Tree Growth in Relation to Climate Change: Understanding the Impact on Species Worldwide
Funding
Conflicts of Interest
References
- Malhi, Y.; Franklin, J.; Seddon, N.; Solan, M.; Turner, M.G.; Field, C.B.; Knowlton, N. Climate change and ecosystems: Threats, opportunities and solutions. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190104. [Google Scholar] [CrossRef] [PubMed]
- Messaoud, Y.; Reid, A.; Tchebakova, N.M.; Goldman, J.A.; Hofgaard, A. The Historical Complexity of Tree Height Growth Dynamic Associated with Climate Change in Western North America. Forests 2022, 13, 738. [Google Scholar] [CrossRef]
- Ding, J.; Eldridge, D. Intensifying aridity induces tradeoffs among biodiversity and ecosystem services supported by trees. Glob. Ecol. Biogeogr. 2024, e13894. [Google Scholar] [CrossRef]
- Zheng, J.; Yang, J.; Jia, H.; Lyu, L.; Langzhen, J.; Zhang, Q.-B. Changes of growth-climate relationships of Smith fir forests along an altitudinal gradient. J. For. Res. 2024, 35, 76. [Google Scholar] [CrossRef]
- Schmiege, S.C.; Griffin, K.L.; Boelman, N.T.; Vierling, L.A.; Bruner, S.G.; Min, E.; Maguire, A.J.; Jensen, J.; Eitel, J.U.H. Vertical gradients in photosynthetic physiology diverge at the latitudinal range extremes of white spruce. Plant Cell Environ. 2023, 46, 45–63. [Google Scholar] [CrossRef]
- Pallardy, S.G. Physiology of woody plants; Elsevier: London, UK, 2008. [Google Scholar]
- Sang, Z.; Sebastian-Azcona, J.; Hamann, A.; Menzel, A.; Hacke, U. Adaptive limitations of white spruce populations to drought imply vulnerability to climate change in its western range. Evol. Appl. 2019, 12, 1850–1860. [Google Scholar] [CrossRef]
- Izmir, Ş.; Jevsenak, J.; Krajnc, L.; Hafner, P.; Köse, N. Distinct spatial patterns in climate-growth relationships, vegetation and resilience indices of Black pine (Pinus nigra J.F. Arnold) from its northern and southern distribution range. Dendrochronologia 2024, 88, 126236. [Google Scholar] [CrossRef]
- Zhang, W.; Gou, X.; Zhang, F.; Liu, W.; Zhang, Y.; Gao, L. Divergent responses of Qinghai spruce (Picea crassifolia) to recent warming along elevational gradients in the central Qilian Mountains, Northwest China. J. Geogr. Sci. 2023, 33, 151–168. [Google Scholar] [CrossRef]
- Sachsenmaier, L.; Schnabel, F.; Dietrich, P.; Eisenhauer, N.; Ferlian, O.; Quosh, J.; Richter, R.; Wirth, C. Forest growth resistance and resilience to the 2018–2020 drought depend on tree diversity and mycorrhizal type. J. Ecol. 2024, 112, 1787–1803. [Google Scholar] [CrossRef]
- Messaoud, Y.; Chen, H.Y. The influence of recent climate change on tree height growth differs with species and spatial environment. PLoS ONE 2011, 6, e14691. [Google Scholar] [CrossRef]
- Jiang, Y.; Marchand, W.; Rydval, M.; Matula, R.; Janda, P.; Begović, K.; Thom, D.; Fruleux, A.; Buechling, A.; Pavlin, J.; et al. Drought resistance of major tree species in the Czech Republic. Agric. For. Meteorol. 2024, 348, 109933. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, K.; Zeng, Z.; Du, H.; Zou, Z.; Xu, Y.; Zeng, F. Large-scale patterns in forest growth rates are mainly driven by climatic variables and stand characteristics. For. Ecol. Manag. 2019, 435, 120–127. [Google Scholar] [CrossRef]
- Basu, S.; Stojanović, M.; Jevšenak, J.; Buras, A.; Kulhavý, J.; Hornová, H.; Světlík, J. Pedunculate oak is more resistant to drought and extreme events than narrow-leaved ash in Central European floodplain forests. For. Ecol. Manag. 2024, 561, 121907. [Google Scholar] [CrossRef]
- Dupont-Leduc, L.; Power, H.; Fortin, M.; Schneider, R. Climate interacts with the trait structure of tree communities to influence forest productivity. J. Ecol. 2024, 112, 1758–1773. [Google Scholar] [CrossRef]
