Antioxidant Activity and Volatile Oil Analysis of Ethanol Extract of Phoebe zhennan S. Lee et F. N. Wei Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Ultrasonic-Assisted Ethanol Extraction
2.3. DPPH Radical Scavenging Assay
2.4. PTIO Radical Scavenging Assay
2.5. PRAP Assay
2.6. HS-SPME-GC-MS Analysis
- Ci = content of an identified component, %;
- Ai = the peak area corresponding to an identified component;
- n = the total number of identified components.
3. Results and Discussion
3.1. DPPH Radical-Scavenging Activities
3.2. PTIO Radical-Scavenging Activities
3.3. PRAP Test Analysis
3.4. Active Constituents
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yuan, X.; Wang, L.; Hu, M.; Zhang, L.; Chen, H.; Zhang, D.; Wang, Z.; Li, T.; Zhong, M.; Xu, L.; et al. Oxygen Vacancy-Driven Reversible Free Radical Catalysis for Environment-Adaptive Cancer Chemodynamic Therapy. Angew. Chem. Int. Ed. 2021, 60, 20943–20951. [Google Scholar] [CrossRef]
- Jin, K. Modern biological theories of aging. Aging Dis. 2010, 1, 72–74. [Google Scholar]
- Chen, X.; Yu, H.; Li, Z.; Ye, W.; Liu, Z.; Gao, J.; Wang, Y.; Li, X.; Zhang, L.; Alenina, N.; et al. Oxidative RNA damage in the pathogenesis and treatment of type 2 diabetes. Front. Physiol. 2022, 13, 725919. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.T.; Chen, Y.L.; Wu, Y.H.; Chen, I.S.; Chang, H.S.; Wang, Y.H.; Chang, S.H.; Wu, Y.H.; Kao, T.I.; Yu, H.P.; et al. Meso-Dihydroguaiaretic Acid Ameliorates Acute Respiratory Distress Syndrome through Inhibiting Neutrophilic Inflammation and Scavenging Free Radical. Antioxidants 2022, 11, 123. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, K.K.; Kumar, R. Stress, oxidative injury and disease. Indian J. Clin. Biochem. 2015, 30, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.; Rafiullah, M.; Shehata, W.; Hossain, A.; Ali, M. Comparative phytochemical, thin layer chromatographic profiling and antioxidant activity of extracts from some Indian herbald rugs. J. Bioresour. Bioprod. 2022, 7, 128–134. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, L.; Feng, Y.; Pan, H. Preparation of tannic acid modified cellulose colorimetric test paper for Fe3+ and Ag+ detection. J. For. Eng. 2023, 8, 108–114. [Google Scholar]
- El-Sherbiny, G.M.; Gazelly, A.; Sharaf, M.H.; Moghannemm, S.A.; Shehata, M.E.; Ismail, M.; El-Hawary, A.S. Exploitation of the antibacterial, antibiofilm and antioxidant activities of Salvadora Persica (Miswak) extract. J. Bioresour. Bioprod. 2023, 8, 59–65. [Google Scholar] [CrossRef]
- Aung, T.; Bibat, M.A.D.; Zhao, C.C.; Eun, J.B. Bioactive compounds and antioxidant activities of Quercus salicina Blume extract. Food Sci. Biotechnol. 2020, 29, 449–458. [Google Scholar] [CrossRef]
