Soil Requirements, Genetic Diversity and Population History of the Juniperus sabina L. Varieties in Europe and Asia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and DNA Isolation
2.2. Testing and Choice of the Nuclear Microsatellite Loci
2.3. Soil Data
2.4. Statistical Analyses
2.4.1. Genetic Diversity of the Nuclear Microsatellites
2.4.2. Genetic Differentiation and Population Structure
2.4.3. CpDNA Marker Analyses
2.4.4. Analyses of the Soil Parameters
3. Results
3.1. Diversity of Microsatellite Loci and Populations
3.2. Genetic Differentiation and Population Structure
3.3. CpDNA-Based Analyses of Population History
3.4. Soil Parameters
4. Discussion
4.1. Chemical Soil Differences in the European Range of J. sabina
4.2. Genetic Diversity of the J. sabina Populations
4.3. Population History of J. sabina Varieties
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, J.T.; Song, B. Plant adaptation to climate change—Where are we? J. Syst. Evol. 2020, 58, 533–545. [Google Scholar] [CrossRef]
- Razgour, O.; Forester, B.; Taggart, J.B.; Bekaert, M.; Juste, J.; Ibanez, C.; Puechmaille, S.J.; Novella-Fernandez, R.; Alberdi, A.; Manel, S. Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proc. Natl. Acad. Sci. USA 2019, 116, 10418–10423. [Google Scholar] [CrossRef]
- Adams, R.P. Junipers of the World: The Genus Juniperus, 4th ed.; Trafford Publishing: Bloomington, IN, USA, 2014; p. 422. [Google Scholar]
- Farjon, A. Juniperus. In A Monograph of Cupressaceae and Sciadopitys; Farjon, A., Ed.; Royal Botanic Gardens: Kew, UK, 2005; pp. 228–400. [Google Scholar]
- Mao, K.; Hao, G.; Liu, J.; Adams, R.P.; Milne, R.I. Diversification and biogeography of Juniperus (Cupressaceae): Variable diversification rates and multiple intercontinental dispersals. New Phytol. 2010, 188, 254–272. [Google Scholar] [CrossRef]
- Wang, X.; Yang, B.; Ljungqvist, F.C. The vulnerability of Qilian juniper to extreme drought events. Front. Plant Sci. 2019, 10, 1191. [Google Scholar] [CrossRef]
- Polley, H.W.; Johnson, D.M.; Jackson, R.B. Projected drought effects on the demography of Ashe juniper populations inferred from remote measurements of tree canopies. Plant Ecol. 2018, 219, 1259–1267. [Google Scholar] [CrossRef]
- Farhat, P.; Siljak-Yakovlev, S.; Adams, R.P.; Bou Dagher-Kharrat, M.; Robert, T. Genome size variation and polyploidy in the geographical range of Juniperus sabina L. (Cupressaceae). Bot. Lett. 2019, 166, 134–143. [Google Scholar] [CrossRef]
- Farhat, P.; Siljak-Yakovlev, S.; Valentin, N.; Fabregat, C.; Lopez-Udias, S.; Salazar-Mendias, C.; Altarejos, J.; Adams, R.P. Gene flow between diploid and tetraploid junipers—Two contrasting evolutionary pathways in two Juniperus populations. BMC Ecol. Evol. 2020, 20, 148. [Google Scholar] [CrossRef]
- Farhat, P.; Takvorian, N.; Avramidou, M.; Garraud, L.; Adams, R.P.; Siljak-Yakovlev, S.; Bou Dagher-Kharrat, M.; Robert, T. First evidence for allotriploid hybrids between Juniperus thurifera and J. sabina in a sympatric area in the French Alps. Ann. For. Sci. 2020, 77, 93. [Google Scholar] [CrossRef]
- Adams, R.P.; Schwarzbach, A.E.; Tashev, A.N. Chloroplast capture by a new variety, Juniperus sabina var. balkanensis R. P. Adams and A. N. Tashev, from the Balkan Peninsula: A putative stabilized relictual hybrid between J. sabina and ancestral J. thurifera. Phytologia 2016, 98, 100–111. [Google Scholar]
