Aboveground Spatiotemporal Carbon Storage Model in the Changing Landscape of Jatigede, West Java, Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Methods
2.3.1. Preprocessing
2.3.2. Land Use and Land Cover Classification
2.3.3. Vegetation Index Mapping
2.3.4. Biomass and Carbon Stock Inventory
2.3.5. Carbon Stock Model Development
2.3.6. InVEST Model Development
3. Results and Analysis
3.1. The Changes in LULC during 2014–2021
3.2. The NDVI Cover during 2014–2021
3.3. The Aboveground Carbon Stock Dynamics during 2014–2021
4. Discussion
4.1. The Changes in the LULC in Jatigede between 2014 and 2021
4.2. The Changes in LULC Effects on Aboveground Carbon Stocks
4.3. Strengths, Limitations, and Implications of This Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saputra, M.H.; Lee, H.S. Evaluation of Climate Change Impacts on the Potential Distribution of Styrax Sumatrana in North Sumatra, Indonesia. Sustainability 2021, 13, 462. [Google Scholar] [CrossRef]
- Darmawan, A.A.; Ariyanto, D.P.; Basuki, T.M.; Syamsiyah, J.; Dewi, W.S. Biomass Accumulation and Carbon Sequestration Potential in Varying Tree Species, Ages and Densities in Gunung Bromo Education Forest, Central Java, Indonesia. Biodiversitas J. Biol. Divers. 2022, 23, 5093–5100. [Google Scholar] [CrossRef]
- Lynch, J.; Cain, M.; Frame, D.; Pierrehumbert, R. Agriculture’s Contribution to Climate Change and Role in Mitigation Is Distinct From Predominantly Fossil CO2-Emitting Sectors. Front. Sustain. Food Syst. 2021, 4. [Google Scholar] [CrossRef] [PubMed]
- Kabir, M.; Habiba, U.E.; Khan, W.; Shah, A.; Rahim, S.; los Rios-Escalante, P.R.D.; Farooqi, Z.-U.-R.; Ali, L.; Shafiq, M. Climate Change Due to Increasing Concentration of Carbon Dioxide and Its Impacts on Environment in 21st Century; a Mini Review. J. King Saud Univ. Sci. 2023, 35, 102693. [Google Scholar] [CrossRef]
- Ahmad, W.; Noor, M.A.; Afzal, I.; Bakhtavar, M.A.; Nawaz, M.M.; Sun, X.; Zhou, B.; Ma, W.; Zhao, M. Improvement of Sorghum Crop through Exogenous Application of Natural Growth-Promoting Substances under a Changing Climate. Sustainability 2016, 8, 1330. [Google Scholar] [CrossRef]
- IPCC Global Warming of 1.5°C: IPCC Special Report on Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, 1st ed.; Cambridge University Press: Cambridge, UK, 2022; ISBN 978-1-00-915794-0.
- Grassi, G.; House, J.; Dentener, F.; Federici, S.; den Elzen, M.; Penman, J. The Key Role of Forests in Meeting Climate Targets Requires Science for Credible Mitigation. Nat. Clim. Chang. 2017, 7, 220–226. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, G.; Mou, N.; Xie, Y.; Xu, Z.; Li, Y. Assessment of Carbon Storage and Its Influencing Factors in Qinghai-Tibet Plateau. Sustainability 2018, 10, 1864. [Google Scholar] [CrossRef]
- Babbar, D.; Areendran, G.; Sahana, M.; Sarma, K.; Raj, K.; Sivadas, A. Assessment and Prediction of Carbon Sequestration Using Markov Chain and InVEST Model in Sariska Tiger Reserve, India. J. Clean. Prod. 2021, 278, 123333. [Google Scholar] [CrossRef]
- Kafy, A.-A.; Saha, M.; Fattah, M.A.; Rahman, M.T.; Duti, B.M.; Rahaman, Z.A.; Bakshi, A.; Kalaivani, S.; Nafiz Rahaman, S.; Sattar, G.S. Integrating Forest Cover Change and Carbon Storage Dynamics: Leveraging Google Earth Engine and InVEST Model to Inform Conservation in Hilly Regions. Ecol. Indic. 2023, 152, 110374. [Google Scholar] [CrossRef]
