Leaf–Soil C:N:P Stoichiometry and Homeostasis Characteristics of Plantations in the Yellow River Floodplain in Western Shandong, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Plot Setting
2.3. Samples Collection and Determination
2.4. Data Analysis
3. Results
3.1. C, N, P, and C:N:P Ratios in Leaves
3.2. C, N, P, and C:N:P Ratios in Soil
3.3. Stoichiometric Relationships within the Leaf–Soil Continuum
3.4. Homeostasis Analysis of leaf N, P, and N:P Ratios
4. Discussion
4.1. C, N, P, and C:N:P Ratios of Leaf and Soil among Different Forest Stand Types
4.2. Correlation Analysis of C, N, P, and C:N:P Ratios in Leaf–Soil of Four Forest Stand Types
4.3. Evaluation of Plant Homeostasis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elser, J.; Hamilton, A. Stoichiometry and the New Biology: The Future Is Now. PLoS Biol. 2007, 5, 181–183. [Google Scholar] [CrossRef]
- Sterner, R.W.; Elser, J.J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere; Princeton University Press: Princeton, NJ, USA, 2003. [Google Scholar] [CrossRef]
- Han, W.; Fang, J.; Guo, D.; Zhang, Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol. 2005, 168, 377–385. [Google Scholar] [CrossRef]
- Sardans, J.; Janssens, I.A.; Ciais, P.; Obersteiner, M.; Peñuelas, J. Recent advances and future research in ecological stoichiometry. Perspect. Plant Ecol. 2021, 50, 125611. [Google Scholar] [CrossRef]
- Schade, J.D.; Kyle, M.; Hobbie, S.E.; Fagan, W.F.; Elser, J.J. Stoichiometric tracking of soil nutrients by a desert insect herbivore. Ecol. Lett. 2003, 6, 96–101. [Google Scholar] [CrossRef]
- Zhang, C.; Zeng, F.; Zeng, Z.; Du, H.; Zhang, L.; Su, L.; Lu, M.; Zhang, H. Carbon, Nitrogen and Phosphorus Stoichiometry and Its Influencing Factors in Karst Primary Forest. Forests 2022, 13, 1990. [Google Scholar] [CrossRef]
- Reich, P.B.; Tjoelker, M.G.; Machado, J.-L.; Oleksyn, J. Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature 2006, 439, 457–461. [Google Scholar] [CrossRef]
- Reich, P.B. Global biogeography of plant chemistry: Filling in the blanks. New Phytol. 2005, 168, 263–266. [Google Scholar] [CrossRef]
- Tessier, J.T.; Raynal, D.J. Use of Nitrogen to Phosphorus Ratios in Plant Tissue as an Indicator of Nutrient Limitation and Nitrogen Saturation. J. Appl. Ecol. 2003, 40, 523–534. [Google Scholar] [CrossRef]
- Hu, Q.; Sheng, M.; Bai, Y.; Jie, Y.; Xiao, H. Response of C, N, and P stoichiometry characteristics of Broussonetia papyrifera to altitude gradients and soil nutrients in the karst rocky ecosystem, SW China. Plant Soil. 2022, 475, 123–136. [Google Scholar] [CrossRef]
- Li, M.; Sun, J.; Chen, X.; Liu, J. Leaf-soil stoichiometry and homeostasis characteristics of desert-related plants. Arid. Zone Res. 2024, 41, 104–113. [Google Scholar] [CrossRef]
- Van der Heijden, M.G.A.; Bardgett, R.D.; Van Straalen, N.M. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 2010, 11, 296–310. [Google Scholar] [CrossRef]