- Jevsenak, J.; Saražin, J. Pinus halepensis is more drought tolerant and more resistant to extreme events than Pinus nigra at a sub-Mediterranean flysch site. Trees 2023, 37, 1281–1286. [Google Scholar] [CrossRef]
- Kunert, N.; Hajek, P.; Hietz, P.; Morris, H.; Rosner, S.; Tholen, D. Summer temperatures reach the thermal tolerance threshold of photosynthetic decline in temperate conifers. Plant Biol. 2022, 24, 1254–1261. [Google Scholar] [CrossRef]
- Soubeyrand, M.; Marchand, P.; Duchesne, L.; Bergeron, Y.; Gennaretti, F. Interactions between climate, soil and competition drive tree growth in Quebec forests. For. Ecol. Manag. 2024, 555, 121731. [Google Scholar] [CrossRef]
- Vospernik, S.; Heym, M.; Pretzsch, H.; Pach, M.; Steckel, M.; Aldea, J.; Brazaitis, G.; Bravo-Oviedo, A.; Del Rio, M.; Löf, M.; et al. Tree species growth response to climate in mixtures of Quercus robur/Quercus petraea and Pinus sylvestris across Europe—A dynamic, sensitive equilibrium. For. Ecol. Manag. 2023, 530, 120753. [Google Scholar] [CrossRef]
- Vospernik, S.; Vigren, C.; Morin, X.; Toigo, M.; Bielak, K.; Brazaitis, G.; Bravo, F.; Heym, M.; Del Río, M.; Jansons, A.; et al. Can mixing Quercus robur and Quercus petraea with Pinus sylvestris compensate for productivity losses due to climate change? Sci. Total Environ. 2024, 942, 173342. [Google Scholar] [CrossRef]
- Barber, V.A.; Juday, G.P.; Finney, B.P. Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 2000, 405, 668–673. [Google Scholar] [CrossRef]
- Linares, J.C.; Tíscar, P.A.; Camarero, J.J.; Taïqui, L.; Viñegla, B.; Seco, J.I.; Merino, J.; Carreira, J.A. Tree Growth Decline on Relict Western-Mediterranean Mountain Forests: Cause and Impacts; Nova Science Publishers Inc.: Hauppauge, NY, USA, 2011; pp. 91–110. [Google Scholar]
- Yang, J.; Zhao, B.; Zheng, J.; Zhang, Q.; Li, Y.; Ma, F.; Fang, O. Linkage between spruce forest decline and cloud cover increase in the Qilian Mountains of the northeastern Tibetan Plateau. Trees 2023, 37, 1097–1106. [Google Scholar] [CrossRef]
- Ettinger, A.K.; Ford, K.R.; HilleRisLambers, J. Climate determines upper, but not lower, altitudinal range limits of Pacific Northwest conifers. Ecology 2011, 92, 1323–1331. [Google Scholar] [CrossRef] [PubMed]
- Bigler, C.; Gavin, D.G.; Gunning, C.; Veblen, T.T. Drought induces lagged tree mortality in a subalpine forest in the Rocky Mountains. Oikos 2007, 116, 1983–1994. [Google Scholar] [CrossRef]
- Petrov, I.; Shushpanov, A.S.; Im, S.; Golyukov, A.S. Climatic aspect of fir (Abies sibirica Ledeb.) mortality in the Eastern Sayan Mountains. In Proceedings of the VII International Scientific Conference, Tomsk, Russia, 28–30 September 2020; pp. 94–96. [Google Scholar]
- Maher, C.T.; Nelson, C.R.; Larson, A.J.; Leys, B. Winter damage is more important than summer temperature for maintaining the krummholz growth form above alpine treeline. J. Ecol. 2019, 108, 1074–1087. [Google Scholar] [CrossRef]
- Tang, Y.; Du, E.; Guo, H.; Wang, Y.; Peñuelas, J.; Reich, P.B. Rapid migration of Mongolian oak into the southern Asian boreal forest. Global Chang. Biol. 2024, 30, e17002. [Google Scholar] [CrossRef]
- Adams, J.M. Vegetation-Climate Interaction: How Vegetation Makes the Global Environment; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Li, M.-Y.; Leng, Q.-N.; Hao, G.-Y. Contrasting patterns of radial growth rate between Larix principis-rupprechtii and Pinus sylvestris var. mongolica along an elevational gradient are mediated by differences in xylem hydraulics. For. Ecol. Manag. 2021, 497, 119524. [Google Scholar] [CrossRef]