- Liu, W.; Zhu, J.; Jia, Q.; Zheng, X.; Li, J.; Lou, X.; Hu, L. Carbon Sequestration Effects of Shrublands in Three-North Shelterbelt Forest Region, China. Chin. Geogr. Sci. 2014, 24, 444–453. [Google Scholar] [CrossRef]
- Ma, J.; Bu, R.; Liu, M.; Chang, Y.; Qin, Q.; Hu, Y. Ecosystem Carbon Storage Distribution between Plant and Soil in Different Forest Types in Northeastern China. Ecol. Eng. 2015, 81, 353–362. [Google Scholar] [CrossRef]
- Khaine, I.; Woo, S.Y. An Overview of Interrelationship between Climate Change and Forests. For. Sci. Technol. 2015, 11, 11–18. [Google Scholar] [CrossRef]
- Hakkenberg, C.R.; Goetz, S.J. Climate Mediates the Relationship between Plant Biodiversity and Forest Structure across the United States. Glob. Ecol. Biogeogr. 2021, 30, 2245–2258. [Google Scholar] [CrossRef]
- Malhi, Y.; Meir, P.; Brown, S. Forests, Carbon and Global Climate. Philos Trans. A Math Phys. Eng. Sci. 2002, 360, 1567–1591. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Zhan, J.; Li, Z.; Zhang, F.; Qi, W. Assessment on Forest Carbon Sequestration in the Three-North Shelterbelt Program Region, China. J. Clean. Prod. 2019, 215, 382–389. [Google Scholar] [CrossRef]
- Adelisardou, F.; Zhao, W.; Chow, R.; Mederly, P.; Minkina, T.; Schou, J.S. Spatiotemporal Change Detection of Carbon Storage and Sequestration in an Arid Ecosystem by Integrating Google Earth Engine and InVEST (the Jiroft Plain, Iran). Int. J. Environ. Sci. Technol. 2022, 19, 5929–5944. [Google Scholar] [CrossRef]
- McDonald, R.I.; Güneralp, B.; Huang, C.-W.; Seto, K.C.; You, M. Conservation Priorities to Protect Vertebrate Endemics from Global Urban Expansion. Biological Conservation 2018, 224, 290–299. [Google Scholar] [CrossRef]
- Kamarajugedda, S.A.; Johnson, J.A.; McDonald, R.; Hamel, P. Carbon Storage and Sequestration in Southeast Asian Urban Clusters under Future Land Cover Change Scenarios (2015–2050). Front. Environ. Sci. 2023, 11. [Google Scholar] [CrossRef]
- Pratiwi, Y.; Rejo, A.; Fariani, A.; Faizal, M. Modelling for Estimation Carbon Stocks in Land Cover Using A System Dynamic Approach (Case Study: Prabumulih City, South Sumatera, Indonesia). J. Manaj. Hutan Trop. 2022, 28, 221–231. [Google Scholar] [CrossRef]
- Hasan, S.; Shi, W.; Zhu, X. Impact of Land Use Land Cover Changes on Ecosystem Service Value—A Case Study of Guangdong, Hong Kong, and Macao in South China. PLoS ONE 2020, 15, e0231259. [Google Scholar] [CrossRef]
- Huang, X.; He, L.; He, Z.; Nan, X.; Lyu, P.; Ye, H. An Improved Carnegie-Ames-Stanford Approach Model for Estimating Ecological Carbon Sequestration in Mountain Vegetation. Front. Ecol. Evol. 2022, 10, 1–17. [Google Scholar] [CrossRef]
- Niu, Z.; He, H.; Peng, S.; Ren, X.; Zhang, L.; Gu, F.; Zhu, G.; Peng, C.; Li, P.; Wang, J.; et al. A Process-Based Model Integrating Remote Sensing Data for Evaluating Ecosystem Services. J. Adv. Model. Earth Syst. 2021, 13, e2020MS002451. [Google Scholar] [CrossRef]
- Sharps, K.; Masante, D.; Thomas, A.; Jackson, B.; Redhead, J.; May, L.; Prosser, H.; Cosby, B.; Emmett, B.; Jones, L. Comparing Strengths and Weaknesses of Three Ecosystem Services Modelling Tools in a Diverse UK River Catchment. Sci. Total Environ. 2017, 584–585, 118–130. [Google Scholar] [CrossRef]
