Landscape Characteristics Influencing the Spatiotemporal Dynamics of Soundscapes in Urban Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Processing
2.2.1. Field Survey
2.2.2. Perceptual Sound Features
2.2.3. Physical Acoustic Features
2.2.4. Landscape Characteristics
2.3. Statistical Analysis
3. Results
3.1. Spatiotemporal Variability of the Perceptual and Physical Sound Features in Urban Forests
3.2. Influences of Landscape Characteristics on the Perceptual and Physical Sound Features Across Time and Space
4. Discussion
4.1. Spatiotemporal Variation Mechanisms of the Perceptual and Physical Soundscape Features in Urban Forests
4.2. Understanding the Influence of Landscape Characteristics on Spatiotemporal Sound Features for Landscape Planning and Management in Urban Forests
4.3. Limitations and Suggested Research Topics in the Future
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baumeister, C.F.; Gerstenberg, T.; Plieninger, T.; Schraml, U. Exploring cultural ecosystem service hotspots: Linking multiple urban forest features with public participation mapping data. Urban For. Urban Green. 2020, 48, 126561. [Google Scholar] [CrossRef]
- Rahman, M.A.; Stratopoulos, L.M.F.; Moser-Reischl, A.; Zölch, T.; Häberle, K.-H.; Rötzer, T.; Pretzsch, H.; Pauleit, S. Traits of trees for cooling urban heat islands: A meta-analysis. Build. Environ. 2020, 170, 106606. [Google Scholar] [CrossRef]
- Nowak, D.J.; Hirabayashi, S.; Doyle, M.; McGovern, M.; Pasher, J. Air pollution removal by urban forests in Canada and its effect on air quality and human health. Urban For. Urban Green. 2018, 29, 40–48. [Google Scholar] [CrossRef]
- Klingberg, J.; Broberg, M.; Strandberg, B.; Thorsson, P.; Pleijel, H. Influence of urban vegetation on air pollution and noise exposure–a case study in Gothenburg, Sweden. Sci. Total Environ. 2017, 599, 1728–1739. [Google Scholar] [CrossRef] [PubMed]
- Bherwani, H.; Banerji, T.; Menon, R. Role and value of urban forests in carbon sequestration: Review and assessment in Indian context. Environ. Dev. Sustain. 2024, 26, 603–626. [Google Scholar] [CrossRef]
- He, M.; Wang, Y.; Wang, W.J.; Xie, Z. Therapeutic plant landscape design of urban forest parks based on the Five Senses Theory: A case study of Stanley Park in Canada. Int. J. Geoheritage Parks 2022, 10, 97–112. [Google Scholar] [CrossRef]
- Kamel Boulos, M.N.; Al-Shorbaji, N.M. On the Internet of Things, Smart Cities and the WHO Healthy Cities; Springer: Berlin/Heidelberg, Germany, 2014; Volume 13. [Google Scholar]
- Levenhagen, M.J.; Miller, Z.D.; Petrelli, A.R.; Ferguson, L.A.; Shr, Y.-H.; Gomes, D.G.E.; Taff, B.D.; White, C.; Fristrup, K.; Monz, C. Ecosystem services enhanced through soundscape management link people and wildlife. People Nat. 2020, 3, 176–189. [Google Scholar] [CrossRef]
- Bian, Q.; Wang, C.; Sun, Z.; Yin, L.; Jiang, S.; Cheng, H.; Zhao, Y. Research on spatiotemporal variation characteristics of soundscapes in a newly established suburban forest park. Urban For. Urban Green. 2022, 78, 127766. [Google Scholar] [CrossRef]
- Sun, K.; de Coensel, B.; Filipan, K.; Aletta, F.; van Renterghem, T.; de Pessemier, T.; Joseph, W.; Botteldooren, D. Classification of soundscapes of urban public open spaces. Landsc. Urban Plan. 2019, 189, 139–155. [Google Scholar] [CrossRef]
- Chen, Z.; Hermes, J.; Liu, J.; von Haaren, C. How to integrate the soundscape resource into landscape planning? A perspective from ecosystem services. Ecol. Indic. 2022, 141, 109156. [Google Scholar] [CrossRef]
- Mohammadzadeh, N.; Mohammadzadeh, R. The assessment of soundscape quality in historic urban parks: A case study of El-Goli Park of Tabriz, Iran. Noise Vib. Worldw. 2023, 54, 248–260. [Google Scholar] [CrossRef]
- Ratcliffe, E. Sound and soundscape in restorative natural environments: A narrative literature review. Front. Psychol. 2021, 12, 963. [Google Scholar] [CrossRef] [PubMed]
