Progress in Fruit Cracking Control of Gibberellic Acid and Abscisic Acid
Abstract
:1. Introduction
2. Study Material and Methods
3. Progress in Biological Function of GA and ABA
3.1. Biological Function of GA
3.2. Biological Function of ABA
4. Progress of GA and ABA in Fruit Cracking Control
4.1. GA in Fruit Cracking Control
4.1.1. Effect of Endogenous GA Content on Fruit Cracking
4.1.2. Effect of Exogenous GA Treatment on Fruit Cracking
4.1.3. GA Metabolism Pathway Genes in Fruit Cracking Control
4.2. Abscisic Acid in Fruit Cracking Control
4.2.1. Effect of Endogenous ABA Content on Fruit Cracking
4.2.2. Effect of Exogenous ABA Treatment on Fruit Cracking
4.2.3. ABA Metabolism Pathway Genes in Fruit Cracking Control
5. Discussion
6. Conclusions and Perspectives
6.1. Conclusions
6.2. Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, W.C.; Wu, J.Y.; Zhang, H.N.; Shi, S.Y.; Liu, L.Q.; Shu, B.; Liang, Q.Z.; Xie, J.H.; Wei, Y.Z. De novo assembly and characterization of pericarp transcriptome and identification of candidate genes mediating fruit cracking in Litchi chinensis Sonn. Int. J. Mol. Sci. 2014, 15, 17667–17685. [Google Scholar] [CrossRef] [PubMed]
- Seo, H.-J.; Sawant, S.S.; Song, J. Fruit cracking in pears: Its cause and management-A review. Agronomy 2022, 12, 2437. [Google Scholar] [CrossRef]
- Santos, M.; Egea-Cortines, M.; Gonçalves, B.; Matos, M. Molecular mechanisms involved in fruit cracking: A review. Front. Plant Sci. 2023, 14, 1130857. [Google Scholar] [CrossRef]
- Peet, M.M. Fruit cracking in tomato. HortTechnology 1992, 2, 216–223. [Google Scholar] [CrossRef]
- Simon, G. Review on rain induced fruit cracking of sweet cherries (Prunus avium L.), its causes and the possibilities of prevention. Int. J. Hortic. Sci. 2006, 12, 27–35. [Google Scholar] [CrossRef]
- Khadivi-Khub, A. Physiological and genetic factors influencing fruit cracking. Acta Physiol. Plant. 2015, 37, 1718–1732. [Google Scholar] [CrossRef]
- Lara, I.; Heredia, A.; Domínguez, E. Shelf life potential and the fruit cuticle: The unexpected player. Front. Plant Sci. 2019, 10, 770. [Google Scholar] [CrossRef] [PubMed]
- Butani, A.; Purohit, H.; Solanki, R.; Mishra, P.; Dadhaniya, D. A chronic problem of fruit cracking in fruit crops: A review. Acta Sci. Agric. 2019, 3, 270–274. [Google Scholar]
- Schumann, C.; Winkler, A.; Brüggenwirth, M.; Köpcke, K.; Knoche, M. Crack initiation and propagation in sweet cherry skin: A simple chain reaction causes the crack to ‘run’. PLoS ONE 2019, 14, e0219794. [Google Scholar] [CrossRef]
- Verner, L.; Blodgett, E.C. Physiological studies of the cracking of sweet cherries. Univ. Idaho Agric. Exp. Stn. Bull. 1931, 184, 1–15. [Google Scholar]
- Vittrup, C.J. Cracking in Cherries: III. Determination of Cracking Susceptibility. Acta Agric. Scand. 1972, 22, 128–136. [Google Scholar]
- Measham, P.F.; Bound, S.A.; Gracie, A.J.; Wilson, S.J. Incidence and type of cracking in sweet cherry (Prunus avium L.) are affected by genotype and season. Crop Pasture Sci. 2009, 60, 1002. [Google Scholar] [CrossRef]
- Balbontín, C.; Ayala, H.; Bastías, R.M.; Tapia, G.; Ellena, M.; Torres, C.; Yuri, J.A.; Quero-García, J.; Ríos, J.C.; Silva, H. Cracking in sweet cherries: A comprehensive review from a physiological, molecular, and genomic perspective. J. Chil. J. Agric. Res. 2013, 73, 66–72. [Google Scholar] [CrossRef]
- Sharma, S.B.; Dhillon, B.S. Endogenous level of gibberellins in relation to fruit cracking in litchi (Litchi chinensis Sonn.). J. Res. Punjab Agric. Univ. 1986, 23, 432–434. [Google Scholar]
- Munish, A.; Kahlon, P.S.; Mahajan, B.V.C. Effect of exogenous application of growth regulators on fruit drop, cracking and quality of litchi (Litchi chinensis Sonn.) CV. Dehradun. Agric. Sci. Digest 2003, 23, 191–194. [Google Scholar]
- Batal, K.M.; Weigle, J.L.; Foley, D.C. Relation of stress-strain properties of tomato skin to cracking of tomato fruit. HortScience 1970, 5, 223–224. [Google Scholar] [CrossRef]
- Yamada, M.; Ikeda, I.; Yamane, H.; Hirabayashi, T. Inheritance of fruit cracking at the calyx end and stylar end in Japanese persimmon. J. Jpn. Soc. Hortic. Sci. 1988, 57, 8–16. [Google Scholar] [CrossRef]
