Heat and Drought Have Exacerbated the Midday Depression Observed in a Subtropical Fir Forest by a Geostationary Satellite
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Collection
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Su, X.; Li, S.; Wan, X.; Huang, Z.; Liu, B.; Fu, S.; Kumar, P.; Chen, H.Y. Understory vegetation dynamics of Chinese fir plantations and natural secondary forests in subtropical China. For. Ecol. Manag. 2021, 483, 118750. [Google Scholar] [CrossRef]
- Dorman, M.; Perevolotsky, A.; Sarris, D.; Svoray, T. The effect of rainfall and competition intensity on forest response to drought: Lessons learned from a dry extreme. Oecologia 2015, 177, 1025–1038. [Google Scholar] [CrossRef]
- Song, L.; Li, M.; Zhu, J.; Zhang, J. Comparisons of radial growth and tree-ring cellulose δ 13 C for Pinus sylvestris var. mongolica in natural and plantation forests on sandy lands. J. For. Res. 2017, 22, 160–168. [Google Scholar] [CrossRef]
- Huang, Y.; Guo, M.; Bai, P.; Li, J.; Liu, L.; Tian, W. Warming intensifies severe drought over China from 1980 to 2019. Int. J. Clim. 2023, 43, 1980–1992. [Google Scholar] [CrossRef]
- Lloret, F.; Batllori, E. Climate-Induced Global Forest Shifts due to Heatwave-Drought. In Ecological Studies; Canadell, J.G., Jackson, R.B., Eds.; Springer International Publishing, Cham, Switzerland, 2021; pp. 155–186. [Google Scholar] [CrossRef]
- Qu, L.; De Boeck, H.J.; Fan, H.; Dong, G.; Chen, J.; Xu, W.; Ge, Z.; Huang, Z.; Shao, C.; Hu, Y. Diverging responses of two subtropical tree species (Schima superba and Cunninghamia lanceolata) to heat waves. Forests 2020, 11, 513. [Google Scholar] [CrossRef]
- Maai, E.; Nishimura, K.; Takisawa, R.; Nakazaki, T. Light stress-induced chloroplast movement and midday depression of photosynthesis in sorghum leaves. Plant Prod. Sci. 2020, 23, 172–181. [Google Scholar] [CrossRef]
- Wang, H.; Prentice, I.C.; Davis, T.W. Biophsyical constraints on gross primary production by the terrestrial biosphere. Biogeosciences 2014, 11, 5987–6001. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Xie, Z.K.; Wang, Y.J.; Su, P.X.; An, L.P.; Gao, H. Effect of water stress on leaf photosynthesis, chlorophyll content, and growth of oriental lily. Russ. J. Plant Physiol. 2011, 58, 844–850. [Google Scholar] [CrossRef]
- Flexas, J.; Badger, M.; Chow, W.S.; Medrano, H.L.; Osmond, C.B. Analysis of the Relative Increase in Photosynthetic O2 Uptake When Photosynthesis in Grapevine Leaves Is Inhibited Following Low Night Temperatures and/or Water Stress. Plant Physiol. 1999, 121, 675–684. [Google Scholar] [CrossRef]
- Damm, A.; Elbers, J.; Erler, A.; Gioli, B.; Hamdi, K.; Hutjes, R.; Kosvancova, M.; Meroni, M.; Miglietta, F.; Moersch, A.; et al. Remote sensing of sun-induced fluorescence to improve modeling of diurnal courses of gross primary production (GPP). Glob. Chang. Biol. 2009, 16, 171–186. [Google Scholar] [CrossRef]
- Bucci, S.J.; Silletta, L.M.C.; Garré, A.; Cavallaro, A.; Efron, S.T.; Arias, N.S.; Goldstein, G.; Scholz, F.G. Functional relationships between hydraulic traits and the timing of diurnal depression of photosynthesis. Plant Cell Environ. 2019, 42, 1603–1614. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, A.; Koyama, K.; Bhusal, N. Diurnal change of the photosynthetic light-response curve of buckbean (Menyanthes trifoliata), an emergent aquatic plant. Plants 2022, 11, 174. [Google Scholar] [CrossRef] [PubMed]