- Adams, R.P.; Boratyński, A.; Mataraci, T.; Tashev, A.N.; Schwarzbach, A.E. Discovery of Juniperus sabina var. balkanensis R. P. Adams and A. N. Tashev in western Turkey (Anatolia). Phytologia 2017, 99, 22–31. [Google Scholar]
- Adams, R.P.; Boratyński, A.; Marcysiak, K.; Roma-Marzio, F.; Peruzzi, L.; Bartolucci, F.; Conti, F.; Mataraci, T.; Schwarzbach, A.E.; Tashev, A.N.; et al. Discovery of Juniperus sabina var. balkanensis R. P. Adams and A. N. Tashev in Macedonia, Bosnia-Herzegovina, Croatia and Central and Southern Italy and relictual polymorphisms found in nrDNA. Phytologia 2018, 100, 117–127. [Google Scholar]
- Jadwiszczak, K.A.; Mazur, M.; Bona, A.; Marcysiak, K.; Boratyński, A. Three systems of molecular markers reveal genetic differences between varieties sabina and balkanensis in the Juniperus sabina range. Ann. For. Sci. 2023, 88, 45. [Google Scholar] [CrossRef]
- Rajčević, N.; Dodoš, T.; Janković, S.; Janaćković, P.; Zheljazkov, V.D.; Marin, P.D. Molecular and phytochemical variability of endemic Juniperus sabina var. balkanensis from its natural range. Diversity 2022, 14, 1062. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-Wajid, H.H.; Battaglia, M.L. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef]
- Ohte, N.; Koba, K.; Yoshikawa, K.; Sugimoto, A.; Matsuo, N.; Kabeya, N.; Wang, L. Water utilization of natural and planted trees in the semiarid desert of Inner Mongolia, China. Ecol. Appl. 2003, 13, 337–351. [Google Scholar] [CrossRef]
- Xu, Q.; Fu, H.; Zhu, B.; Hussain, H.A.; Zhang, K.; Tian, X.; Duan, M.; Xie, X.; Wang, L. Potassium improves drought stress tolerance in plants by affecting root morphology, root exudates, and microbial diversity. Metabolites 2021, 11, 131. [Google Scholar] [CrossRef]
- Hawkesford, M.; Horst, W.; Kichey, T.; Lambers, H.; Schjoerring, J.; Skrumsager Møller, I.; White, P. Functions of macronutrients. In Marschner’s Mineral Nutrition of Higher Plants; Marschner, P., Ed.; Academic Press: London, UK, 2012; pp. 135–189. [Google Scholar]
- Wang, M.; Zheng, Q.; Shen, Q.; Guo, S. The critical role of potassium in plant stress response. Int. J. Mol. Sci. 2013, 14, 7370–7390. [Google Scholar] [CrossRef]
- Darwish, T.; Fadel, A.; Chahine, S.; Baydoun, S.; Jomaa, I.; Atallah, T. Effect of potassium supply and water stress on potato drought tolerance and water productivity. Commun. Soil Sci. Plant Anal. 2022, 53, 1100–1112. [Google Scholar] [CrossRef]
- Mazur, M.; Boratyński, A.; Boratyńska, K.; Marcysiak, K. Weak geographical structure of Juniperus sabina (Cupressaceae) morphology despite its discontinuous range and genetic differentiation. Diversity 2021, 13, 470. [Google Scholar] [CrossRef]
- Geng, Q.F.; Qing, H.; Ling, Z.R.; Jeelani, N.; Yang, J.; Yoshikawa, K.; Miki, N.H.; Wang, Z.S.; Lian, C.L. Characterization of polymorphic microsatellite markers for a coniferous shrub Juniperus sabina (Cupressaceae). Plant Species Biol. 2017, 32, 252–255. [Google Scholar] [CrossRef]
- Douaihy, B.; Vendramin, G.G.; Boratyński, A.; Machon, N.; Bou Dagher-Kharrat, M. High genetic diversity with moderate differentiation in Juniperus excelsa from Lebanon and the eastern Mediterranean region. AoB Plants 2011, 2011, plr003. [Google Scholar] [CrossRef]