- Chia, T.Y.; Gan, C.Y.; Murugaiyah, V.; Hashmi, S.F.; Fatima, T.; Ibrahim, L.; Abdulla, M.H.; Alswailmi, F.K.; Johns, E.J.; Ahmad, A. A Narrative Review on the Phytochemistry, Pharmacology and Therapeutic Potentials of Clinacanthus nutans (Burm.f.) Lindau Leaves as an Alternative Source of Future Medicine. Molecules 2021, 27, 139. [Google Scholar] [CrossRef]
- Abang, S.; Wong, F.; Sarbatly, R.; Sariau, J.; Baini, R.; Besar, N. Bioplastic classifications and innovations in antibacterial, antifungal, and antioxidant applications. J. Bioresour. Bioprod. 2023, 8, 361–387. [Google Scholar] [CrossRef]
- Shan, S.; Ji, W.; Huang, Y.; Yu, Y.; Zhang, S.; Yu, W. Surface color regulation of white oak veneers based on polyphenol-iron complexation. J. For. Eng. 2023, 8, 182–189. [Google Scholar]
- Bicas, J.L.; Neri-Numa, I.A.; Ruiz, A.; Carvalho, J.E.D.; Pastore, G.M. Evaluation of the antioxidant and antiproliferative potential of bioflavors. Food Chem. Toxicol. 2011, 49, 1610–1615. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.C.; Wang, S.W.; Li, C.W.; Lin, H.R.; Yang, C.S.; Chu, Y.C.; Lee, T.H.; Chen, J.J. Comparison of various solvent extracts and major bioactive components from Portulaca oleracea for antioxidant, Anti-Tyrosinase, and Anti-α-Glucosidase Activities. Antioxidants 2022, 11, 398. [Google Scholar] [CrossRef] [PubMed]
- Li, X. 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl3-oxide (PTIO•) radical scavenging: A new and simple antioxidant assay in vitro. J. Agric. Food Chem. 2017, 65, 6288–6297. [Google Scholar] [CrossRef] [PubMed]
- Pulido, R.; Bravo, L.; Saura, C.F. Antioxidant activity of dietary polyphenols as determined by a modified ferricreducing/antioxidant power assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef] [PubMed]
- Ghorbel, A.; Fakhfakh, J.; Brieudes, V.; Halabalaki, M.; Fontanay, S.; Duval, R.E.; Mliki, K.; Sayadi, S.; Allouche, N. Chemical Composition, Antibacterial Activity using Micro-broth Dilution Method and Antioxidant Activity of Essential Oil and Water Extract from Aerial Part of Tunisian Thymus algeriensis Boiss. & Reut. J. Essent. Oil Bear. Plants 2021, 24, 1349–1364. [Google Scholar]
- Chai, T.T.; Kwek, M.T.; Ong, H.C.; Wong, F.C. Water fraction of edible medicinal fern Stenochlaena palustris is a potent α-glucosidase inhibitor with concurrent antioxidant activity. Food Chem. 2015, 186, 26–31. [Google Scholar] [CrossRef]
- Huang, S.; Zhong, W.; Zhang, X.; Li, S.; Cai, X. Research progress of photochemical-based aggregation-induced luminescent materials. J. For. Eng. 2022, 7, 34–45. [Google Scholar]
- Kostka, T.; Ostberg-Potthoff, J.J.; Stärke, J.; Guigas, C.; Matsugo, S.; Stojanov, L.; Velickovska, S.K.; Winterhalter, P.; Esatbeyoglu, T.; Mireeski, V. Bioactive phenolic compounds from Lingonberry (Vaccinium vitis-idaea L.): Extraction, chemical characterization, fractionation and cellular antioxidant activity. Antioxidants 2022, 11, 467. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Shen, R.; Li, Y.; Ma, G.; Qi, S.; Wu, W.; Jin, Y.; Jiang, B. A mild iodocyclohexane demethylation for highly enhancing antioxidant activity of lignin. J. Bioresour. Bioprod. 2023, 8, 306–317. [Google Scholar] [CrossRef]