- Bardgett, R.D.; Bowman, W.D.; Kaufmann, R.; Schmidt, S.K. A temporal approach to linking aboveground and belowground ecology. Trends Ecol. Evol. 2005, 20, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Schreeg, L.A.; Santiago, L.S.; Wright, S.J.; Turner, B.L. Stem, root, and older leaf N:P ratios are more responsive indicators of soil nutrient availability than new foliage. Ecology 2014, 95, 2062–2068. [Google Scholar] [CrossRef]
- Hessen, D.O.; Gren, G.R.I.; Anderson, T.R.; Elser, J.J.; De Ruiter, P.C. Carbon sequestration in ecosystems: The role of stoichiometry. Ecology 2004, 85, 1179–1192. [Google Scholar] [CrossRef]
- Minden, V.; Kleyer, M. Internal and external regulation of plant organ stoichiometry. Plant Biol. 2014, 16, 897–907. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, W.; Huang, J.; Hu, T.; Tang, D.D.; Chen, Q. Characteristics of plant ecological stoichiometry homeostasis. Guihaia 2019, 39, 701–712. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, T.; Sun, J.; Liu, J.; Fu, Z. Study on ecological stoichiometry homeostasis characteristics of different halophytes in the Yellow River Delta. Land. Degrad. Dev. 2024, 35, 784–797. [Google Scholar] [CrossRef]
- Hu, T.; Xiong, K.; Yu, Y.; Wang, J.; Wu, Y. Ecological stoichiometry and homeostasis characteristics of plant-litter-soil system with vegetation restoration of the karst desertification control. Front. Plant Sci. 2023, 14, 1224691. [Google Scholar] [CrossRef] [PubMed]
- Urbina, I.; Grau, O.; Sardans, J.; Ninot, J.M.; Peñuelas, J. Encroachment of shrubs into subalpine grasslands in the Pyrenees changes the plant-soil stoichiometry spectrum. Plant Soil. 2020, 448, 37–53. [Google Scholar] [CrossRef]
- Liu, J.; Gou, X.; Wang, F.; Liu, J.; Zhang, F. Seasonal patterns in the leaf C:N:P stoichiometry of four conifers on the northeastern Tibetan Plateau. Glob. Ecol. Conserv. 2023, 47, e2632. [Google Scholar] [CrossRef]
- Wang, L.; Arif, M.; Zheng, J.; Li, C. Patterns and drivers of plant carbon, nitrogen, and phosphorus stoichiometry in a novel riparian ecosystem. Front. Plant Sci. 2024, 15, 1354222. [Google Scholar] [CrossRef] [PubMed]
- Persson, J.; Fink, P.; Goto, A.; Hood, J.M.; Jonas, J.; Kato, S. To be or not to be what you eat: Regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos 2010, 119, 741–751. [Google Scholar] [CrossRef]
- Bao, B.; Chang, M.; Jin, S.; Li, X.; Xie, H. Periodic Flooding Decoupled the Relations of Soil C, N, P, and K Ecological Stoichiometry in a Coastal Shelterbelt Forest of Eastern China. Forests 2023, 14, 2270. [Google Scholar] [CrossRef]
- Bao, S. Soil and Agricultural Chemistry Analysis; China Agricultural Press: Beijing, China, 2000. [Google Scholar]
- Hood, J.M.; Sterner, R.W. Diet mixing: Do animals integrate growth or resources across temporal heterogeneity? Am. Nat. 2010, 176, 651–663. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.; Viliam, S. R Package ‘corrplot’: Visualization of a Correlation Matrix, (Version 0.92). 2021. Available online: https://github.com/taiyun/corrplot (accessed on 12 June 2024).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- The RDevelopment Core Team. R: A Language and Environment for Statistical Computing, v. 4.2.2; R Foundation for Statistical Computing: Vienna, Austria, 2022.