- Veerkamp, C.J.; Loreti, M.; Benavidez, R.; Jackson, B.; Schipper, A.M. Comparing Three Spatial Modeling Tools for Assessing Urban Ecosystem Services. Ecosyst. Serv. 2023, 59, 101500. [Google Scholar] [CrossRef]
- Sharp, R.; Douglass, C.; Wolny, S.; Arkema, K.; Bernhardt, J.; Bierbower, N.; Chaumont, N.; Denu, D.; Fisher, D.; Glowinski, K.; et al. InVEST 3.10.2 User’s Guide; The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund: Stanford, CA, USA, 2020. [Google Scholar]
- Piyathilake, I.D.U.H.; Udayakumara, E.P.N.; Ranaweera, L.V.; Gunatilake, S.K. Modeling Predictive Assessment of Carbon Storage Using InVEST Model in Uva Province, Sri Lanka. Model. Earth Syst. Environ. 2022, 8, 2213–2223. [Google Scholar] [CrossRef]
- Solomon, N.; Pabi, O.; Annang, T.; Asante, I.K.; Birhane, E. The Effects of Land Cover Change on Carbon Stock Dynamics in a Dry Afromontane Forest in Northern Ethiopia. Carbon Balance Manag. 2018, 13, 14. [Google Scholar] [CrossRef] [PubMed]
- Dida, J.J.; Tiburan, C., Jr.; Tsutsumida, N.; Saizen, I. Carbon Stock Estimation of Selected Watersheds in Laguna, Philippines Using InVEST. Philipp. J. Sci. 2021, 150. [Google Scholar] [CrossRef]
- Tadese, S.; Soromessa, T.; Aneseye, A.B.; Gebeyehu, G.; Noszczyk, T.; Kindu, M. The Impact of Land Cover Change on the Carbon Stock of Moist Afromontane Forests in the Majang Forest Biosphere Reserve. Carbon Balance Manag. 2023, 18, 24. [Google Scholar] [CrossRef]
- Fu, Q.; Xu, L.; Zheng, H.; Chen, J. Spatiotemporal Dynamics of Carbon Storage in Response to Urbanization: A Case Study in the Su-Xi-Chang Region, China. Processes 2019, 7, 836. [Google Scholar] [CrossRef]
- Buchori, I.; Pangi, P.; Pramitasari, A.; Basuki, Y.; Wahyu Sejati, A. Urban Expansion and Welfare Change in a Medium-Sized Suburban City: Surakarta, Indonesia. Environ. Urban. ASIA 2020, 11, 78–101. [Google Scholar] [CrossRef]
- Almarines, N.R. Value Modelling Spatiotemporal Changes of Carbon Storage in the Philippine Agriculture, Forestry, and Other Land Uses (AFOLU) Sector from 2003–2010. Ecosyst. Dev. J. 2017, 7. [Google Scholar]
- Kusiima, S.K.; Egeru, A.; Namaalwa, J.; Byakagaba, P.; Mfitumukiza, D.; Mukwaya, P.; Mensah, S.; Asiimwe, R. Interconnectedness of Ecosystem Services Potential with Land Use/Land Cover Change Dynamics in Western Uganda. Land 2022, 11, 2056. [Google Scholar] [CrossRef]
- Khaerani, R.; Sitorus, S.R.P.; Rusdiana, O. Analisis Penyimpangan Penggunaan Lahan Berdasarkan Rencana Tata Ruang Wilayah Kabupaten Sumedang. TATALOKA 2018, 20, 399–409. [Google Scholar] [CrossRef]
- Toru, T.; Kibret, K. Carbon Stock under Major Land Use/Land Cover Types of Hades Sub-Watershed, Eastern Ethiopia. Carbon Balance Manag. 2019, 14, 7. [Google Scholar] [CrossRef] [PubMed]
- Sumedang Regency Decree of Sumedang Regent No. 51 Year 2019: Strategic Plan for Jatigede District 2018–2023. 2019. Available online: https://peraturan.bpk.go.id/Home/Download/127958/Perbup%2051%20Tahun%202018%20tentang%20KKD%20TA%202019.pdf (accessed on 25 February 2024).
- Susilowati, M.H.D.; Setiadi, H.; Hikmawati, F.R. Socio-Economic Changes around Jatigede Reservoir, Kabupaten Sumedang, Jawa Barat. IOP Conf. Ser. Earth Environ. Sci. 2020, 481, 012057. [Google Scholar] [CrossRef]
- Frolking, S.; Wisser, D.; Grogan, D.; Proussevitch, A.; Glidden, S. GAEZ+_2015 Crop Yield 2020. Available online: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/XGGJAV (accessed on 25 February 2024).