- Taneda, H.; Funayama-Noguchi, S.; Mayr, S.; Goto, S. Elevational adaptation of morphological and anatomical traits by Sakhalin fir (Abies sachalinensis). Trees 2019, 34, 507–520. [Google Scholar] [CrossRef]
- Zhou, Q.; Shi, H.; He, R.; Liu, H.; Zhu, W.; Yu, D.; Zhang, Q.; Dang, H. Plastic and adaptive response of carbon allocation to temperature change in alpine treeline trees. Environ Exp Bot. 2023, 208, 105271. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Balducci, L.; Deslauriers, A.; Giovannelli, A.; Beaulieu, M.; Delzon, S.; Rossi, S.; Rathgeber, C.B. How do drought and warming influence survival and wood traits of Picea mariana saplings? J. Exp. Bot. 2015, 66, 377–389. [Google Scholar] [CrossRef]
- Kelsey, K.C.; Redmond, M.D.; Barger, N.N.; Neff, J.C. Species, Climate and Landscape Physiography Drive Variable Growth Trends in Subalpine Forests. Ecosystems 2017, 21, 125–140. [Google Scholar] [CrossRef]
- Wang, X.; Pederson, N.; Chen, Z.; Lawton, K.; Zhu, C.; Han, S. Recent rising temperatures drive younger and southern Korean pine growth decline. Sci. Total Environ. 2019, 649, 1105–1116. [Google Scholar] [CrossRef] [PubMed]
- Hogg, E.H.; Brandt, J.P.; Michaelian, M. Impacts of a regional drought on the productivity, dieback, and biomass of western Canadian aspen forests. Can. J. For. Res. 2008, 38, 1373–1384. [Google Scholar] [CrossRef]
- Worrall, J.J.; Egeland, L.; Eager, T.; Mask, R.A.; Johnson, E.W.; Kemp, P.A.; Shepperd, W.D. Rapid mortality of Populus tremuloides in southwestern Colorado, USA. For. Ecol. Manag. 2008, 255, 686–696. [Google Scholar] [CrossRef]
- Galiano, L.; Martínez-Vilalta, J.; Lloret, F. Drought-Induced Multifactor Decline of Scots Pine in the Pyrenees and Potential Vegetation Change by the Expansion of Co-occurring Oak Species. Ecosystems 2010, 13, 978–991. [Google Scholar] [CrossRef]
- Vieira, J.; Nabais, C.; Campelo, F. Dry and hot years drive growth decline of Pinus halepensis at its southern range limit in the Moroccan High Atlas Mountains. Trees 2022, 36, 1585–1595. [Google Scholar] [CrossRef]
- Wilson, E.C.; Cousins, S.; Etter, D.R.; Humphreys, J.M.; Roloff, G.J.; Carter, N.H. Habitat and climatic associations of climate-sensitive species along a southern range boundary. Ecol. Evol. 2023, 13, e10083. [Google Scholar] [CrossRef]
- Puchałka, R.; Paź-Dyderska, S.; Jagodziński, A.M.; Sádlo, J.; Vítková, M.; Klisz, M.; Koniakin, S.; Prokopuk, Y.; Netsvetov, M.; Nicolescu, V.-N.; et al. Predicted range shifts of alien tree species in Europe. Agric. For. Meteorol. 2023, 341, 109650. [Google Scholar] [CrossRef]
- Gazda, A.; Kościelniak, P.; Hardy, M.; Muter, E.; Kędra, K.; Bodziarczyk, J.; Frączek, M.; Chwistek, K.; Różański, W.; Szwagrzyk, J. Upward expansion of distribution ranges of tree species: Contrasting results from two national parks in Western Carpathians. Sci. Total. Environ. 2019, 653, 920–929. [Google Scholar] [CrossRef]
- Messaoud, Y.; Asselin, H.; Bergeron, Y.; Grondin, P. Competitive Advantage of Black Spruce Over Balsam Fir in Coniferous Boreal Forests of Eastern North America Revealed by Site Index. For. Sci. 2014, 60, 57–62. [Google Scholar] [CrossRef]
- Hörl, J.; Keller, K.; Yousefpour, R. Reviewing the performance of adaptive forest management strategies with robustness analysis. For. Policy Econ. 2020, 119, 102289. [Google Scholar] [CrossRef]
- van Tiel, N.; Fopp, F.; Brun, P.; van den Hoogen, J.; Karger, D.N.; Casadei, C.M.; Lyu, L.; Tuia, D.; Zimmermann, N.E.; Crowther, T.W.; et al. Regional uniqueness of tree species composition and response to forest loss and climate change. Nat. Commun. 2024, 15, 4375. [Google Scholar] [CrossRef] [PubMed]