- Michalczyk, I.M.; Sebastiani, F.; Buonamici, A.; Cremer, E.; Mengel, C.; Ziegenhagen, B.; Vendramin, G.G. Characterization of highly polymorphic nuclear microsatellite loci in Juniperus communis L. Mol. Ecol. Notes 2006, 6, 346–348. [Google Scholar] [CrossRef]
- García, C.; Guichoux, E.; Hampe, A.A. A comparative analysis between SNPs and SSRs to investigate genetic variation in a juniper species (Juniperus phoenicea ssp. turbinata). Tree Genet. Genomes 2018, 14, 87. [Google Scholar] [CrossRef]
- Obbard, D.; Harris, S.; Pannell, J. Simple allelic-phenotype diversity and differentiation statistics for allopolyploids. Heredity 2006, 97, 296–303. [Google Scholar] [CrossRef]
- Orgiazzi, A.; Ballabio, C.; Panagos, P.; Jones, A.; Fernández-Ugalde, O. LUCAS Soil, the largest expandable soil dataset for Europe: A review. Eur. J. Soil Sci. 2018, 69, 140–153. [Google Scholar] [CrossRef]
- European Commission; Joint Research Centre; Fernandez-Ugalde, O.; Scarpa, S.; Orgiazzi, A.; Panagos, P.; Van Liedekerke, M.; Marechal, A.; Jones, A. LUCAS 2018 Soil Module—Presentation of Dataset and Results; Publications Office of the European Union: Luxembourg, 2022; Available online: https://data.europa.eu/doi/10.2760/215013 (accessed on 16 February 2024).
- Meirmans, P.G. GENODIVE version 3.0: Easy-to-use software for the analysis of genetic data of diploids and polyploids. Mol. Ecol. Resour. 2020, 20, 1126–1131. [Google Scholar] [CrossRef]
- van Oosterhout, C.; Hutchinson, W.F.; Wills, P.M.; Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 2004, 4, 535–538. [Google Scholar] [CrossRef]
- Kalinowski, S.T.; Taper, M.L. Maximum likelihood estimation of the frequency of null alleles at microsatellite loci. Conserv. Genet. 2006, 7, 991–995. [Google Scholar] [CrossRef]
- Meirmans, P.G.; Liu, S.; van Tienderen, P.H. The analysis of polyploid genetic data. J. Hered. 2018, 109, 283–296. [Google Scholar] [CrossRef]
- Rice, W.R. Analyzing tables of statistical tests. Evolution 1989, 43, 223–225. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Puechmaille, S.J. The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Mol. Ecol. Resour. 2016, 16, 608–627. [Google Scholar] [CrossRef]
- Li, Y.L.; Liu, J.X. StructureSelector: A web-based software to select and visualize the optimal number of clusters using multiple methods. Mol. Ecol. Resour. 2018, 18, 176–177. [Google Scholar] [CrossRef]
- Kopelman, N.M.; Mayzel, J.; Jakobsson, M.; Rosenberg, N.A.; Mayrose, I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 2015, 15, 1179–1191. [Google Scholar] [CrossRef]
- Clement, M.; Posada, D.; Crandall, K.A. TCS: A computer program to estimate gene genealogies. Mol. Ecol. 2000, 9, 1657–1659. [Google Scholar] [CrossRef]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large datasets. 2017. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Tajima, F. Statistical methods to test for nucleotide mutation hypothesis by DNA polymorphism. Genetics 1989, 123, 585–595. [Google Scholar] [CrossRef]
- Fu, Y.-X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 1997, 147, 915–925. [Google Scholar] [CrossRef]
- Jadwiszczak, P. Rundom Pro 3.14. Software for Classical and Computer-Intensive Statistics. 2009. Available online: http://pjadw.tripod.com (accessed on 17 February 2024).