- Peng, J.; Yan, C.; Yang, F.; Hong, M.; Yang, Z.; Du, G.; Zhou, X. Preparation of tannin-urea-formaldehyde resin by carbonated tannin and its bonding properties. J. For. Eng. 2023, 8, 119–125. [Google Scholar]
- Ayres, G.H. Evaluation of accuracy in photometric analysis. J. Anal. Chem. 1949, 21, 652–657. [Google Scholar] [CrossRef]
- Tilahun, B.; Sosina, G.; Ajay, V.C.; Tarekegn, B.; Anurag, S.; Ashutosh, U. Comparative Study on Chemical Composition and Antioxidant Properties (GraphPad Prism Approach) of Wild Ethiopian Z. spina-christi and Indian Z. jujube Fruit Species. J. Food Anal. Methods 2022, 15, 2224–2237. [Google Scholar]
- Wojtunik-Kulesza, A. Approach to Optimization of FRAP Methodology for Studies Based on Selected Monoterpenes. Molecules 2020, 25, 5267. [Google Scholar] [CrossRef] [PubMed]
- Rahimmalek, M.; Szumny, A.; Gharibi, S.; Pachura, N.; Miroliaei, M.; Łyczko, J. Chemical Investigations in Kelussiaod oratissima Mozaff. Leaves Based on Comprehensive Analytical Methods: LC-MS, SPME, and GC-MS Analyses. Molecules 2023, 28, 6140. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tan, B.; Cen, Z.; Fu, Y.; Wu, H. The variation in essential oils composition, phenolicacids and flavonoids is correlated with changes in antioxidant activity during Cinnamomum loureirii bark growth. J. Arab. J. Chem. 2021, 14, 103249. [Google Scholar] [CrossRef]
- Ban, M.M.; Fan, Z.Y.; Zhang, D.Y.; Yang, L.; Zheng, Y.D.; Yang, B.B. Study on The Identification of Amomum Villosum Varieties. Tradit. Chin. Drug Res. Clin. Pharmacol. 2022, 33, 1407–1414. [Google Scholar]
- Xu, H.N.; Mu, Y.; Zhang, Z.H.; Zhang, Z.; Zhang, D.Y.; Tan, X.Q.; Shi, X.B.; Liu, Y. Extraction and Identification of Volatiles from Artemisia Argyi and Torilisscabra and Their Effects on The Selectivity of Med Cryptic Adults of Bemisia Tabaci (Gennadius). Acta Entomol. Sin. 2022, 65, 343–350. [Google Scholar]
- Carneiro, N.S.; Alves, C.C.F.; Alves, J.M.; Egea, M.B.; Martins, C.H.G.; Silva, T.S.; Bretanha, L.C.; Balleste, M.P.; Micke, G.A.; Silveira, E.V.; et al. Chemical composition, antioxidant and antibacterial activities of essential oils from leaves and flowers of Eugenia klotzschiana Berg (Myrtaceae). An. Acad. Bras. Cienc. 2017, 89, 1907–1915. [Google Scholar] [CrossRef]
- Yang, J.B.; Tang, X.Y.; Cheng, W.Q. Research Progress on Biological Activity of α-Copaene and Its Derivatives. J. China Prescr. Drug 2015, 13, 12–13. [Google Scholar]
- Ynag, M.D.; Xu, Q.X.; Ye, L.B.; Li, M.; Feng, Y.; Cheng, W.Q. Studies on The Synthesis of α-Copaene Derivatives, Screening of Anti-Tumor Cell Activity and Computer-Aided Drug Design. China J. Chin. Mater. Medica 2018, 43, 1001–1007. [Google Scholar]