- Boonman, C.C.F.; Serra-Diaz, J.M.; Hoeks, S.; Guo, W.-Y.; Enquist, B.J.; Maitner, B.; Malhi, Y.; Merow, C.; Buitenwerf, R.; Svenning, J.-C. More than 17,000 tree species are at risk from rapid global change. Nat. Commun. 2024, 15, 166. [Google Scholar] [CrossRef] [PubMed]
- Beckage, B.; Osborne, B.; Gavin, D.G.; Pucko, C.; Siccama, T.; Perkins, T. A rapid upward shift of a forest ecotone during 40 years of warming in the Green Mountains of Vermont. Proc. Natl. Acad. Sci. USA 2008, 105, 4197–4202. [Google Scholar] [CrossRef]
- Kark, S. Effects of Ecotones on Biodiversity. In Reference Module in Life Sciences; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Sarmoum, M.; Camarero, J.J.; Abdoun, F. Aridification increases growth resistance of Atlas cedar forests in NW Algeria. For. Ecol. Manag. 2024, 556, 121730. [Google Scholar] [CrossRef]
- Chapin, F.S.; McGuire, A.D.; Ruess, R.W.; Hollingsworth, T.N.; Mack, M.C.; Johnstone, J.F.; Kasischke, E.S.; Euskirchen, E.S.; Jones, J.B.; Jorgenson, M.T.; et al. Resilience of Alaska’s boreal forest to climatic change. Can. J. For. Res. 2010, 40, 1360–1370. [Google Scholar]
- Vitasse, Y.; Bottero, A.; Cailleret, M.; Bigler, C.; Fonti, P.; Gessler, A.; Lévesque, M.; Rohner, B.; Weber, P.; Rigling, A.; et al. Contrasting resistance and resilience to extreme drought and late spring frost in five major European tree species. Glob. Chang. Biol. 2019, 25, 3781–3792. [Google Scholar] [CrossRef]
- Aitken, S.N.; Yeaman, S.; Holliday, J.A.; Wang, T.; Curtis-McLane, S. Adaptation, migration or extirpation: Climate change outcomes for tree populations. Evol. Appl. 2008, 1, 95–111. [Google Scholar] [CrossRef]
- Vacek, Z.; Vacek, S.; Cukor, J. European forests under global climate change: Review of tree growth processes, crises and management strategies. J. Environ. Manag. 2023, 332, 117353. [Google Scholar] [CrossRef]
- Kašpar, J.; Tumajer, J.; Altman, J.; Altmanová, N.; Čada, V.; Čihák, T.; Doležal, J.; Fibich, P.; Janda, P.; Kaczka, R.; et al. Major tree species of Central European forests differ in their proportion of positive, negative, and nonstationary growth trends. Glob. Chang. Biol. 2024, 30, e17146. [Google Scholar] [CrossRef]
- Lloyd, A.H.; Fastie, C.L. Spatial and Temporal Variability in the Growth and Climate Response of Treeline Trees in Alaska. Clim. Chang. 2002, 52, 481–509. [Google Scholar] [CrossRef]
- Bosela, M.; Lukac, M.; Castagneri, D.; Sedmák, R.; Biber, P.; Carrer, M.; Konôpka, B.; Nola, P.; Nagel, T.A.; Popa, I.; et al. Contrasting effects of environmental change on the radial growth of co-occurring beech and fir trees across Europe. Sci. Total. Environ. 2017, 615, 1460–1469. [Google Scholar] [CrossRef]
- Allen, C.D.; Breshears, D.D.; McDowell, N.G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 2015, 6, 1–55. [Google Scholar] [CrossRef]
- Anderegg, W.R.L.; Schwalm, C.R.; Biondi, F.; Camarero, J.J.; Koch, G.W.; Litvak, M.; Ogle, K.; Shaw, J.D.; Shevliakova, E.; Williams, A.P.; et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 2015, 349, 528–532. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, F. Climate Change and the Norway Spruce Treeline in the Central Scandinavian Mountains. Treeline Evolution, Tree Growth and a Blue Intensity Summer Temperature Reconstruction. Master Thesis, University of Gothenburg, Gothenburg, Sweden, 2022. [Google Scholar]
- Goldblum, D.; Rigg, L.S. The Deciduous Forest—Boreal Forest Ecotone. Geogr. Compass 2010, 4, 701–717. [Google Scholar] [CrossRef]
- Jensen, J. The Environmental Drivers of White Spruce Growth and Regeneration at Arctic Treeline in a Changing Climate. Ph.D. Thesis, Columbia University, New York, NY, USA, 2023. [Google Scholar]