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Ballabio, C.; Panagos, P.; Monatanarella, L. Mapping topsoil physical properties at European scale using the LUCAS database. Geoderma 2016, 261, 110–123. [Google Scholar] [CrossRef]
- Li, X.; Li, M.; Cen, X.; Li, X.; He, N. High precipitation rates increase potassium density in plant communities in the Tibetan Plateau. Commun. Earth Environ. 2023, 4, 368. [Google Scholar] [CrossRef]
- Ballabio, C.; Lugato, E.; Fernández-Ugalde, O.; Orgiazzi, A.; Jones, A.; Borrelli, P.; Montanarella, L.; Panagos, P. Mapping LUCAS topsoil chemical properties at European scale using Gaussian process regression. Geoderma 2019, 355, 113912. [Google Scholar] [CrossRef]
- Li, F.Y.; Yuan, C.; Yuan, Z.Q.; You, Y.; Hu, X.; Wang, S.; Li, G. Bioavailable phosphorus distribution in alpine meadow soil is affected by topography in the Tian Shan Mountains. J. Mt. Sci. 2020, 17, 410–422. [Google Scholar] [CrossRef]
- Paz-Ares, J.; Puga, M.I.; Rojas-Triana, M.; Martinez-Hevia, I.; Diaz, D.; Carrión, C.; Miñambres, M.; Leyva, A. Plant adaptation to low phosphorus availability: Core signaling, crosstalks, and applied implications. Mol. Plant 2022, 15, 104–124. [Google Scholar] [CrossRef]
- Lu, D.; Huang, H.; Wang, A.; Zhang, G. Genetic evaluation of Juniperus sabina L. (Cupressaceae) in arid and semi-arid regions of China based on SSR markers. Forests 2022, 13, 231. [Google Scholar] [CrossRef]
- Wesche, K.; Ronnenberg, K.; Hensen, I. Lack of sexual reproduction within mountain steppe populations of the clonal shrub Juniperus sabina L. in semi-arid southern Mongolia. J. Arid. Environ. 2005, 63, 390–405. [Google Scholar] [CrossRef]
- Tylkowski, T. Dormancy breaking in savin juniper (Juniperus sabina L.) seeds. Acta Soc. Bot. Pol. 2010, 79, 27–29. [Google Scholar] [CrossRef]
- Ohte, N.; Miki, N.H.; Matsuo, N.; Yang, L.; Hirobe, M.; Yamanaka, N.; Ishii, Y.; Tanaka-Oda, A.; Shimizu, M.; Zhang, G.; et al. Life history of Juniperus sabina L. adapted to the sand shifting environment in the Mu Us Sandy Land, China: A review. Landsc. Ecol. Eng. 2021, 17, 281–294. [Google Scholar] [CrossRef]
- Hong, Y.; Wang, L.; Guosheng, Z.; Bayaer, E.; Xiaorong, L. Genetic diversity of Sabina vulgaris populations at different succession stages. Ying Yong Sheng Tai Xue Bao 2006, 17, 2006–2010, (In Chinese with English summary). [Google Scholar]
- Avise, J.C. Phylogeography: The History and Formation of Species; Harvard University Press: Cambridge, MA, USA, 2000; p. 464. [Google Scholar]
- Jenkins, T.L.; Castilho, R.; Stevens, J.R. Meta-analysis of northeast Atlantic marine taxa shows contrasting phylogeographic patters following post-LGM expansions. PeerJ 2018, 6, e5685. [Google Scholar] [CrossRef]
- Popov, S.V.; Shcherba, I.G.; Ilyina, L.B.; Lidija, A.; Nevesskaya, L.A.; Paramonova, N.P.; Khondkarian, S.O.; Magyar, I. Late Miocene to Pliocene palaeogeography of the Paratethys and its relation to the Mediterranean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 238, 91–106. [Google Scholar] [CrossRef]