- Caroline, G.; Chadoeuf, J.; Gilles, V.; Michel, G.; Francxoise, L. Cuticular cracking on nectarine fruit surface: Spatial distribution and development in relation to irrigation and thinning. J. Am. Soc. Hortic. Sci. 2007, 132, 583–591. [Google Scholar]
- Gibert, C.; Genard, M.; Vercambre, G.; Lescourret, F. Quantification and modelling of the stomatal, cuticular and crack components of peach fruit surface conductance. Funct. Plant Biol. 2010, 37, 264–274. [Google Scholar] [CrossRef]
- Considine, J.A. Physical Aspects of Fruit Growth: Cuticular Fracture and Fracture Patterns in Relation to Fruit Structure in Vitis vinifera. J. Hortic. Sci. 1982, 57, 79–91. [Google Scholar] [CrossRef]
- Opara, L.U.; Hodson, A.D.; Studman, S.P. Stem-end splitting and internal ring-cracking of ‘Gala’ apples as influenced by orchard management practices. J. Hortic. Sci. Biotechnol. 1996, 75, 465–469. [Google Scholar] [CrossRef]
- Andrews, P.K.; Collier, M.L.; Fahy, D.; Evans, R.B. Gala stem-end splitting and internal ring cracking. Good Fruit Grow. 1999, 50, 20–23. [Google Scholar]
- Agusti, M.; Martinez-Fuentes, A.; Mesejo, C. Citrus fruit quality. Physiological basis and techniques of improvement. Agrocienica 2002, 6, 1–16. [Google Scholar]
- Hoda, A.; Khalil, S.H.A. Cracking and fruit quality of pomegranate (Punica granatum L.) as affected by pre-harvest sprays of some growth regulators and mineral nutrients. J. Hortic. Sci. Ornam. Plants 2013, 5, 71–76. [Google Scholar]
- Michelle, K.; Bruce, L.; Ken, S.; Carlos, H.C. Fruit skin side cracking and ostiole-end splitting shorten postharvest life in fresh figs (Ficus carica L.), but are reduced by deficit irrigation. Postharvest Biol. Technol. 2013, 85, 154–161. [Google Scholar]
- Choi, C.; Wiersma, P.A.; Toivonen, P.; Kappel, F. Fruit growth, firmness and cell wall hydrolytic enzyme activity during development of sweet cherry fruit treated with gibberellic acid (GA3). J. Hortic. Sci. Biotechnol. 2002, 77, 615–621. [Google Scholar] [CrossRef]
- Kwon, Y.; Han, H.H.; Park, H.S. The Characteristics of Cork and Hypodermis Tissues and Cracking in Asian Pear (Pyrus pyrifolia Cv. Mansoo). Sci. Hortic. 2016, 201, 224–228. [Google Scholar] [CrossRef]
- Ozturk, B.; Bektas, E.; Aglar, E.; Karakaya, O.; Gun, S. Cracking and quality attributes of jujube fruits as affected by covering and pre-harvest Parka and GA 3 treatments. Sci. Hortic. 2018, 240, 65–71. [Google Scholar] [CrossRef]
- Liao, N.; Hu, Z.; Li, Y.; Hao, J.; Chen, S.; Xue, Q.; Ma, Y.; Zhang, K.; Mahmoud, A.; Ali, A.; et al. Ethylene-responsive factor 4 is associated with the desirable rind hardness trait conferring cracking resistance in fresh fruits of watermelon. Plant Biotechnol. J. 2020, 18, 1066–1077. [Google Scholar] [CrossRef]
- Hurtado, G.; Knoche, M. Necked strawberries are especially susceptible to cracking. Peer J. 2023, 11, e15402. [Google Scholar] [CrossRef]
- Correia, S.; Schouten, R.; Silva, A.P.; Gonçalves, B. Sweet cherry fruit cracking mechanisms and prevention strategies: A review. Sci. Hortic. 2018, 240, 369–377. [Google Scholar] [CrossRef]
- Rehman, M.U.; Rather, G.H.; Dar, N.A.; Mir, M.M.; Iqbal, U.; Mir, M.R.; Fayaz, S.; Hakeem, K.R. Causes and prevention of cherry cracking: A review. In Crop Production and Global Environmental Issues; Hakeem, K.R., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 543–552. [Google Scholar]
- Knoche, M.; Lang, A. Ongoing growth challenges fruit skin integrity. Crit. Rev. Plant Sci. 2017, 36, 190–215. [Google Scholar] [CrossRef]
- Knoche, M.; Peschel, S. Water on the surface aggravates microscopic cracking of the sweet cherry fruit cuticle. J. Am. Soc. Hortic. Sci. 2006, 131, 192–200. [Google Scholar] [CrossRef]
- Brüggenwirth, M.; Knoche, M. Cell wall swelling, fracture mode, and the mechanical properties of cherry fruit skins are closely related. Planta 2017, 245, 765–777. [Google Scholar] [CrossRef] [PubMed]