- Liu, J.; Mason, P.J.; Bryant, E.C. Regional Assessment of Geohazard Recovery Eight Years after the Mw7.9 Wenchuan Earthquake: A Remote-Sensing Investigation of the Beichuan Region. Int. J. Remote Sens. 2018, 39, 1671–1695. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, K.; Liu, Y.; Kovacs, J.M.; Flores-Verdugo, F.; Santiago, F.J.F. de Spectral Response to Varying Levels of Leaf Pigments Collected from a Degraded Mangrove Forest. JARS 2012, 6, 063501. [Google Scholar] [CrossRef]
- Calderón-Contreras, R.; Quiroz-Rosas, L.E. Analysing Scale, Quality and Diversity of Green Infrastructure and the Provision of Urban Ecosystem Services: A Case from Mexico City. Ecosyst. Serv. 2017, 23, 127–137. [Google Scholar] [CrossRef]
- Davies, T.; Everard, M.; Horswell, M. Community-Based Groundwater and Ecosystem Restoration in Semi-Arid North Rajasthan (3): Evidence from Remote Sensing. Ecosyst. Serv. 2016, 21, 20–30. [Google Scholar] [CrossRef]
- Jamali, S.; Seaquist, J.W.; Ardö, J.; Eklundh, L. Investigating Temporal Relationships Between Rainfall, Soil Moisture and Modis-Derived NDVI and EVI for Six Sites in Africa. Savanna 2011, 21, 38. [Google Scholar]
- Harper, A.B.; Wiltshire, A.J.; Cox, P.M.; Friedlingstein, P.; Jones, C.D.; Mercado, L.M.; Sitch, S.; Williams, K.; Duran-Rojas, C. Vegetation Distribution and Terrestrial Carbon Cycle in a Carbon Cycle Configuration of JULES4.6 with New Plant Functional Types. Geosci. Model Dev. 2018, 11, 2857–2873. [Google Scholar] [CrossRef]
- Chave, J.; Andalo, C.; Brown, S.; Cairns, M.A.; Chambers, J.Q.; Eamus, D.; Fölster, H.; Fromard, F.; Higuchi, N.; Kira, T.; et al. Tree Allometry and Improved Estimation of Carbon Stocks and Balance in Tropical Forests. Oecologia 2005, 145, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Zanne, A.E.; Lopez-Gonzalez, G.; Coomes, D.A.; Ilic, J.; Jansen, S.; Lewis, S.L.; Miller, R.B.; Swenson, N.G.; Wiemann, M.C.; Chave, J. Data from: Towards a Worldwide Wood Economics Spectrum. Ecol. Lett. 2009, 12, 351–366. [Google Scholar]
- Hairiah, K.; Dewi, S.; Agus, F.; Velarde, S.; Ekadinata, A.; Rahayu, S.; van Noordwijk, M. Measuring Carbon Stocks Across Land Use Systems: A Manual; World Agroforestry Centre (ICRAF), SEA Region Office: Bogor, Indonesia, 2011. [Google Scholar]
- Sil, Â.; Fonseca, F.; Gonçalves, J.; Honrado, J.; Marta-Pedroso, C.; Alonso, J.; Ramos, M.; Azevedo, J.C. Analysing Carbon Sequestration and Storage Dynamics in a Changing Mountain Landscape in Portugal: Insights for Management and Planning. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2017, 13, 82–104. [Google Scholar] [CrossRef]
- Ganie, M.A.; Nusrath, A. Determining the Vegetation Indices (NDVI) from Landsat 8 Satellite Data. Int. J. Adv. Res. 2016, 4, 1459–1463. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Su, T.; Ma, Y.; Wang, Y.; Wang, W.; Zha, N.; Shao, M. Forest Ecosystem Service Functions and Their Associations with Landscape Patterns in Renqiu City. PLoS ONE 2022, 17, e0265015. [Google Scholar] [CrossRef]
- Mengistu, B.; Asfaw, Z. Woody Species Diversity and Structure of Agroforestry and Adjacent Land Uses in Dallo Mena District, South-East Ethiopia. Nat. Resour. 2016, 7, 515–534. [Google Scholar] [CrossRef]