- Elser, J.J.; Fagan, W.F.; Denno, R.F.; Dobberfuhl, D.R.; Folarin, A.; Huberty, A.; Interlandi, S.; Kilham, S.S.; Mccauley, E.; Schulz, K.L.; et al. Nutritional constraints in terrestrial and freshwater food webs. Nature 2000, 408, 578–580. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xu, W.; Xiong, G.; Wang, Y.; Zhao, C. Leaf nitrogen and phosphorus concentration and the empirical regulations in dominant woody plants of shrublands across southern China. Chin. J. Plant Ecol. 2017, 41, 31–42. [Google Scholar] [CrossRef]
- Hao, Y.; Zhou, L.; Wu, H.; Wang, S. Comparison of ecological stoichiometric characteristics of leaf-litter-soil in four types of Fraxinus mandshurica plantations. J. Nanjing For. Uni. 2019, 43, 101–108. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, H.; Zhou, O.; Gulimia, I.; Duan, J.; Jia, L.; Xi, B. Chemical stoichiometry characteristics of various organs of trees in high-density Populus tomentosa pulp forests under water-nitrogen coupling. J. Beijing For. Univ. 2023, 45, 68–79. [Google Scholar] [CrossRef]
- Di, N.; Xi, B.; Jeremiah, R.P.; Wang, Y.; Li, G.; Jia, L. Root biomass distribution of triploid Populus tomentosa under wide- and narrow-row spacing planting schemes and its responses to soil nutrients. Chin. J. Plant Ecol. 2013, 37, 961–971. [Google Scholar] [CrossRef]
- Feng, X.; Yan, Y.; Zhang, X.; Zhang, C.; Geng, Z.; Hu, F.; Xu, C. Temporal and Spatial Variations of Soil Organic Carbon and the Influencing Factors in Shanxi Province in Recent 30 Years. Environ. Sci. 2024. [Google Scholar] [CrossRef]
- De La Casa, J.; Sardans, J.; Galindo, M.; Peñuelas, J. Stoichiometry of litter decomposition under the effects of climate change and nutrient enrichment: A meta-analysis. Plant Soil. 2024. [Google Scholar] [CrossRef]
- Bragazza, L.; Fontana, M.; Guillaume, T.; Scow, K.M.; Sinaj, S. Nutrient stoichiometry of a plant-microbe-soil system in response to cover crop species and soil type. Plant Soil. 2021, 461, 517–531. [Google Scholar] [CrossRef]
- Sardans, J.; Rivas-Ubach, A.; Peñuelas, J. The C:N:P stoichiometry of organisms and ecosystems in a changing world: A review and perspectives. Perspect. Plant Ecol. 2012, 14, 33–47. [Google Scholar] [CrossRef]
- Tian, H.; Chen, G.; Zhang, C.; Melillo, J.M.; Hall, C.A.S. Pattern and variation of C:N:P ratios in China’s soils: A synthesis of observational data. Biogeochemistry 2010, 98, 139–151. [Google Scholar] [CrossRef]
- Ballantyne, F., IV; Menge, D.N.L.; Ostling, A.; Hosseini, P. Nutrient recycling affects autotroph and ecosystem stoichiometry. Am. Nat. 2008, 171, 511–523. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Cha, X.; Sun, L.; Guo, H.; Zhao, Q.; Wei, X.; Wang, Y.; Dong, Q. Study on the Characteristics of Soil Ecological Stoichiometry and Non-Structural Carbon in Different Forest Ages of Fraxinus malacophylla. J. Nucl. Agric. Sci. 2024, 38, 364–373. [Google Scholar] [CrossRef]