- Giné-Bordonaba, J.; Echeverria, G.; Ubach, D.; Aguiló-Aguayo, I.; López, M.L.; Larrigaudière, C. Biochemical and physiological changes during fruit development and ripening of two sweet cherry varieties with different levels of cracking tolerance. Plant Physiol. Biochem. 2017, 111, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Dal Santo, S.; Tucker, M.R.; Tan, H.T.; Burbidge, C.A.; Fasoli, M.; Böttcher, C.; Boss, P.K.; Pezzotti, M.; Davies, C. Auxin treatment of grapevine (Vitis vinifera L.) berries delays ripening onset by inhibiting cell expansion. Plant Mol. Biol. 2020, 103, 91–111. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, C.; Ozguven, A.I. Hormone physiology of preharvest fruit cracking in pomegranate (Punica granatum L.). Acta Hortic. 2006, 727, 545–550. [Google Scholar] [CrossRef]
- Marboh, E.; Singh, S.K.; Swapnil, P.; Nath, V.; Gupta, A.K.; Pongener, A. Fruit cracking in litchi (Litchi chinensis): An overview. Indian J. Agric. Res. 2017, 87, 3–11. [Google Scholar] [CrossRef]
- Singh, A.; Shukla, A.K.; Meghwal, P.R. Fruit Cracking in Pomegranate: Extent, Cause, and Management—A Review. Int. J. Fruit Sci. 2020, 20, S1234–S1253. [Google Scholar] [CrossRef]
- Yi-Bo, C.A.; Chang-Jiang, L.I.; Fan, S.; Ling-Yun, Z.H. Comparison of the Endogenous Hormones Content and the Activities of Enzymes Related to Cell—wall Metabolism Between Jujube Cultivars Suscepti ble and Resistant to Fruit Cracking. Acta Hortic. Sinica. 2014, 41, 139–148. (In Chinese) [Google Scholar]
- de Freitas, S.T.; Shackel, K.A.; Mitcham, E.J. Abscisic acid triggers whole-plant and fruit-specific mechanisms to increase fruit calcium uptake and prevent blossom end rot development in tomato fruit. J. Exp. Bot. 2011, 62, 2645–2656. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gao, X.; Ma, Z.; Chen, J.; Liu, Y. Analysis of the molecular basis of fruit cracking susceptibility in Litchi chinensis cv. baitangying by transcriptome and quantitative proteome profiling. J. Plant Physiol. 2019, 234–235, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.G.; Gao, X.M.; Ma, Z.L.; Chen, J.; Liu, Y.N.; Shi, W.Q. Metabolomic and transcriptomic profiling of three types of litchi pericarps reveals that changes in the hormone balance constitute the molecular basis of the fruit cracking susceptibility of Litchi chinensis cv. baitangying. Mol. Biol. Rep. 2019, 46, 5295–5308. [Google Scholar] [CrossRef]
- Hou, L.; Li, M.; Zhang, C.; Liu, N.; Liu, X.; Bo, W.; Pang, X.; Li, Y. Comparative Transcriptomic Analyses of Different Jujube Cultivars Reveal the Co-Regulation of Multiple Pathways during Fruit Cracking. Genes 2022, 13, 105. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.K.; Dhillon, W.S. Evaluation of evergreen varieties of pomegranate under Punjab conditions. Agric. Sci. Digest. 2002, 22, 42–44. [Google Scholar]
- Yamaguchi, S. Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol. 2008, 59, 225–251. [Google Scholar] [CrossRef]
- Ueguchi-Tanaka, M.; Ashikari, M.; Nakajima, M.; Itoh, H.; Katoh, E.; Kobayashi, M.; Chow, T.-Y.; Hsing, Y.-I.C.; Kitano, H.; Yamaguchi, I.; et al. Gibberellin insensitive dwarf1 encodes a soluble receptor for gibberellin. Nature 2005, 437, 693–698. [Google Scholar] [CrossRef]
- Bömke, C.; Tudzynski, B. Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry 2009, 70, 1876–1893. [Google Scholar] [CrossRef]
- Hedden, P. The Current status of research on gibberellin biosynthesis. Plant Cell Physiol. 2020, 61, 1832–1849. [Google Scholar] [CrossRef]
- Hernández-García, J.; Briones-Moreno, A.; Blázquez, M.A. Origin and evolution of gibberellin signaling and metabolism in plants. Semin. Cell Dev. Biol. 2021, 109, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Demirsoy, L.; Bilgener, S. The effect of chemical applications on cuticular and epidermal properties of some sweet cherry cultivars with respect to fruit cracking susceptibility. Turk. J. Agric. For. 2000, 24, 541–550. [Google Scholar]
- Byers, R.E.; Carbaugh, D.H.; Presley, C.N. ‘Stayman’ fruit cracking as affected by surfactants, plant growth regulators, and other chemicals. J. Am. Soc. Hort. Sci. 1990, 115, 405–411. [Google Scholar] [CrossRef]
- Andrews, P.K.; Li, S.L. Cell wall hydrolytic enzyme activity during development of nonclimacteric sweet cherry (Prunus avium L.) fruit. J. Hortic. Sci. 1995, 70, 561–567. [Google Scholar] [CrossRef]