- Hedblom, M.; Gunnarsson, B.; Schaefer, M.; Knez, I.; Thorsson, P.; Lundström, J.N. Sounds of nature in the city: No evidence of bird song improving stress recovery. Int. J. Environ. Res. Public Health 2019, 16, 1390. [Google Scholar] [CrossRef] [PubMed]
- Richards, D.G.; Wiley, R.H. Reverberations and amplitude fluctuations in the propagation of sound in a forest: Implications for animal communication. Am. Nat. 1980, 115, 381–399. [Google Scholar] [CrossRef]
- Schulte-Fortkamp, B.; Jordan, P. Soundscape: The holistic understanding of acoustic environments. In Soundscapes: Humans and Their Acoustic Environment; Springer: Berlin/Heidelberg, Germany, 2023; pp. 49–79. [Google Scholar]
- Lam, B.; Gan, W.-S.; Shi, D.; Nishimura, M.; Elliott, S. Ten questions concerning active noise control in the built environment. Build. Environ. 2021, 200, 107928. [Google Scholar] [CrossRef]
- ISO 12913-1; Acoustics-Soundscape—Part 1: Definition and Conceptual Framework. International Organization for Standardization: Geneva, Switzerland, 2014.
- ISO 12913-2; Acoustics-Soundscape—Part 2: Data Collection and Reporting Requirements. International Organization for Standardization: Geneva, Switzerland, 2018.
- Brown, A.L.; Gjestland, T.; Dubois, D. Acoustic environments and soundscapes. In Soundscape Built Environ; CRC Press: Boca Raton, FL, USA, 2016; pp. 1–16. [Google Scholar]
- Hong, X.-C.; Cheng, S.; Liu, J.; Guo, L.-H.; Dang, E.; Wang, J.-B.; Cheng, Y. How should soundscape optimization from perceived soundscape elements in Urban forests by the riverside be performed? Land 2023, 12, 1929. [Google Scholar] [CrossRef]
- Aletta, F.; Kang, J.; Axelsson, Ö. Soundscape descriptors and a conceptual framework for developing predictive soundscape models. Landsc. Urban Plan. 2016, 149, 65–74. [Google Scholar] [CrossRef]
- Pijanowski, B.C.; Farina, A.; Gage, S.H.; Dumyahn, S.L.; Krause, B.L. What is soundscape ecology? An introduction and overview of an emerging new science. Landsc. Ecol. 2011, 26, 1213–1232. [Google Scholar] [CrossRef]
- Pijanowski, B.C.; Villanueva-Rivera, L.J.; Dumyahn, S.L.; Farina, A.; Krause, B.L.; Napoletano, B.M.; Gage, S.H.; Pieretti, N. Soundscape ecology: The science of sound in the landscape. BioScience 2011, 61, 203–216. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, K.; Zhang, H.; Jiang, Z. Soundscape Perception Preference in an Urban Forest Park: Evidence from Moon Island Forest Park in Lu’an City. Sustainability 2022, 14, 16132. [Google Scholar] [CrossRef]
- Li, N.; Wen, Y.; Wang, Y.; Li, Y.; Chen, Q.; Li, X.; Lv, B. Does Soundscape Perception Lead to Environmentally Responsible Behavior? A Case Study in Longcanggou Forest Park, China. Land 2022, 11, 1505. [Google Scholar] [CrossRef]
- Guo, Y.; Jiang, X.; Zhang, L.; Zhang, H.; Jiang, Z. Effects of sound source landscape in urban forest park on alleviating mental stress of visitors: Evidence from Huolu Mountain Forest Park, Guangzhou. Sustainability 2022, 14, 15125. [Google Scholar] [CrossRef]
- Liu, J.; Xiong, Y.; Wang, Y.; Luo, T. Soundscape effects on visiting experience in city park: A case study in Fuzhou, China. Urban For. Urban Green. 2018, 31, 38–47. [Google Scholar] [CrossRef]
- Arsalan, M.; Chamani, A.; Zamani-Ahmadmahmoodi, R. Sustaining tranquility in small urban green parks: A modeling approach to identify noise pollution contributors. Sustain. Cities Soc. 2024, 113, 105655. [Google Scholar] [CrossRef]
- Hao, Z.; Wang, C.; Sun, Z.; van den Bosch, C.K.; Zhao, D.; Sun, B.; Xu, X.; Bian, Q.; Bai, Z.; Wei, K. Soundscape mapping for spatial-temporal estimate on bird activities in urban forests. Urban For. Urban Green. 2021, 57, 126822. [Google Scholar] [CrossRef]
- Bian, Q.; Zhang, C.; Wang, C.; Yin, L.; Han, W.; Zhang, S. Evaluation of soundscape perception in urban forests using acoustic indices: A case study in Beijing. Forests 2023, 14, 1435. [Google Scholar] [CrossRef]