- Smith, W.K.; Germino, M.J.; Johnson, D.M.; Reinhardt, K. The Altitude of Alpine Treeline: A Bellwether of Climate Change Effects. Bot. Rev. 2009, 75, 163–190. [Google Scholar] [CrossRef]
- Jochner, M.; Bugmann, H.; Nötzli, M.; Bigler, C. Tree growth responses to changing temperatures across space and time: A fine-scale analysis at the treeline in the Swiss Alps. Trees 2017, 32, 645–660. [Google Scholar] [CrossRef]
- Enderle, L.; Gribbe, S.; Muffler, L.; Weigel, R.; Hertel, D.; Leuschner, C. A warmer climate impairs the growth performance of Central Europe’s major timber species in lowland regions. Sci. Total Environ. 2024, 941, 173665. [Google Scholar] [CrossRef]
- Drobyshev, I.; Gewehr, S.; Berninger, F.; Bergeron, Y. Species specific growth responses of black spruce and trembling aspen may enhance resilience of boreal forest to climate change. J. Ecol. 2012, 101, 231–242. [Google Scholar] [CrossRef]
- Chagnon, C.; Wotherspoon, A.R.; Achim, A. Deciphering the black spruce response to climate variation across eastern Canada using a meta-analysis approach. For. Ecol. Manag. 2022, 520, 120375. [Google Scholar] [CrossRef]
- Morin-Bernard, A.; Achim, A.; Coops, N.C.; White, J.C. Integration of tree-ring data, Landsat time series, and ALS-derived topographic variables to quantify growth declines in black spruce. For. Ecol. Manag. 2024, 557, 121765. [Google Scholar] [CrossRef]
- Briceno-Elizondo, E.; Garcia-Gonzalo, J.; Peltola, H.; Matala, J.; Kellomäki, S. Sensitivity of growth of Scots pine, Norway spruce and silver birch to climate change and forest management in boreal conditions. For. Ecol. Manag. 2006, 232, 152–167. [Google Scholar] [CrossRef]
- Pretzsch, H.; Schütze, G.; Biber, P. Drought can favour the growth of small in relation to tall trees in mature stands of Norway spruce and European beech. For. Ecosyst. 2018, 5, 20. [Google Scholar] [CrossRef]
- Dulamsuren, C.; Wommelsdorf, T.; Zhao, F.; Xue, Y.; Zhumadilov, B.Z.; Leuschner, C.; Hauck, M. Increased Summer Temperatures Reduce the Growth and Regeneration of Larix sibirica in Southern Boreal Forests of Eastern Kazakhstan. Ecosystems 2013, 16, 1536–1549. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Petrov, I.A.; Golyukov, A.S.; Dvinskaya, M.L.; Im, S.T.; Shushpanov, A.S. Larch growth across thermal and moisture gradients in the Siberian Mountains. J. Mt. Sci. 2023, 20, 101–114. [Google Scholar] [CrossRef]
- Hansson, A.; Shulmeister, J.; Dargusch, P.; Hill, G. A review of factors controlling Southern Hemisphere treelines and the implications of climate change on future treeline dynamics. Agric. For. Meteorol. 2023, 332, 109375. [Google Scholar] [CrossRef]
- Qi, X.; Treydte, K.; Saurer, M.; Fang, K.; An, W.; Lehmann, M.; Liu, K.; Wu, Z.; He, H.S.; Du, H.; et al. Contrasting water-use strategies to climate warming in white birch and larch in a boreal permafrost region. Tree Physiol. 2024, 44, tpae053. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Messaoud, Y. Tree Growth in Relation to Climate Change: Understanding the Impact on Species Worldwide. Forests 2024, 15, 1601. https://doi.org/10.3390/f15091601
Messaoud Y. Tree Growth in Relation to Climate Change: Understanding the Impact on Species Worldwide. Forests. 2024; 15(9):1601. https://doi.org/10.3390/f15091601
Chicago/Turabian StyleMessaoud, Yassine. 2024. "Tree Growth in Relation to Climate Change: Understanding the Impact on Species Worldwide" Forests 15, no. 9: 1601. https://doi.org/10.3390/f15091601
APA StyleMessaoud, Y. (2024). Tree Growth in Relation to Climate Change: Understanding the Impact on Species Worldwide. Forests, 15(9), 1601. https://doi.org/10.3390/f15091601