- Usenik, V.; Kastelec, D.; Stampar, F. Physicochemical changes of sweet cherry fruits related to application of gibberellic acid. Food Chem. 2005, 90, 663–671. [Google Scholar] [CrossRef]
- Sekse, L.; Bjerke, K.L.; Vangdal, E. Fruit cracking in sweet cherries—An integrated approach. Acta Hortic. 2005, 667, 471–474. [Google Scholar] [CrossRef]
- Proebsting, E.L.; Carter, G.H.; Mills, H.H. Quality improvement in canned ‘Rainier’ cherries (P. avium L.). with gibberellic acid. J. Am. Soc. Hortic. Sci. 1973, 98, 334–336. [Google Scholar] [CrossRef]
- Facteau, T.J.; Rowe, K.E.; Chestnut, N.E. Firmness of sweet cherry fruit following multiple applications of gibberellic acid. J. Am. Soc. Hortic. Sci. 1985, 110, 775–777. [Google Scholar] [CrossRef]
- Kappel, F.; MacDonald, R.A. Gibberellic acid increases fruit firmness, fruit size, and delays maturity of ‘Sweetheart’ sweet cherry. J. Am. Pomol. Soc. 2002, 56, 219–222. [Google Scholar]
- Clayton, M.; Biasi, W.V.; Agar, I.T.; Southwick, S.M.; Mitcham, E.J. Sensory quality of ‘Bing’ sweet cherries following preharvest treatment with hydrogen cyanamide, calcium ammonium nitrate, or gibberellic acid. Hort. Sci. 2006, 41, 745–748. [Google Scholar] [CrossRef]
- Sepahi, A.; Sharifi, H. After effect of gibberellic acid on pomegranate trees. Iran Agric. Res. 1986, 5, 31–36. [Google Scholar]
- Cline, J.A.; Trought, M. Effect of gibberellic acid on fruit cracking and quality of Bing and Sam sweet cherries. Can. J. Plant Sci. 2007, 1, 545–552. [Google Scholar] [CrossRef]
- Lin, Q.; Wu, F.; Sheng, P.; Zhang, Z.; Zhang, X.; Guo, X.; Wang, J.; Cheng, Z.; Wang, J.; Wang, H.; et al. The SnRK2-APC/CTE regulatory module mediates the antagonistic action of gibberellic acid and abscisic acid pathways. Nat. Commun. 2015, 6, 7981. [Google Scholar] [CrossRef]
- Cutler, S.R.; Rodriguez, P.L.; Finkelstein, R.R.; Abrams, S.R. Abscisic acid: Emergence of a core signaling network. Annu. Rev. Plant Biol. 2010, 61, 651–679. [Google Scholar] [CrossRef]
- Weiner, J.J.; Peterson, F.C.; Volkman, B.F.; Cutler, S.R. Structural and functional insights into core ABA signaling. Curr. Opin. Plant Biol. 2010, 13, 495–502. [Google Scholar]
- Jiang, F.; Lopez, A.; Jeon, S.; de Freitas, S.T.; Yu, Q.; Wu, Z.; Labavitch, J.M.; Tian, S.; Powell, A.L.; Mitcham, E. Disassembly of the fruit cell wall by the ripening-associated polygalacturonase and expansin influences tomato cracking. Hortic. Res. 2019, 6, 17. [Google Scholar] [CrossRef] [PubMed]
- Suran, P.; Vávra, R.; Zeleny, L. Effectiveness of potential products to reduce rain cracking of cherry fruit. Acta Hortic. 2016, 1137, 183–186. [Google Scholar] [CrossRef]
- Joshi, M.; Baghel, R.S.; Fogelman, E.; Stern, R.A.; Ginzberg, I. Identification of candidate genes mediating apple fruit-cracking resistance following the application of gibberellic acids 4+7 and the cytokinin 6-benzyladenine. Plant Physiol. Biochem. 2018, 127, 436–445. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gao, Q.; Wang, Z.; Lin, M. Relationship between cell metabolism enzyme activity, carbohydrate, endogenous hormones and fruit cracking. Xinjiang Agric. Sci. 2020, 57, 1689–1696. (In Chinese) [Google Scholar]
- Yang, J.Q.; Wang, B.M.; Wang, X.Y. Advance of fruit cracking of jujube. Shanxi Agric. Sci. 2009, 37, 86–89. [Google Scholar]
- Srivastava, R.P.; Singh, L. Effect of growth substances on the quality of litchi. Hortic. Sci. 1969, 1, 1–6. [Google Scholar]
- Almela, V.; Zaragoza, S.; Primomillo, E.; Agusti, M. Hormonal control of splitting of Nova mandarin fruit. J. Hortic. Sci. 1994, 69, 969–973. [Google Scholar]
- Josan, J.S.; Sandhu, A.S.; Zora, S. Effect of plant growth regulators sparys on the endogenous level of phytohormones and splitting of lemon fruit. Recent Hortic. 1998, 4, 19–21. [Google Scholar]
- Maotani, T.; Suzuki, A.; Tanaka, K.; Kimura, K.; Sugiura, T.; Kumamoto, O.; Nishimura, T.; Oshima, K.; Masada, T. Control of Fruit Cracking of Japanese Pear ‘Kosui’ and ‘Niitaka’ Using Gibberellin Tape. J. Jpn. Soc. Hortic. Sci. 1990, 58, 859–863. [Google Scholar] [CrossRef]