- Ivanov, D.; Utescher, T.; Mosbrugger, V.; Syabryaj, S.; Djordjević-Milutinović, D.; Molchanoff, S. Miocene vegetation and climate dynamics in Eastern and Central Paratethys (Southeastern Europe). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 304, 262–275. [Google Scholar] [CrossRef]
- Kvaček, Z. A new juniper from the Palaeogene of Central Europe. 2002. Feddes Repert. 2002, 113, 492–502. [Google Scholar] [CrossRef]
- Gargani, J.; Rigollet, C. Mediterranean sea level variations during the Messinian Salinity Crisis. Geophys. Res. Lett. 2007, 34, L10405. [Google Scholar] [CrossRef]
- Garcia-Castellanos, D.; Estrada, F.; Jiménez-Munt, I.; Gorini, C.; Fernàndez, M.; Vergés, J.; De Vicente, R. Catastrophic flood of the Mediterranean after the Messinian salinity crisis. Nature 2009, 462, 778–781. [Google Scholar] [CrossRef]
Country | Pops | Mountain Range | Location | NPL | N | NG | A | HO | HS | GIS | P(HWE) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lat (N) | Lon (W/E) | |||||||||||
EUROPE | ||||||||||||
Spain | SP7 | Cantabrians | 42.88 | −5.87 | 2n | 20 | 18 | 4.6 | 0.35 | 0.48 | 0.26 | 0.005 * |
Austria | AU3 | Alps | 47.11 | 13.46 | 2n | 20 | 18 | 3.3 | 0.50 | 0.60 | 0.17 | 0.060 |
AU4 | 47.00 | 12.43 | 2n | 20 | 15 | 3.3 | 0.38 | 0.48 | 0.22 | 0.024 | ||
Romania | RO1 | Carpathians | 45.20 | 24.08 | 4n | 19 | 16 | 4.0 | 0.40 | 0.58 | 0.31 | <0.0001 * |
RO2 | Apuseni | 46.48 | 23.33 | 4n | 20 | 20 | 5.6 | 0.42 | 0.64 | 0.34 | <0.0001 * | |
RO3 | Carpathians | 46.82 | 25.85 | 2n | 20 | 13 | 5.3 | 0.41 | 0.67 | 0.38 | <0.0001 * | |
Italy | IT1 | Alps | 45.68 | 7.16 | 2n | 21 | 17 | 4.0 | 0.43 | 0.56 | 0.24 | 0.012 |
IT3 | Apennines | 42.10 | 14.18 | 4n | 20 | 16 | 5.6 | 0.61 | 0.72 | 0.15 | <0.0001 * | |
IT4 | 39.91 | 16.28 | 4n | 20 | 16 | 5.6 | 0.46 | 0.72 | 0.36 | <0.0001 * | ||
Croatia | CRO | Balkans | 44.24 | 15.81 | 4n | 20 | 18 | 4.6 | 0.48 | 0.66 | 0.27 | <0.0001 * |
North Macedonia | NM | 41.59 | 20.66 | 4n | 21 | 19 | 5.3 | 0.36 | 0.52 | 0.31 | <0.0001 * | |
Greece | GR | 41.14 | 22.24 | 4n | 20 | 20 | 6.0 | 0.60 | 0.71 | 0.16 | <0.0001 * | |
Bulgaria | BG | 42.26 | 23.54 | 4n | 20 | 19 | 5.6 | 0.56 | 0.66 | 0.14 | <0.0001 * | |
Poland | PL # | Carpathians | 49.40 | 20.42 | 2n | 22 | 7 | 2.3 | 0.38 | 0.31 | −0.22 | 0.323 |
ASIA | ||||||||||||
Georgia | GEO | Caucasus | 42.37 | 42.62 | 2n | 24 | 19 | 5.0 | 0.40 | 0.58 | 0.30 | 0.001 * |
Kyrgyzstan | KYR | Tian-Shan | 43.00 | 77.36 | 2n | 28 | 13 | 4.0 | 0.34 | 0.46 | 0.25 | 0.060 |
Overall | 335 | 264 | 4.6 | 0.44 | 0.59 | 0.25 | <0.0001 * |
Locus | NA | HO | HS | GIS | P(HWE) |
---|---|---|---|---|---|
Sabv6 | 14 | 0.73 | 0.75 | 0.02 | 0.204 |
Sabv15 | 10 | 0.26 | 0.36 | 0.28 | <0.0001 * |
Jc166 | 16 | 0.34 | 0.66 | 0.44 | <0.0001 * |
Mean | 13.3 | 0.44 | 0.59 | 0.25 | <0.0001 * |