- Tanizaki, T.; Yokoyama, G.; Kitano, M.; Yasutake, D. Contribution of diffusional and non-diffusional limitations to the midday depression of photosynthesis which varies dynamically even under constant environmental conditions. Int. Agrophysics 2022, 36, 207–212. [Google Scholar] [CrossRef]
- Guo, X.Y.; Peng, C.H.; Li, T.; Huang, J.J.; Song, H.X.; Zhu, Q.A.; Wang, M. The effects of drought and re-watering on non-structural carbohydrates of Pinus tabulaeformis seedlings. Biology 2021, 10, 281. [Google Scholar] [CrossRef]
- Clarendon, G. The Emerald Planet: How Plants Changed Earth’s History. Quart. Rev. Biol. 2008, 83, 117–118. [Google Scholar] [CrossRef]
- Ferrar, P.; Slatyer, R.; Vranjic, J. Photosynthetic Temperature Acclimation in Eucalyptus Species from Diverse Habitats, and a Comparison with Nerium oleander. Funct. Plant Biol. 1989, 16, 199–217. [Google Scholar] [CrossRef]
- Xu, H.; Xiao, J.; Zhang, Z. Heatwave effects on gross primary production of northern mid-latitude ecosystems. Environ. Res. Lett. 2020, 15, 074027. [Google Scholar] [CrossRef]
- Koyama, K.; Takemoto, S. Morning reduction of photosynthetic capacity before midday depression. Sci. Rep. 2014, 4, 4389. [Google Scholar] [CrossRef]
- Xiao, J.F.; Fisher, J.; Hashimoto, H.; Ichii, K.; Parazoo, N.C. Emerging satellite observations for diurnal cycling of ecosystem processes. Nat. Plants 2021, 7, 877–887. [Google Scholar] [CrossRef]
- Yang, X.; Mustard, J.; Tang, J.; Xu, H. Regional-scale phenology modeling based on meteorological records and remote sensing observations. J. Geophys. Res. Biogeosci. 2012, 117, G03029. [Google Scholar] [CrossRef]
- Sun, Y.; Wen, J.; Gu, L.; Joiner, J.; Chang, C.Y.; van der Tol, C.; Porcar-Castell, A.; Magney, T.; Wang, L.; Hu, L.; et al. From remotely sensed solar-induced chlorophyll fluorescence to ecosystem structure, function, and service: Part I-Harnessing theory. Glob. Chang. Biol. 2023, 29, 2926–2952. [Google Scholar] [CrossRef]
- Landsberg, J.J.; Waring, R.H. A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. For. Ecol. Manag. 1997, 95, 209–228. [Google Scholar] [CrossRef]
- Li, X.; Ryu, Y.; Xiao, J.; Dechant, B.; Liu, J.; Li, B.; Jeong, S.; Gentine, P. New-generation geostationary satellite reveals widespread midday depression in dryland photosynthesis during 2020 western U.S. heatwave. Sci. Adv. 2023, 9, eadi0775. [Google Scholar] [CrossRef] [PubMed]
- Consoli, S.; Vanella, D. Comparisons of satellite-based models for estimating evapotranspiration fluxes. J. Hydrol. 2014, 513, 475–489. [Google Scholar] [CrossRef]
- Li, X.; Xiao, J.; Fisher, J.B.; Baldocchi, D.D. ECOSTRESS estimates gross primary production with fine spatial resolution for different times of day from the International Space Station. Remote Sens. Environ. 2021, 258, 112360. [Google Scholar] [CrossRef]
- Hunan Meteorological Bureau. Top 10 Weather and Climate Events in Hunan Province in 2022. Available online: https://www.hengyang.gov.cn/xxgk/dtxx/tzgg/gsgg/20230323/i2966725.html (accessed on 24 May 2024).