- Sharma, S.B.; Dhillon, B.S. Effect of zinc sulphate and growth regulators on the growth of litchi fruit. Prog. Hortic. 1984, 16, 19–22. [Google Scholar]
- Song, L.Y. Effects of Growth Regulators on Physiological Characteristics and Gene Expression of Jujube Dehiscense. Master’s Thesis, Tarim University, Alar, China, 2022. [Google Scholar]
- Facteau, T.J. Sweet Cherry Trials; Internal Report 14; Marlborough Research Centre: Blenheim, New Zealand, 1984. [Google Scholar]
- Horvitz, S.; López Camelo, A.F.; Yommi, A.; Godoy, C. Application of gibberellic acid to ‘Sweetheart’ sweet cherries: Effects on fruit quality at harvest and during cold storage. Acta Hortic. 2003, 628, 311–316. [Google Scholar] [CrossRef]
- Yilmaz, C.; Ozguven, A. The effects of some plant nutrients, gibberellic acid and pinolene treatments on the yield, fruit quality and cracking in pomegranate. Acta Hortic. 2009, 818, 205–212. [Google Scholar] [CrossRef]
- Drogoudi, P.; Pantelidis, G.E. Comparative effects of gibberellin A3, glycine betaine, and Si, Ca, and K fertilizers on physiological disorders and yield of pomegranate cv. Wonderful. J. Sci. Food Agric. 2022, 15, 259–267. [Google Scholar] [CrossRef]
- Ginzberg, I.; Stern, R.A. Control of Fruit Cracking by Shaping Skin Traits-Apple as a Model. Crit. Rev. Plant Sci. 2019, 38, 401–410. [Google Scholar] [CrossRef]
- Hadjipieri, M.; Georgiadou, E.C.; Drogoudi, P.; Fotopoulos, V.; Manganaris, G.A. The efficacy of acetylsalicylic acid, spermidine and calcium preharvest foliar spray applications on yield efficiency, incidence of physiological disorders and shelf-life performance of loquat fruit. Sci. Hortic. 2021, 289, 110439. [Google Scholar] [CrossRef]
- Sun, Q.; Greve, L.C.; Labavitch, J.M. Polysaccharide compositions of intervessel pit membranes contribute to Pierce’s disease resistance of grapevines. Plant Physiol. 2011, 155, 1976–1987. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Xu, H.; Gao, X.; Fu, X. New insights into gibberellin signaling in regulating plant growth-metabolic coordination. Curr. Opin. Plant Biol. 2021, 63, 102074. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Park, J.; Lee, N.; Jeong, J.; Toh, S.; Kim, J.; Kang, H.; Kim, D.H.; Kawakami, N.; Choi, G. ABA-insensitive3, ABA-insensitive5, and DELLAs Interact to activate the expression of SOMNUS and other high-temperature-inducible genes in imbibed seeds in Arabidopsis. Plant Cell 2013, 25, 4863–4878. [Google Scholar] [CrossRef] [PubMed]
- Schomburg, F.M.; Bizzell, C.M.; Lee, D.J.; Zeevaart, J.A.; Amasino, R.M. Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell 2003, 15, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Tohru, A.; Kohji, M.; Sun, T.P.; Camille, M. Proteolysis-independent downregulation of DELLA repression in Arabidopsis by the gibberellin receptor gibberellin insensitive dwarf1. Plant Cell 2008, 20, 2447–2459. [Google Scholar]
- Wang, J.; Wu, X.F.; Tang, Y.; Li, J.G.; Zhao, M.L. RNA-seq provides new insights into the molecular events involved in “Ball-skin versus bladder effect” on fruit cracking in litchi. Int. J. Mol. Sci. 2021, 22, 454. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.B.; Dhillon, D.S. Endogenous levels of abscisic acid in relation to fruit cracking in Litchi (Litchi chinensis Sonn.). Agric. Sci. Dig. India 1998, 8, 55–58. [Google Scholar]
- Romero, P.; Lafuente, M.T. Abscisic acid deficiency alters epicuticular wax metabolism and morphology that leads to increased cuticle permeability during sweet orange (Citrus sinensis) fruit ripening. Front. Plant Sci. 2020, 11, 594184. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Zhao, H.; Hou, L.; Zhang, C.; Bo, W.; Pang, X.; Li, Y. HPLC-MS/MS-based and transcriptome analysis reveal the effects of ABA and MeJA on jujube (Ziziphus jujuba Mill.) cracking. Food Chem. 2023, 421, 136155. [Google Scholar] [CrossRef]
- Yu, J.; Zhu, M.; Wang, M.; Tang, W.; Wu, S.; Zhang, K.; Yang, G. Effect of nordihydroguaiaretic acid on grape berry cracking. Sci. Hortic. 2020, 261, 108979. [Google Scholar] [CrossRef]
- Li, J.G.; Huang, H.B.; Yuan, R.C.; Gao, F.F. Litchi fruit cracking in relation to fruit growth and water-uptake kinetics. J. South China Agric. Univ. 1992, 13, 129–135. [Google Scholar]