- Chen, Z.; Zhu, T.-Y.; Liu, J.; Hong, X.-C. Before Becoming a World Heritage: Spatiotemporal Dynamics and Spatial Dependency of the Soundscapes in Kulangsu Scenic Area, China. Forests 2022, 13, 1526. [Google Scholar] [CrossRef]
- Hong, J.Y.; Jeon, J.Y. Relationship between spatiotemporal variability of soundscape and urban morphology in a multifunctional urban area: A case study in Seoul, Korea. Build. Environ. 2017, 126, 382–395. [Google Scholar] [CrossRef]
- Song, X.; Lv, X.; Yu, D.; Wu, Q. Spatial-temporal change analysis of plant soundscapes and their design methods. Urban For. Urban Green. 2018, 29, 96–105. [Google Scholar] [CrossRef]
- Liu, J.; Kang, J.; Luo, T.; Behm, H.; Coppack, T. Spatiotemporal variability of soundscapes in a multiple functional urban area. Landsc. Urban Plan. 2013, 115, 1–9. [Google Scholar] [CrossRef]
- Cox, D.R. Statistical significance tests. Br. J. Clin. Pharmacol. 1982, 14, 325. [Google Scholar] [CrossRef] [PubMed]
- Mazaris, A.D.; Kallimanis, A.S.; Chatzigianidis, G.; Papadimitriou, K.; Pantis, J.D. Spatiotemporal analysis of an acoustic environment: Interactions between landscape features and sounds. Landsc. Ecol. 2009, 24, 817–831. [Google Scholar] [CrossRef]
- Sacchelli, S.; Favaro, M. A Virtual-Reality and Soundscape-Based Approach for Assessment and Management of Cultural Ecosystem Services in Urban Forest. Forests 2019, 10, 731. [Google Scholar] [CrossRef]
- Guo, X.; Liu, J.; Chen, Z.; Hong, X.-C. Harmonious Degree of Sound Sources Influencing Visiting Experience in Kulangsu Scenic Area, China. Forests 2023, 14, 138. [Google Scholar] [CrossRef]
- Christmann, A.; van Aelst, S. Robust estimation of Cronbach’s alpha. J. Multivar. Anal. 2006, 97, 1660–1674. [Google Scholar] [CrossRef]
- Shrestha, N. Factor analysis as a tool for survey analysis. Am. J. Appl. Math. Stat. 2021, 9, 4–11. [Google Scholar] [CrossRef]
- Tobias, S.; Carlson, J.E. Brief report: Bartlett’s test of sphericity and chance findings in factor analysis. Multivar. Behav. Res. 1969, 4, 375–377. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, Q.; Yan, Y.; Lan, T.; Hu, Y.; Zhang, Y.; He, T.; Ye, J. A Study on Spatiotemporal Dynamics and Spatial Dependence of Sound Source Perception in Fuzhou Historical and Cultural Districts. Buildings 2024, 14, 1753. [Google Scholar] [CrossRef]
- Wenyan, X.U.; Huaqing, W.; Hua, S.U.; Sullivan, W.C.; Guangsi, L.I.; Pryor, M.; Jiang, B. Impacts of sights and sounds on anxiety relief in the high-density city. Landsc. Urban Plan. 2024, 241, 104927. [Google Scholar]
- Yuan, S.; Tao, F.; Li, Y. The restorative effects of virtual reality forests on elderly individuals during the COVID-19 lockdown. J. Organ. End User Comput. (JOEUC) 2022, 34, 22. [Google Scholar] [CrossRef]
- Akdağ, N.Y.; Gedik, G.Z.; Kiraz, F.; Şener, B. Effect of mass housing settlement type on the comfortable open areas in terms of noise. Environ. Monit. Assess. 2017, 189, 504. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Lu, J.; Morotomi, K.; Hokao, K. Developing soundscapegraphy for the notation of urban soundscape: Its concept, method, analysis and application. Acta Acust. United Acust. 2009, 95, 65–75. [Google Scholar] [CrossRef]
- Hong, J.Y.; Jeon, J.Y. Exploring spatial relationships among soundscape variables in urban areas: A spatial statistical modelling approach. Landsc. Urban Plan. 2017, 157, 352–364. [Google Scholar] [CrossRef]
- Cohen, J. Eta-squared and partial eta-squared in fixed factor ANOVA designs. Educ. Psychol. Meas. 1973, 33, 107–112. [Google Scholar] [CrossRef]
- Napierala, M.A. What is the Bonferroni correction? Aaos Now 2012, 40–41. Available online: https://docs.ufpr.br/~giolo/CE073/Dados/Apendice/Bonferroni%20Correction.pdf (accessed on 8 December 2024).