- China Meteorological Administration. Top 10 Domestic and Foreign Weather and Climate Events of 2022. Available online: https://www.cma.gov.cn/2011xwzx/2011xqxxw/2011xqxyw/202301/t20230109_5247477.html (accessed on 24 May 2024).
- China Meteorological Administration. CHINA CLIMATE BULLETIN (2020). Available online: https://www.cma.gov.cn/zfxxgk/gknr/qxbg/202104/t20210406_3051288.html (accessed on 24 May 2024).
- Wang, S.; Wang, S.; Feng, J. Drought Events and Its Influence in Autumn of 2016 in China. J. Arid. Metcorology 2016, 34, 1099–1104. (In Chinese) [Google Scholar] [CrossRef]
- Wang, L.; Yu, M.; Ye, S.; Yan, J. Seasonal patterns of carbon and water flux responses to precipitation and solar radiation variability in a subtropical evergreen forest, South China. Agric. For. Meteorol. 2023, 342, 109760. [Google Scholar] [CrossRef]
- Liu, F.; Zhao, Y.; Wang, X.; Wang, B.; Xiao, F.; He, K. Physiological response and drought resistance evaluation of Gleditsia sinensis seedlings under drought-rehydration state. Sci. Rep. 2023, 13, 19963. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Sarwar, R.; Zhang, W.; Geng, R.; Zhu, K.M.; Tan, X.L. Research progress on the physiological response and molecular mechanism of cold response in plants. Front. Plant Sci. 2024, 15, 1334913. [Google Scholar] [CrossRef]
- Zhao, J.; Lu, Z.; Wang, L.; Jin, B. Plant Responses to Heat Stress: Physiology, Transcription, Noncoding RNAs, and Epigenetics. Int. J. Mol. Sci. 2020, 22, 117. [Google Scholar] [CrossRef]
- Li, B.; Gao, K.; Ren, H.; Tang, W. Molecular mechanisms governing plant responses to high temperatures. J. Integr. Plant Biol. 2018, 60, 757–779. [Google Scholar] [CrossRef] [PubMed]
- Jajoo, A.; Allakhverdiev, S.I. High Temperature Stress in Plants: Consequences and Strategies for Protecting Photosynthetic Machinery. In Plant Stress Physiology; CABI: Wallingford, UK, 2017; pp. 138–154. [Google Scholar] [CrossRef]
- Rennenberg, H.; Loreto, F.; Polle, A.; Brilli, F.; Fares, S.; Beniwal, R.S.; Gessler, A. Physiological Responses of Forest Trees to Heat and Drought. Plant Biol. 2006, 8, 556–571. [Google Scholar] [CrossRef]
- Moroney, J.V.; Jungnick, N.; Dimario, R.J.; Longstreth, D.J. Photorespiration and carbon concentrating mechanisms: Two adaptations to high O2, low CO2 conditions. Photosynth. Res. 2013, 117, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, S.; Yang, K.; Hu, X.; Jiang, H. Fine-control of growth and thermotolerance in plant response to heat stress. J. Integr. Agric. 2024, in press. [Google Scholar] [CrossRef]
- Murata, Y.; Mori, I.C. Stomatal regulation of plant water status. In Plant Abiotic Stress; John, Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 47–67. [Google Scholar] [CrossRef]
- Zahra, N.; Hafeez, M.B.; Kausar, A.; Al Zeidi, M.; Asekova, S.; Siddique, K.H.M.; Farooq, M. Plant photosynthetic responses under drought stress: Effects and management. J. Agron. Crop. Sci. 2023, 209, 651–672. [Google Scholar] [CrossRef]
- Earl, H.J. Stomatal and non-stomatal restrictions to carbon assimilation in soybean (Glycine max) lines differing in water use efficiency. Environ. Exp. Bot. 2002, 48, 237–246. [Google Scholar] [CrossRef]