- Gutiérrez, C.; Figueroa, C.R.; Turner, A.; Munné-Bosch, S.; Muñoz, P.; Schreiber, L.; Zeisler, V.; Marín, J.C.; Balbontín, C. Abscisic acid applied to sweet cherry at fruit set increases amounts of cell wall and cuticular wax components at the ripe stage. Sci. Hortic. 2021, 283, 110097. [Google Scholar] [CrossRef]
- Ren, J.; Chen, P.; Dai, S.; Li, P.; Li, Q.; Ji, K.; Wang, Y.; Leng, P. Role of abscisic acid and ethylene in sweet cherry fruit maturation: Molecular aspects. N. Z. J. Crop Hortic. Sci. 2011, 39, 161–174. [Google Scholar] [CrossRef]
- Balbontín, C.; Gutiérrez, C.; Wolff, M.; Figueroa, C.R. Effect of abscisic acid and methyl jasmonate preharvest applications on fruit quality and cracking tolerance of sweet cherry. Chil. J. Agric. Res. 2018, 78, 438. [Google Scholar] [CrossRef]
- Kou, X.H.; Yang, S.; Chai, L.P.; Wu, C.; Zhou, J.Q.; Liu, Y.F.; Xue, Z.H. Abscisic acid and fruit ripening: Multifaceted analysis of the effect of abscisic acid on fleshy fruit ripening. Sci. Hortic. 2021, 281, 109999. [Google Scholar] [CrossRef]
- Nambara, E.; Marion-Poll, A. Abscisic acid biosynthesis and catabolism. Annu. Rev. Plant Biol. 2005, 56, 165–185. [Google Scholar] [CrossRef]
- Seo, M.; Koshiba, T. Complex regulation of ABA biosynthesis in plants. Trends Plant Sci. 2002, 7, 41–48. [Google Scholar] [CrossRef]
- Schwartz, S.H.; Qin, X.; Zeevaart, J.A.D. Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes, and enzymes. Plant Physiol. 2003, 131, 1591–1601. [Google Scholar] [CrossRef]
- Okamoto, M.; Kuwahara, A.; Seo, M.; Kushiro, T.; Asami, T.; Hirai, N.; Kamiya, Y.; Koshiba, T.; Nambara, E. CYP707A1 and CYP707A2, which encode abscisic acid 8’-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis. Plant Physiol. 2006, 141, 97–107. [Google Scholar] [CrossRef]
- Xu, Z.J.; Masatoshi, N.; Yoshihito, S.; Isomaro, Y. Cloning and characterization of the abscisic acidspecific glucosyltransferase gene from adzuki bean seedlings. Plant Physiol. 2002, 129, 1285–1295. [Google Scholar] [CrossRef]
- Schroeder, J.I.; Nambara, E. A quick release mechanism for abscisic acid. Cell 2006, 126, 1023–1025. [Google Scholar] [CrossRef]
- Kushiro, T.; Okamoto, M.; Nakabayashi, K.; Yamagishi, K.; Kitamura, S.; Asami, T.; Hirai, N.; Koshiba, T.; Kamiya, Y.; Nambara, E. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8’-hydroxylases: Key enzymes in ABA catabolism. EMBO J. 2004, 23, 1647–1656. [Google Scholar] [CrossRef] [PubMed]
- Irigoyen, M.L.; Iniesto, E.; Rodriguez, L.; Puga, M.I.; Yanagawa, Y.; Pick, E.; Strickland, E.; Paz-Ares, J.; Wei, N.; De Jaeger, G.; et al. Targeted degradation of abscisic acid receptors is mediated by the ubiquitin ligase substrate adaptor DDA1 in Arabidopsis. Plant Cell 2014, 26, 712–728. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, L.; Gonzalez-Guzman, M.; Diaz, M.; Rodrigues, A.; Izquierdo-Garcia, A.C.; Peirats-Llobet, M.; Fernandez, M.A.; Antoni, R.; Fernandez, D.; Marquez, J.A.; et al. C2-domain abscisic acid-related proteins mediate the interaction of PYR/PYL/RCAR abscisic acid receptors with the plasma membrane and regulate abscisic acid sensitivity in Arabidopsis. Plant Cell 2014, 26, 4802–4820. [Google Scholar] [CrossRef] [PubMed]
- Gosti, F.; Beaudoin, N.; Serizet, C.; Webb, A.A.; Vartanian, N. ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell 1999, 11, 1897–1910. [Google Scholar] [CrossRef]
- Finkelstein, R.R.; Lynch, T.J. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 2000, 12, 599–610. [Google Scholar] [CrossRef] [PubMed]
- Fujita, Y.; Fujita, M.; Satoh, R.; Maruyama, K.; Parvez, M.M.; Seki, M.; Hiratsu, K.; Ohme-Takagi, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 2005, 17, 3470–3488. [Google Scholar] [CrossRef] [PubMed]
- Michailidis, M.; Karagiannis, E.; Tanou, G.; Sarrou, E.; Karamanoli, K.; Lazaridou, A.; Martens, S.; Molassiotis, A. Sweet cherry fruit cracking: Follow-up testing methods and cultivar-metabolic screening. Plant Methods 2020, 16, 51. [Google Scholar] [CrossRef]