- Hu, J.H.; Han, J.; Li, Q.R.; Liu, T. Synthesis and comprehensive utilization of α-Copaene derivatives. Shandong Chem. Ind. 2014, 43, 64–68. [Google Scholar]
- Medini, H.; Elaissi, A.; Khouj, M.L.; Alessandra, P.; Silvia, P.; Danilo, F.; Bruno, M.; Farhat, F.; Rachid, C. Chemical composition of the essential oils of the berries of Juniperus oxycedrus L. ssp. Rufescens (LK) and Juniperus oxycedrus L. ssp. Macrocarpa (S.&m.) Ball. And their antioxidant activities. J. Nat. Prod. Res. 2012, 26, 810–820. [Google Scholar]
- Hussain, A.I.; Anwar, F.; Chatha, S.A.S.; Jabbar, A.; Mahboob, S.; Nigam, P.S. Rosmarinus officinalis essential oil: Antiproliferative, antioxidant and antibacterial activities. J. Braz. J. Microbiol. 2010, 41, 1070–1078. [Google Scholar] [CrossRef] [PubMed]
- Dahham, S.S.; Tabana, Y.M.; Iqbal, M.A.; Ahamed, M.B.K.; Ezzat, M.O.; Majid, A.S.A.; Majid, A.M.S.A. Theanticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. J. Mol. 2015, 20, 11808–11829. [Google Scholar] [CrossRef] [PubMed]
- Tele, A.M.; Silva-Silva, J.V.; Fernande, J.M.P.; Calabrese, K.D.S.; Abreu-Silva, A.L.; Marinho, S.C.; Mouchrek, A.N.; Filho, V.E.M.; Almeida-Souza, F. Aniba rosaeodora (Var. amazonica Ducke) essential oil: Chemical composition, antibacterial, antioxidant and antitrypanosomal activity. J. Antibiot. 2020, 10, 24. [Google Scholar] [CrossRef]
- Liu, X.; Gao, B.; Dong, Z.; Qiao, Z.; Yan, M.; Han, W.; Li, W.; Han, L. Chemical Compounds, Antioxidant Activities, and Inhibitory Activities against Xanthine Oxidase of the Essential Oils from the Three Varieties of Sunflower (Helianthusannuus L.) Receptacles. Front. Nutr. 2021, 8, 3389. [Google Scholar] [CrossRef]
- Tepe, B.; Sihoglu-Tepe, A.; Daferera, D. Chemical composition and antioxidant activity of the essential oil of Clinopodium vulgare L. J. Food Chem. 2007, 103, 766–770. [Google Scholar] [CrossRef]
- Wang, X.; Shen, Y.; Thakur, K.; Han, J.; Zhang, J.G.; Hu, F.; Wei, Z.J. Antibacterial Activity and Mechanism of Ginger Essential Oil against Escherichia coli and Staphylococcus aureus. Molecules 2020, 25, 3955. [Google Scholar] [CrossRef]
- Liu, X.L. Identification of volatile components in Phyllanthus emblica L. and their antimicrobial activity. J. Med. Food 2009, 12, 423–428. [Google Scholar] [CrossRef] [PubMed]
NO. | TR/min | Compound | MW | CAS | Content/% | Structure |
---|---|---|---|---|---|---|
1 | 1.24 | α-Pinene | 136.12 | 80-56-8 | 1.46 | |
2 | 2.35 | Camphene | 136.12 | 79-92-5 | 0.48 | |
3 | 7.08 | α-Terpinene | 136.12 | 99-86-5 | 0.47 | |
4 | 7.66 | D-Limonene | 136.12 | 5989-27-5 | 0.88 | |
5 | 7.89 | (±)-Sabinene | 136.12 | 3387-41-5 | 0.48 | |
6 | 7.96 | Eucalyptol | 154.14 | 470-82-6 | 3.31 | |
7 | 8.83 | trans-β-Ocimene | 136.12 | 3779-61-1 | 0.82 | |
8 | 8.95 | γ-Terpinene | 136.12 | 99-85-4 | 0.66 | |
9 | 9.15 | Benzocyclobutene | 104.06 | 694-87-1 | 1.63 | |
10 | 9.48 | m-Cymene | 134.11 | 535-77-3 | 0.74 | |