- Murniati; Suharti, S.; Minarningsih; Nuroniah, H.S.; Rahayu, S.; Dewi, S. What Makes Agroforestry a Potential Restoration Measure in a Degraded Conservation Forest? Forests 2022, 13, 267. [Google Scholar] [CrossRef]
- Suwartapradja, O.S.; Fujikura, R.; Sunardi, S.; Fu, R.H.Y. Resettlement Caused by Jatigede Dam Project -Consequence of Long Delayed Implementation of a Project. J. Asian Dev. 2019, 5, 31–44. [Google Scholar] [CrossRef]
- Herawati, T.; Dhahiyat, Y.; Lili, W.; Bioshina, I.B.; Saputra, R.N.; Fikriyah, H. Plankton Community Structure in Jatigede Reservoir, West Java. Int. J. Innov. 2019, 9, 148–166. [Google Scholar]
- Bera, B.; Bhattacharjee, S.; Sengupta, N.; Shit, P.K.; Adhikary, P.P.; Sengupta, D.; Saha, S. Significant Reduction of Carbon Stocks and Changes of Ecosystem Service Valuation of Indian Sundarban. Sci. Rep. 2022, 12, 7809. [Google Scholar] [CrossRef] [PubMed]
- Chacko, S.; Ravichandran, C.; Vairavel, S.M.; Mathew, J. Employing Measurers of Spatial Distribution of Carbon Storage in Periyar Tiger Reserve, Southern Western Ghats, India. J. Geovis. Spat. Anal. 2018, 3, 1. [Google Scholar] [CrossRef]
- Thonfeld, F.; Steinbach, S.; Muro, J.; Hentze, K.; Games, I.; Näschen, K.; Kauzeni, P.F. The Impact of Anthropogenic Land Use Change on the Protected Areas of the Kilombero Catchment, Tanzania. ISPRS J. Photogramm. Remote Sens. 2020, 168, 41–55. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, R.; Yin, Z.; Chen, Z.; Fang, C.; Lu, R.; Zhou, J.; Feng, Y. Impacts of Land-Use Change on the Spatio-Temporal Patterns of Terrestrial Ecosystem Carbon Storage in the Gansu Province, Northwest China. Remote Sens. 2022, 14, 3164. [Google Scholar] [CrossRef]
- Paquit, J.; Mindana, F. Modeling the Spatial Pattern of Carbon Stock in Central Mindanao University Using InVEST Tool. J. Bio. Env. Sci. 2017, 10. [Google Scholar]
- Hartoyo, A.P.P.; Khairunnisa, S.; Pamoengkas, P.; Solikhin, A.; Supriyanto, S.; Siregar, I.Z.; Prasetyo, L.B.; Istomo, I. Estimating Carbon Stocks of Three Traditional Agroforestry Systems and Their Relationships with Tree Diversity and Stand Density. Biodiversitas J. Biol. Divers. 2022, 23, 6137–6146. [Google Scholar] [CrossRef]
- Baul, T.K.; Chakraborty, A.; Nandi, R.; Mohiuddin, M.; Kilpeläinen, A.; Sultana, T. Effects of Tree Species Diversity and Stand Structure on Carbon Stocks of Homestead Forests in Maheshkhali Island, Southern Bangladesh. Carbon Balance Manag. 2021, 16, 11. [Google Scholar] [CrossRef] [PubMed]
- Islam, I.; Cui, S.; Hoque, M.Z.; Abdullah, H.M.; Tonny, K.F.; Ahmed, M.; Ferdush, J.; Xu, L.; Ding, S. Dynamics of Tree Outside Forest Land Cover Development and Ecosystem Carbon Storage Change in Eastern Coastal Zone, Bangladesh. Land 2022, 11, 76. [Google Scholar] [CrossRef]
- Lü, Y.; Ma, Z.; Zhao, Z.; Sun, F.; Fu, B. Effects of Land Use Change on Soil Carbon Storage and Water Consumption in an Oasis-Desert Ecotone. Environ. Manag. 2014, 53, 1066–1076. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Q.; Adhikari, K.; Jia, S.; Jin, X.; Liu, H. Spatial-Temporal Changes of Soil Organic Carbon Content in Wafangdian, China. Sustainability 2016, 8, 1154. [Google Scholar] [CrossRef]