- Golldack, D.; Li, C.; Mohan, H.; Probst, N. Gibberellins and abscisic acid signal crosstalk: Living and developing under unfavorable conditions. Plant Cell Rep. 2013, 32, 1007–1016. [Google Scholar] [CrossRef]
- Vanstraelen, M.; Benkova, E. Hormonal interactions in the regulation of plant development. Annu. Rev. Cell Dev. Biol. 2012, 28, 463–487. [Google Scholar] [CrossRef]
- Nonogaki, H. Seed dormancy and germination-emerging mechanisms and new hypotheses. Front. Plant Sci. 2014, 5, 233. [Google Scholar] [CrossRef]
- Piskurewicz, U.; Jikumaru, Y.; Kinoshita, N.; Nambara, E.; Kamiya, Y.; Lopez-Molina, L. The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity. Plant Cell 2008, 20, 2729–2745. [Google Scholar] [CrossRef]
- Gubler, F.; Chandler, P.M.; White, R.G.; Llewellyn, D.J.; Jacobsen, J.V. Gibberellin signaling in barley aleurone cells: Control of SLN1 and GAMYB expression. Plant Physiol. 2002, 129, 191–200. [Google Scholar] [CrossRef]
- Oh, E.; Yamaguchi, S.; Hu, J.; Yusuke, J.; Jung, B.; Paik, I.; Lee, H.S.; Sun, T.P.; Kamiya, Y.; Choi, G. PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds. Plant Cell 2007, 19, 1192–1208. [Google Scholar] [CrossRef] [PubMed]
- Achard, P.; Cheng, H.; De Grauwe, L.; Decat, J.; Schoutteten, H.; Moritz, T.; Van Der Straeten, D.; Peng, J.; Harberd, N.P. Integration of plant responses to environmentally activated phytohormonal signals. Science 2006, 311, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Menzel, C.M. The pattern and control of reproductive development in lychee: A review. Sci. Hortic. 1984, 22, 333–346. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, L.; Zhao, X.; Zhao, Y.; Hao, Z.; Luo, H.; Yuan, Z. Advances in Mechanisms and Omics Pertaining to Fruit Cracking in Horticultural Plants. Agronomy 2021, 11, 1045. [Google Scholar] [CrossRef]
Species | Variety | PGRs Treatment | Treatment Methods | Cracking | References |
---|---|---|---|---|---|
Litchi | ‘Dehradun’ | 50, 75, 100 ppm GA3 | 2-year-old trees; applied at 7-,11-, or 15 day intervals from the early stages of development until harvest | Decreased | [75] |
‘Dehradun’ | 25 and 50 ppm GA3 | four sprays (at fruit set + 2 weeks later + 4 weeks later + 6 weeks later) | Decreased | [15] | |
Jujube | ‘Lizao’ | 15 mg/L GA3 | sprays at 3 and 2 weeks before the commercial harvest date | Decreased | [28] |
‘Fucuimi’ | 15 mg/L GA3 | six foliar sprays began at 7 DAFB; and at 10 days once | Decreased | [76] | |
Cherry | ‘Justyna’, ‘Tamara’, ‘Regina’ | 10% GA3 (800 L/ha) | 10–11-year-old trees; applied once 10–12 days or 15–20 days before harvest with a tractor sprayer | Decreased 9–11% | [67] |
‘Binga’, ‘Sam’ | 10 or 40 ppm GA3 | pre-harvest single or repeated foliar spray | Increased | [62] | |
‘Merton Premier’, ‘Bing’, ‘Dawson’ ‘Sweetheart’ | 10, 20 or 30 ppm GA3 | single or multiple treatment | Ns | [77,78] | |
Pomegranate | ‘Hicaz’, ‘Silifke Aşısı’ | 100, 150, 200 mg/L GA3 | 5-year-old trees; applied in the second week of August and September | Decreased | [79] |
‘Manfalouty’ | 80 ppm GA3 | pre-harvest sprays | Decreased | [24] | |
‘Wonderful’ | 75 or 150 mg /L GA3 | foliar spray, in July | Decreased | [80] | |
Mandarin | ‘Nova’ | 20 mg /L (GA3 + 2,4-D) | applied once or twice after June drop | Decreased | [23] |
‘Nova’ | 20 mg /L GA3 20 mg /L (GA3 + 2,4-D) | 7–10-year-old trees; foliar sprays (5–7 L/tree); treat twice at 60 and 30 d before splitting | Ns Decreased | [72] | |
Lemon | ‘Baramasi’ | 10 or 20 ppm GA3 | 10-year-old tree; sprays on 15 and 30 May DAFB | Decreased | [73] |
Pear | ‘Kosui’, ‘Niitaka’ | GA tapes contains 6% GA (GA3:GA4 = 9:1) | tied at the calyx ends or peduncles at about 30 DAFB | Decreased | [74] |
Apple | ‘Pink Lady’ | 20 mg/L (GA4+7 + BA) | treated at 50–65 DAFB | Decreased 20.6% | [68] |
Genes Annotation | Gene Name | Gene Accession | Species | References |
---|---|---|---|---|
ent-kaurene synthase | LcKS | Unigene0009890 Unigene0009891 | Litchi | [1] |
GA 20-oxidase | ZjGA20ox | gene19292 | Jujube | [45] |
GA 2-oxidase | LcGA2oxs | Unigene0034731 Unigene0040846 | Litchi | [88] |
ZjGA2ox | gene243 | Jujube | [45] | |
GA insensitive DWARF1 | LcGID1 | Unigene0002046 | Litchi | [1] |
LcGID1c | Lc.8.678 | Litchi | [88] | |