11 | 9.78 | Terpinolene | 136.12 | 586-62-9 | 0.23 | |
12 | 13.3 | Ylangene | 204.19 | 14912-44-8 | 1.34 | |
13 | 13.46 | Copaene | 204.19 | 3856-25-5 | 33.97 | |
14 | 13.79 | β-Bourene | 204.19 | 5208-59-3 | 0.09 | |
15 | 13.9 | Alloaromadendrene | 204.19 | 17334-55-3 | 0.26 | |
16 | 13.95 | (−)-α-Gurjunene | 204.19 | 489-40-7 | 0.51 | |
17 | 13.99 | (+)-Sativene | 204.19 | 3650-28-0 | 0.38 | |
18 | 14.16 | Linalool | 154.14 | 78-70-6 | 1.04 | |
19 | 14.46 | α-Bergamotene | 204.19 | 17699-05-7 | 0.41 | |
20 | 14.59 | Borneol acetate | 196.15 | 5655-61-8 | 1.5 | |
21 | 14.64 | Fenchol | 154.14 | 1632-73-1 | 0.52 | |
22 | 14.68 | Zingiberene | 204.19 | 495-60-3 | 0.27 | |
23 | 14.73 | β-Elemene | 204.19 | 110823-68-2 | 1.7 | |
24 | 14.83 | β-Caryophyllene | 204.19 | 87-44-5 | 4.42 | |
25 | 14.96 | β-Patchoulene | 204.19 | 514-51-2 | 1.07 | |
26 | 15.16 | α-Elemene | 204.19 | 5951-67-7 | 0.3 | |
27 | 15.38 | (+)-γ-Cadinene | 204.19 | 39029-41-9 | 0.39 | |
28 | 15.45 | Aromandendrene | 204.19 | 489-39-4 | 0.27 | |
29 | 15.73 | 1,4,7,-Cycloundecatriene, 1,5,9,9-tetramethyl-, Z,Z,Z- | 204.19 | 1000062-61-9 | 2.99 | |
30 | 15.8 | 2-Isopropenyl-4a,8-dimethyl-1,2,3,4,4a,5,6,7-octahydronaphthalene | 204.19 | 1000192-43-5 | 0.92 | |
31 | 15.96 | γ-Muurolene | 204.19 | 30021-74-0 | 4.78 | |
32 | 16.09 | (+)-Borneol | 154.14 | 1000150-76-3 | 0.47 | |
33 | 16.22 | Isoledene | 204.19 | 1000156-10-8 | 0.76 | |
34 | 16.38 | α-Muurolene | 204.19 | 31983-22-9 | 4.68 | |
35 | 16.53 | Cedr-8-ene | 204.19 | 469-61-4 | 0.02 | |
36 | 16.75 | δ-Cadinene | 204.19 | 483-76-1 | 11.04 | |
37 | 16.89 | α-Curcumene | 202.17 | 644-30-4 | 0.29 | |
38 | 17.15 | α-Cadinene | 204.19 | 24406-05-1 | 0.39 | |
39 | 17.58 | cis-Calamenene | 202.17 | 483-77-2 | 2.02 | |
40 | 21.04 | 6-Isopropyl-1,4-dimethylnaphthalene | 198.14 | 489-77-0 | 0.03 | |
41 | 21.49 | Dimethyl phthalate | 194.06 | 131-11-3 | 0.32 | |
42 | 22.14 | Cadalene | 198.14 | 483-78-3 | 0.01 | |
43 | 25 | n-Hexadecanoic acid | 256.24 | 57-10-3 | 0.13 | |
44 | 25.74 | Erucamide | 337.33 | 112-84-5 | 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, L.; Cheng, W.; Tian, M.; Wu, Z.; Wei, X.; Cheng, X.; Yang, M.; Ma, X. Antioxidant Activity and Volatile Oil Analysis of Ethanol Extract of Phoebe zhennan S. Lee et F. N. Wei Leaves. Forests 2024, 15, 236. https://doi.org/10.3390/f15020236
Yu L, Cheng W, Tian M, Wu Z, Wei X, Cheng X, Yang M, Ma X. Antioxidant Activity and Volatile Oil Analysis of Ethanol Extract of Phoebe zhennan S. Lee et F. N. Wei Leaves. Forests. 2024; 15(2):236. https://doi.org/10.3390/f15020236
Chicago/Turabian StyleYu, Liping, Wang Cheng, Meifen Tian, Zhigang Wu, Xiaoli Wei, Xing Cheng, Mingwei Yang, and Xuan Ma. 2024. "Antioxidant Activity and Volatile Oil Analysis of Ethanol Extract of Phoebe zhennan S. Lee et F. N. Wei Leaves" Forests 15, no. 2: 236. https://doi.org/10.3390/f15020236