- Jia, X.; Zhu, J.; Li, Y.; Wu, W.; Hu, X. Analysis of the Driving Role and Impact of Road Construction on Carbon Stock. Environ. Sci. Pollut. Res. 2023, 30, 67131–67149. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Liu, Y.; Chen, Y.; Zhang, Z.; Wu, D.; Chen, H.; Han, Y. The Impact of Urban Construction Land Change on Carbon Emissions—A Case Study of Wuhan City. Int. J. Environ. Res. Public Health 2023, 20, 922. [Google Scholar] [CrossRef] [PubMed]
Year | Data | Imagery Date | Bands | Resolution (m) | Source |
---|---|---|---|---|---|
2014 | Landsat 8 OLI TIRS C2 L1 | 5 August 2014 | Multispectral | 30 | https://earthexplorer.usgs.gov (accessed on 25 February 2024) |
2021 | Landsat 8 OLI TIRS C2 L1 | 5 June 2021 | Multispectral | 30 | https://earthexplorer.usgs.gov (accessed on 3 October 2023) |
Class Name | Area (m2) | Count |
---|---|---|
Forests | 3,319,568.373 | 3688 |
Water bodies | 59,244.24933 | 66 |
Buildings/settlements | 281,645.0885 | 313 |
Mixed gardens | 5,663,479.708 | 6293 |
Paddy fields | 3,423,530.412 | 3804 |
Dryland | 3,477,032.264 | 3863 |
Bare lands | 189,613.258 | 211 |
Class Name | Area (m2) | Count |
---|---|---|
Forests | 1,318,722.53 | 1465 |
Built-up areas | 15,023.65651 | 17 |
Buildings/settlements | 2,365,091.795 | 2628 |
Water bodies | 6,671,714.647 | 7413 |
Paddy fields | 128,032.3131 | 142 |
Bare lands | 94,210.19243 | 105 |
Reference data | Classes | Validation | ||||||||
Forests | Mixed gardens | Buildings/settlements | Bare lands | Paddy fields | Upland fields | Total | User accuracy | Errors of omission | ||
Forests | 9 | 1 | 0 | 0 | 1 | 0 | 11 | 0.81818 | 0.18182 | |
Mixed gardens | 2 | 10 | 0 | 0 | 0 | 0 | 12 | 0.83333 | 0.16667 | |
Buildings/settlements | 0 | 0 | 1 | 0 | 1 | 0 | 2 | 0.5 | 0.5 | |
Bare lands | 0 | 0 | 0 | 2 | 0 | 0 | 2 | 1 | 0 | |
Paddy fields | 0 | 0 | 0 | 0 | 11 | 0 | 11 | 1 | 0 | |
Upland fields | 0 | 0 | 0 | 0 | 2 | 11 | 13 | 0.84615 | 0.15385 | |
Total | 11 | 11 | 1 | 2 | 15 | 11 | 51 | |||
Producer accuracy | 0.82002 | 0.90806 | 1 | 1 | 0.72936 | 1 | Overall accuracy | 0.86113 | ||
Errors of omission | 0.17998 | 0.09194 | 0 | 0 | 0.27064 | 0 | Kappa coefficient | 0.82448 |
Reference data | Classes | Validation | |||||||||
Forests | Water bodies | Buildings/settlements | Mixed gardens | Paddy fields | Upland fields | Bare lands | Total | User accuracy | Errors of omission | ||
Forests | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 1 | 0 | |
Water bodies | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 6 | 1 | 0 | |
Buildings/settlements | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 2 | 0.5 | 0.5 | |
Mixed gardens | 0 | 0 | 0 | 13 | 0 | 0 | 0 | 13 | 1 | 0 | |
Paddy fields | 0 | 0 | 0 | 0 | 7 | 2 | 0 | 9 | 0.77778 | 0.22222 | |
Upland fields | 0 | 0 | 0 | 0 | 1 | 11 | 0 | 12 | 0.91667 | 0.08333 | |
Bare lands | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 1 | 0 | |
Total | 6 | 6 | 1 | 13 | 8 | 14 | 3 | 51 | |||