MdGID1b | MDP0000929994 | Apple | [68] | |
GA-regulated proteins | LcGPRs | Lc.1.532/Lc.1.534 | Litchi | [88] |
Species | Veriety | PGRs Treatment | Treatment Methods | Cracking | References |
---|---|---|---|---|---|
Jujube | ‘Fucuimi’ | 50 mg/L ABA | six foliar sprays began at 7 DAFB; once every 10 d | Decreased 39% | [76] |
‘Pingshunbenzao’ | 50 mg/L ABA | 3 foliar sprays began at WR; once every 7 d | Increased | [91] | |
Cherry | ‘Bing’ | 0.1 mM ABA, 0.4 mM MeJA 0.1 ABA + 0.4 mM MeJA | single applications at 20 d DAFB or 60 DAFB (days after full blossom) | Decreased Decreased Decreased 87% | [96] |
Tomato | ‘Craigella’ | 0.5 mg/L ABA | sprayed 1× per week for 3 weeks with a backpack applicator until the plants were completely covered with the solution | Increased 10.2% | [66] |
Genes Annotation | Gene Name and Accession | Species | References |
---|---|---|---|
Zeaxanthin epoxidase | LcZEP/Lc.0.938 | Litchi | [88] |
PaABA1/Pav_sc0000071.1_g630 | Cherry | [110] | |
ZjZEP/gene18925 | Jujube | [45] | |
9-cis-epoxycarotenoid dioxygenase | ZjNCED/gene30271/gene1854 | Jujube | [45] |
zeaxanthin epoxidase | ZjZEP/gene18925 | ||
ABA 8′-hydroxylase | PaABAH1/Pav_sc0001440.1_g080 | Cherry | [110] |
LcCYP707A/Unigene0007266/Unigene0026783 | Litchi | [1] | |
LcCYP707A/c42183_g1_i1 | Litchi | [44] | |
β-glucosidase | Lcβ-Glu/Unigene0016580/Unigene0016134 Unigene0018025/Unigene0043976 Unigene0012400/Unigene0016425 | Litchi | [1] |
Lcβ-Glu/Lc.0.11/Lc.0.3431/Lc.0.157/Lc.0.3975 | Litchi | [44] | |
Glycosyltransferase | LcGT/Unigene0042108/Unigene0002939 Unigene0038887/Unigene0001499/Unigene0011269/Unigene0028438/Unigene0042417/ Unigene0002586/Unigene0027109 | Litchi | [1] |
Glycosyltransferase | LcGT/Lc.12.1389 | Litchi | [44] |
ABA insensitive | LcABI1/Unigene0027077 | Litchi | [1] |
PaABI1.1/Pav_sc0000069.1_g410 | Cherry | [110] | |
PaABI1.2/Pav_sc0000129.1_g370 | |||
PaABI1.3/Pav_sc0000212.1_g830 | |||
PaABI1.4/Pav_sc0000689.1_g430 | |||
PaABI1.5/Pav_sc0000689.1_g440 | |||
LcABI5/Unigene0037679 | Litchi | [1] | |
PaABI5/Pav_sc0000363.1_g920 | Cherry | [111] | |
ABA receptor protein | PaPYL1/Pav_sc0001428.1_g450 | ||
PaPYL4/Pav_sc0001341.1_g250 | |||
PaPYL8/Pav_sc0001335.1_g500 | |||
PaPYL9/Pav_sc0000591.1_g120 | |||
PaPYL12/Pav_sc0000037.1_g470 | |||
Protein phosphatase 2C | ZjPP2C/gene7093 LcPP2C/Unigene0009174/Unigene0047715 | Jujube Litchi | [45] [1] |
Protein C2-domain ABA-related 4/7 | PaCALB 4/Pav_sc0000103.1_g680 PaCALB 7/Pav_sc0000221.1_g240 | Cherry | [110] |
ABRE binding factor | PaABF2/Pav_sc0000852.1_g810 | ||
PaABF3/Pav_sc0002234.1_g130 | |||
ABRE binding protein 3 | PaAREB3/Pav_sc0001836.1_g030 | ||
ABA overly-sensitive 5 | PaABO5/Pav_sc0000015.1_g160 | ||
ABA deficient 4 | PaABA4/Pav_sc0000409.1_g020 | ||
ABA binding protein | PaFCA/Pav_sc0000028.1_g190 | ||
ABA-aldehyde oxidase isoform | PaAAO3/Pav_sc0001251.1_g340 | ||
ABA-responsive family protein | PaHVA22/Pav_sc0002080.1_g050 | ||
Respiratory burst oxidase homolog protein D | ZjRBOHPD/gene16443 | Jujube | [45] |
Serine/threonine-protein kinase | ZjSAPK1/gene17084 | ||
Glycogen synthase kinase | LcGSK/Lc.0.1659 | Litchi | [88] |
NAC domain protein | MdNAC058/MDP0000246482 | Apple | [68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Liu, Y.; Chen, Z.; Zhi, Z.; Wang, A.; Yue, H.; Li, F.; Zhang, S.; Zhu, G. Progress in Fruit Cracking Control of Gibberellic Acid and Abscisic Acid. Forests 2024, 15, 547. https://doi.org/10.3390/f15030547
Zhang M, Liu Y, Chen Z, Zhi Z, Wang A, Yue H, Li F, Zhang S, Zhu G. Progress in Fruit Cracking Control of Gibberellic Acid and Abscisic Acid. Forests. 2024; 15(3):547. https://doi.org/10.3390/f15030547
Chicago/Turabian StyleZhang, Mengmeng, Yiteng Liu, Zhuo Chen, Zhaokun Zhi, Aning Wang, Huafeng Yue, Fangdong Li, Shulin Zhang, and Gaopu Zhu. 2024. "Progress in Fruit Cracking Control of Gibberellic Acid and Abscisic Acid" Forests 15, no. 3: 547. https://doi.org/10.3390/f15030547
APA StyleZhang, M., Liu, Y., Chen, Z., Zhi, Z., Wang, A., Yue, H., Li, F., Zhang, S., & Zhu, G. (2024). Progress in Fruit Cracking Control of Gibberellic Acid and Abscisic Acid. Forests, 15(3), 547. https://doi.org/10.3390/f15030547