- Jing, L.; Zhou, Y.; Lv, C.; Zhao, J.; Lei, G. Characterization of the soil and leaf C, N, and P stoichiometry of poplar plantations of three different stand ages in Dongting Lake wetland, China. Perspect. Plant Ecol. 2018, 38, 6530–6538. [Google Scholar] [CrossRef]
- Spohn, M. Element cycling as driven by stoichiometric homeostasis of soil microorganisms. Basic Appl. Ecol. 2016, 17, 471–478. [Google Scholar] [CrossRef]
Stand Characteristics | Po | Po*Ro | Pl | Sa |
---|---|---|---|---|
Lat and Lon | 36°47′ N; 116°3′~116°4′ E | 36°47′ N; 116°4′ E | 36°24′~36°47′ N; 116°16′~116°4′ E | 36°13′~36°24′ N; 116°15′~116°28′ E |
H (m) | 20.85 ± 7.54 | 20.37 ± 10.18 | 15.8 ± 10.18 | 18.22 ± 3.24 |
DBH (cm) | 23.71 ± 11.22 | 24.48 ± 13.62 | 15.78 ± 1.42 | 19.22 ± 30.6 |
BD (g/cm3) | 1.19 ± 0.082 | 1.12 ± 0.05 | 1.17 ± 0.06 | 1.19 ± 0.08 |
SWC (%) | 0.11 ± 0.021 | 0.11 ± 0.02 | 0.16 ± 0.02 | 0.21 ± 0.04 |
pH | 7.71 ± 0.14 | 7.73 ± 0.09 | 7.91 ± 0.08 | 7.99 ± 0.08 |
EC (μs/cm) | 286.5 ± 49.84 | 270.28 ± 27.87 | 363.5 ± 11.02 | 300.64 ± 61.8 |
MAT (°C) | 15.02 ± 0.14 | 15.04 ± 0.12 | 15.13 ± 0.18 | 15.39 ± 0.16 |
MAP (mm) | 602.92 ± 0.62 | 602.94 ± 0.31 | 618.51 ± 16.08 | 637.05 ± 0.16 |
HC (%) | 46.8 ± 19.77 | 45.44 ± 27.72 | 17.08 ± 15.77 | 65.78 ± 26.63 |
Main species of the herb layer | Rubia cordifolia Setaria viridis Humulus scandens Commelina communis | Erigeron canadensis Humulus scandens Chenopodium album Bidenspilosa | Humulus scandens Chenopodium album Setaria viridis Salsola collina | Setaria viridis Cynodon dactylon Humulus scandens Rehmannia glutinosa |
Forest Stand Types | SC (g/kg) | SN (g/kg) | SP (g/kg) | SC:SN | SC:SP | SN:SP |
---|---|---|---|---|---|---|
Po | 4.68 ± 3.50 a | 0.93 ± 0.45 ab | 0.50 ± 0.28 b | 4.67 ± 2.15 ab | 10.17 ± 7.52 a | 2.12 ± 1.05 a |
Po*Ro | 5.28 ± 1.33 a | 1.03 ± 0.35 ab | 0.48 ± 0.24 b | 5.29 ± 0.87 a | 14.61 ± 0.87 a | 2.84 ± 1.82 a |
Pl | 1.78 ± 0.78 b | 0.58 ± 0.08 b | 1.04 ± 0.35 a | 3.21 ± 1.59 b | 1.86 ± 0.97 b | 0.62 ± 0.24 b |
Sa | 6.58 ± 2.70 a | 1.29 ± 0.65 a | 0.85 ± 0.39 a | 5.56 ± 1.76 a | 10.00 ± 7.39 a | 1.94 ± 1.49 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Lu, X. Leaf–Soil C:N:P Stoichiometry and Homeostasis Characteristics of Plantations in the Yellow River Floodplain in Western Shandong, China. Forests 2024, 15, 1433. https://doi.org/10.3390/f15081433
Liu H, Lu X. Leaf–Soil C:N:P Stoichiometry and Homeostasis Characteristics of Plantations in the Yellow River Floodplain in Western Shandong, China. Forests. 2024; 15(8):1433. https://doi.org/10.3390/f15081433
Chicago/Turabian StyleLiu, Huiran, and Xinghui Lu. 2024. "Leaf–Soil C:N:P Stoichiometry and Homeostasis Characteristics of Plantations in the Yellow River Floodplain in Western Shandong, China" Forests 15, no. 8: 1433. https://doi.org/10.3390/f15081433
APA StyleLiu, H., & Lu, X. (2024). Leaf–Soil C:N:P Stoichiometry and Homeostasis Characteristics of Plantations in the Yellow River Floodplain in Western Shandong, China. Forests, 15(8), 1433. https://doi.org/10.3390/f15081433