges of urban green space management in the face of using inadequate data. Urban For. Urban Green. 2018, 31, 56–66. [Google Scholar] [CrossRef]
Data Type | Data | Data Format/Accuracy | Time | Data Source |
---|---|---|---|---|
Geographical data | Administrative boundary data | Shp | 2019 | National Catalogue Service for Geographic Information |
LULC data | Raster/30 m | 2020 | United States Geological Survey (USGS) (https://glovis.usgs.gov/app, accessed on 1 December 2021) | |
Railway network data | Shp | 2019 | OpenStreetMap (https://www.openstreetmap.org/, accessed on 1 January 2020) | |
Water network data | Shp | 2019 | OpenStreetMap (https://www.openstreetmap.org/, accessed on 1 January 2020) | |
Normalized difference vegetation index (NDVI) data | Raster/500 m | 2019 | GSCloud (http://www.gscloud.cn/, accessed on 1 January 2020) | |
DEM | Raster/30 m | 2019 | GSCloud (http://www.gscloud.cn/, accessed on 1 January 2020) | |
Night light data | Raster/30 m | 2019 | Luojia No.1 (http://59.175.109.173:8888/index.html, accessed on 1 January 2020) | |
Public data | Bird species occurrence point data | POI | 2019 | BirdReport.cn (http://www.birdreport.cn/, accessed on 22 December 2020) |
Number | English Name | LatinName | Birds’ Living Habits | Residence Type 1 | Frequency of Occurrence in 2019 | Basis of Selecting the Species |
---|---|---|---|---|---|---|
1 | Jungle Crow | Corvus macrorhynchos | Songbirds | R | 307 | (1) Corvus macrorhynchos and Turdus merula are contrasting resident songbirds in Beijing with ample data, making them ideal representative species. |
2 | Blackbird | Turdus merula | R | 288 | ||
3 | Spotted Dove | Streptopelia chinensis | Terrestrial birds | R | 420 | (1) It has sufficient data available. (2) It has important economic and scientific research value |
4 | Gray-headed Pygmy Woodpecker | Dendrocopos canicapillus | Climbers | R | 208 | (1) Both have important economic and scientific research value. (2) Dendrocopos canicapillus belongs to the most important protective bird species in Beijing. |
5 | Common Kingfisher | Alcedo atthis | S/R | 110 | ||
6 | Mandarin Duck | Aix galericulata | Swimming birds | P/R | 154 | (1) Aix galericulata belongs to the second most important protective bird species in China. (2) Gallinula chloropus has important economic and scientific research value. |
7 | Gray Moorhen | Gallinula chloropus | S/P | 94 | ||
8 | Great egret | Ardea alba | Wading birds | P | 80 | (1) Ardea alba and Ardea cinerea are of similar size, have a protected status, and have ample data in Beijing. (2) Both have important economic and scientific research value and belong to the important protective bird species in Beijing. |
9 | Gray Heron | Ardea cinerea | S/P | 271 | ||
10 | Common Kestrel | Falco tinnunculus | Raptors | R/S | 119 | (1) It belongs to the second most important protective bird species in Beijing. (2) It possesses the most data. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, L.; Huang, R.; Hao, P.; Huang, Z.; Wang, Y. Distribution of Bird Communities and Habitat Corridor Composition Shaped by Environmental Factors in Urbanized Landscapes: A Case Study in Beijing, China. Forests 2025, 16, 1. https://doi.org/10.3390/f16010001
Tan L, Huang R, Hao P, Huang Z, Wang Y. Distribution of Bird Communities and Habitat Corridor Composition Shaped by Environmental Factors in Urbanized Landscapes: A Case Study in Beijing, China. Forests. 2025; 16(1):1. https://doi.org/10.3390/f16010001
Chicago/Turabian StyleTan, Lingqian, Ruiqi Huang, Peiyao Hao, Zhipeng Huang, and Yinglin Wang. 2025. "Distribution of Bird Communities and Habitat Corridor Composition Shaped by Environmental Factors in Urbanized Landscapes: A Case Study in Beijing, China" Forests 16, no. 1: 1. https://doi.org/10.3390/f16010001
APA StyleTan, L., Huang, R., Hao, P., Huang, Z., & Wang, Y. (2025). Distribution of Bird Communities and Habitat Corridor Composition Shaped by Environmental Factors in Urbanized Landscapes: A Case Study in Beijing, China. Forests, 16(1), 1. https://doi.org/10.3390/f16010001