- Drake, J.E.; Power, S.A.; Duursma, R.A.; Medlyn, B.E.; Aspinwall, M.J.; Choat, B.; Creek, D.; Eamus, D.; Maier, C.; Pfautsch, S.; et al. Stomatal and non-stomatal limitations of photosynthesis for four tree species under drought: A comparison of model formulations. Agric. For. Meteorol. 2017, 247, 454–466. [Google Scholar] [CrossRef]
- Liu, H.; Song, S.; Zhang, H.; Li, Y.; Niu, L.; Zhang, J.; Wang, W. Signaling Transduction of ABA, ROS, and Ca2+ in Plant Stomatal Closure in Response to Drought. Int. J. Mol. Sci. 2022, 23, 14824. [Google Scholar] [CrossRef]
- Hussain, S.; Ulhassan, Z.; Brestic, M.; Zivcak, M.; Zhou, W.J.; Allakhverdiev, S.I.; Yang, X.H.; Safdar, M.E.; Yang, W.Y.; Liu, W.G. Photosynthesis research under climate change. Photosynth. Res. 2021, 150, 5–19. [Google Scholar] [CrossRef]
- Ye, Z.P. Nonlinear optical absorption of photosynthetic pigment molecules in leaves. Photosynth. Res. 2012, 112, 31–37. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Gao, H.; Li, Y.H.; Wang, L.; Kong, D.S.; Guo, Y.Y.; Yan, F.; Wang, Y.W.; Lu, K.; Tian, J.W.; et al. Effect of Water Stress on Photosynthesis, Chlorophyll Fluorescence Parameters and Water Use Efficiency of Common Reed in the Hexi Corridor. Russ. J. Plant Physiol. 2019, 66, 556–563. [Google Scholar] [CrossRef]
- Wang, J.; Yu, Q.; Li, J.; Li, L.H.; Li, X.G.; Yu, G.R.; Sun, X.M. Simulation of diurnal variations of CO2, water and heat fluxes over winter wheat with a model coupled photosynthesis and transpiration. Agric. For. Meteorol. 2006, 137, 194–219. [Google Scholar] [CrossRef]
- Wang, C.; Li, Z.; Chen, Y.; Ouyang, L.; Li, Y.; Sun, F.; Liu, Y.; Zhu, J. Drought-heatwave compound events are stronger in drylands. Weather Clim. Extrem. 2023, 42, 100632. [Google Scholar] [CrossRef]
- Choat, B.; Brodribb, T.J.; Brodersen, C.R.; Duursma, R.A.; López, R.; Medlyn, B.E. Triggers of tree mortality under drought. Nature 2018, 558, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Zhai, P. More frequent and widespread persistent compound drought and heat event observed in China. Sci. Rep. 2020, 10, 14576. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Q.; Chen, K.; Li, T.; Liu, J.; Wang, Y.; Zhou, X. Heat and Drought Have Exacerbated the Midday Depression Observed in a Subtropical Fir Forest by a Geostationary Satellite. Forests 2024, 15, 1572. https://doi.org/10.3390/f15091572
Xie Q, Chen K, Li T, Liu J, Wang Y, Zhou X. Heat and Drought Have Exacerbated the Midday Depression Observed in a Subtropical Fir Forest by a Geostationary Satellite. Forests. 2024; 15(9):1572. https://doi.org/10.3390/f15091572
Chicago/Turabian StyleXie, Qianqian, Kexin Chen, Tong Li, Jia Liu, Yuqiu Wang, and Xiaolu Zhou. 2024. "Heat and Drought Have Exacerbated the Midday Depression Observed in a Subtropical Fir Forest by a Geostationary Satellite" Forests 15, no. 9: 1572. https://doi.org/10.3390/f15091572
APA StyleXie, Q., Chen, K., Li, T., Liu, J., Wang, Y., & Zhou, X. (2024). Heat and Drought Have Exacerbated the Midday Depression Observed in a Subtropical Fir Forest by a Geostationary Satellite. Forests, 15(9), 1572. https://doi.org/10.3390/f15091572