SP7 | AU3 | AU4 | RO1 | RO2 | RO3 | IT1 | IT3 | IT4 | CRO | NM | GR | BG | PL | GEO | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AU3 | 0.267 * | ||||||||||||||
AU4 | 0.132 * | 0.102 | |||||||||||||
RO1 | 0.328 * | 0.195 * | 0.222 * | ||||||||||||
RO2 | 0.118 * | 0.112 | 0.110 | 0.180 * | |||||||||||
RO3 | 0.131 * | 0.017 | 0.036 | 0.116 | 0.021 | ||||||||||
IT1 | 0.178 * | 0.011 | 0.017 | 0.186 * | 0.083 | −0.032 | |||||||||
IT3 | 0.190 * | 0.073 | 0.151 | 0.238 * | 0.036 | −0.016 | 0.052 | ||||||||
IT4 | 0.236 * | 0.131 | 0.189 * | 0.228 * | 0.111 | 0.026 | 0.102 | 0.029 | |||||||
CRO | 0.135 * | 0.077 | 0.097 | 0.221 * | 0.055 | −0.021 | 0.044 | −0.032 | 0.064 | ||||||
NM | 0.138 * | 0.135 * | −0.026 | 0.232 * | 0.098 | 0.068 | 0.038 | 0.167 * | 0.202 * | 0.136 * | |||||
GR | 0.240 * | 0.184 * | 0.146 | 0.273 * | 0.064 | 0.076 | 0.134 | 0.092 | 0.106 | 0.122 | 0.131 | ||||
BG | 0.208 * | 0.135 * | 0.127 * | 0.211 * | 0.094 | 0.068 | 0.104 | 0.138 * | 0.158 * | 0.134 * | 0.144 * | 0.169 * | |||
PL | 0.408 * | 0.218 | 0.152 | 0.364 * | 0.288 * | 0.236 | 0.203 | 0.404 * | 0.384 * | 0.366 * | 0.164 | 0.343 * | 0.344 * | ||
GEO | 0.325 * | 0.138 * | 0.128 * | 0.136 * | 0.159 * | 0.096 | 0.104 | 0.170 * | 0.175 * | 0.176 * | 0.112 | 0.162 * | 0.212 * | 0.156 | |
KYR | 0.105 | 0.109 | 0.028 | 0.269 * | 0.065 | 0.025 | −0.004 | 0.115 * | 0.151 | 0.104 | 0.012 | 0.152 * | 0.100 * | 0.359 * | 0.193 * |
Statistic Parameter (sp) | Total Sample (108 inds) | Diploid Populations | Tetraploid Populations (48 inds) | |||||
---|---|---|---|---|---|---|---|---|
Total Sample (60 inds) | Europe + GEO (45 inds) | |||||||
Obs | P[sp ≤ obs] | Obs | P[sp ≤ obs] | Obs | P[sp ≤ obs] | Obs | P[sp ≤ obs] | |
Tajima’s D | 2.680 | 0.994 | −1.198 | 0.109 | −2.186 | 0.000 | −1.107 | 0.004 |
Fu’s Fs | 17.481 | 0.992 | −0.399 | 0.465 | −3.516 | 0.004 | −1.602 | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jadwiszczak, K.A.; Mazur, M.; Bona, A.; Marcysiak, K.; Boratyński, A. Soil Requirements, Genetic Diversity and Population History of the Juniperus sabina L. Varieties in Europe and Asia. Forests 2024, 15, 866. https://doi.org/10.3390/f15050866
Jadwiszczak KA, Mazur M, Bona A, Marcysiak K, Boratyński A. Soil Requirements, Genetic Diversity and Population History of the Juniperus sabina L. Varieties in Europe and Asia. Forests. 2024; 15(5):866. https://doi.org/10.3390/f15050866
Chicago/Turabian StyleJadwiszczak, Katarzyna A., Małgorzata Mazur, Agnieszka Bona, Katarzyna Marcysiak, and Adam Boratyński. 2024. "Soil Requirements, Genetic Diversity and Population History of the Juniperus sabina L. Varieties in Europe and Asia" Forests 15, no. 5: 866. https://doi.org/10.3390/f15050866
APA StyleJadwiszczak, K. A., Mazur, M., Bona, A., Marcysiak, K., & Boratyński, A. (2024). Soil Requirements, Genetic Diversity and Population History of the Juniperus sabina L. Varieties in Europe and Asia. Forests, 15(5), 866. https://doi.org/10.3390/f15050866