Producer accuracy | 1 | 1 | 1 | 1 | 0.84748 | 0.86547 | 1 | Overall accuracy | 0.93347 | ||
Errors of omission | 0 | 0 | 0 | 0 | 0.15252 | 0.13453 | 0 | Kappa coefficient | 0.90327 |
LULC Type | 2014 (ha) | 2021 (ha) | 2014 (%) | 2021 (%) | Area Change (ha) | Area Change (%) |
---|---|---|---|---|---|---|
Bare lands | 263.31 | 451.11 | 2% | 4% | 187.80 | 42% |
Buildings/settlements | 453.39 | 67.70 | 4% | 1% | −385.69 | −85% |
Upland fields | 2935.22 | 3281.30 | 26% | 29% | 346.07 | 11% |
Forests | 2400.22 | 623.04 | 22% | 6% | −1777.19 | −74% |
Mixed gardens | 2599.08 | 3495.06 | 23% | 31% | 895.98 | 26% |
Paddy fields | 2421.01 | 1961.69 | 22% | 18% | −459.32 | −19% |
Water bodies | 71.04 | 1263.38 | 1% | 11% | 1192.34 | 94% |
LULC 2014 (ha, %) | LULC Types | LULC 2021 (ha, %) | ||||||
Bare Lands | Buildings/Settlements | Upland Fields | Forests | Mixed Gardens | Paddy Fields | Water Bodies | ||
Bare lands | 61.14, 23% | 0.70, 0.3% | 51.62, 20% | 1.75, 0.7% | 11.20, 4% | 99.02, 38% | 37.89, 14% | |
Buildings/settlements | 12.02, 3% | 59.98, 13% | 233.38, 51% | 5.18, 1% | 49.06, 11% | 57.26, 13% | 36.50, 8% | |
Upland fields | 79.67, 3% | 2.94, 0.1% | 1432.35, 49% | 15.41, 0.5% | 600.19, 20% | 704.46, 24% | 100.20, 3% | |
Forests | 38.79, 2% | 0.16, 0.01% | 384.58, 16% | 550.72, 23% | 1268.37, 53% | 76.05, 3% | 81.55, 3% | |
Mixed gardens | 109.97, 4% | 1.11, 0.04% | 503.19, 19% | 34.49, 1% | 1290.90, 50% | 239.51, 9% | 419.91, 16% | |
Paddy fields | 135.22, 6% | 2.81, 0.1% | 674.19, 28% | 13.23, 0.5% | 274.53, 11% | 761.23, 31% | 559.78, 23% | |
Water bodies | 14.30, 20% | 0, 0% | 2.00, 3% | 2.23, 3% | 0.81, 1% | 24.15, 34% | 27.55, 39% |
Test | Number of Samples | Asymptotic Significance (2-Tailed) | α | Description |
---|---|---|---|---|
Kolmogorov–Smirnov | 50 | 0.2 | 0.05 | Normally distributed |
Shapiro–Wilk | 0.458602 | Normally distributed |
LULC Classes | Year 2014 (tone/ha) | Year 2021 (tone/ha) | Change (tone/ha) |
---|---|---|---|
Forests | 23.26 | 21.85 | −1.41 |
Water bodies | 0 | 0 | 0.00 |
Buildings/settlements | 0 | 0 | 0.00 |
Mixed gardens | 23.16 | 22.53 | −0.63 |
Paddy fields | 13.02 | 13.04 | 0.01 |
Upland fields | 13.61 | 15.03 | 1.42 |
Bare lands | 0 | 0 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Withaningsih, S.; Malik, A.D.; Parikesit, P. Aboveground Spatiotemporal Carbon Storage Model in the Changing Landscape of Jatigede, West Java, Indonesia. Forests 2024, 15, 874. https://doi.org/10.3390/f15050874
Withaningsih S, Malik AD, Parikesit P. Aboveground Spatiotemporal Carbon Storage Model in the Changing Landscape of Jatigede, West Java, Indonesia. Forests. 2024; 15(5):874. https://doi.org/10.3390/f15050874
Chicago/Turabian StyleWithaningsih, Susanti, Annas Dwitri Malik, and Parikesit Parikesit. 2024. "Aboveground Spatiotemporal Carbon Storage Model in the Changing Landscape of Jatigede, West Java, Indonesia" Forests 15, no. 5: 874. https://doi.org/10.3390/f15050874
APA StyleWithaningsih, S., Malik, A. D., & Parikesit, P. (2024). Aboveground Spatiotemporal Carbon Storage Model in the Changing Landscape of Jatigede, West Java, Indonesia. Forests, 15(5), 874. https://doi.org/10.3390/f15050874