- Miles, J. Tolerance and variance inflation factor. In Encyclopedia of Statistics in Behavioral Science; John Wiley and Sons, Ltd.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Chen, W.; Li, H.; Hou, E.; Wang, S.; Wang, G.; Panahi, M.; Li, T.; Peng, T.; Guo, C.; Niu, C. GIS-based groundwater potential analysis using novel ensemble weights-of-evidence with logistic regression and functional tree models. Sci. Total Environ. 2018, 634, 853–867. [Google Scholar] [CrossRef]
- Han, Z.; Kang, J.; Meng, Q. The effect of foreground and background of soundscape sequence on emotion in urban open spaces. Appl. Acoust. 2022, 199, 109039. [Google Scholar] [CrossRef]
- Jain, M.; Diwakar, S.; Bahuleyan, J.; Deb, R.; Balakrishnan, R. A rain forest dusk chorus: Cacophony or sounds of silence? Evol. Ecol. 2014, 28, 1–22. [Google Scholar] [CrossRef]
- Staicer, C.A.; Spector, D.A.; Horn, A.G. The dawn chorus and other diel patterns in acoustic signaling. In Ecology and Evolution of Acoustic Communication in Birds; Cornell University Press: Ithaca, NY, USA, 1996; pp. 426–453. [Google Scholar]
- Li, H.; Xie, H.; Woodward, G. Soundscape components, perceptions, and EEG reactions in typical mountainous urban parks. Urban For. Urban Green. 2021, 64, 127269. [Google Scholar] [CrossRef]
- Hong, J.Y.; Jeon, J.Y. Comparing associations among sound sources, human behaviors, and soundscapes on central business and commercial streets in Seoul, Korea. Build. Environ. 2020, 186, 107327. [Google Scholar] [CrossRef]
- Li, W.; Zhai, J.; Zhu, M. Characteristics and perception evaluation of the soundscapes of public spaces on both sides of the elevated road: A case study in Suzhou, China. Sustain. Cities Soc. 2022, 84, 103996. [Google Scholar] [CrossRef]
- Carvalho Ribeiro, S.; Schroth, O.; Konkoly-Gyuró, E.; Hermes, J.; Boll, T.; von Haaren, C. Landscape aesthetics capacity as a cultural ecosystem service. In Landscape Planning with Ecosystem Services: Theories and Methods for Application in Europe; Springer: Dordrecht, The Nederlands, 2019; pp. 221–252. [Google Scholar]
- Meng, Q.; Kang, J. Effect of sound-related activities on human behaviours and acoustic comfort in urban open spaces. Sci. Total Environ. 2016, 573, 481–493. [Google Scholar] [CrossRef] [PubMed]
- Axelsson, Ö. How to Measure Soundscape Quality. In Proceedings of the EuroNoise 2015 Conference, Maastricht, The Nederlands, 31 May–3 June 2015. [Google Scholar]
- Zhao, Y.; Xu, S.; Huang, Z.; Fang, W.; Huang, S.; Huang, P.; Zheng, D.; Dong, J.; Chen, Z.; Yan, C. Temporal and spatial characteristics of Soundscape ecology in urban forest areas and its landscape spatial influencing factors. Forests 2022, 13, 1751. [Google Scholar] [CrossRef]
- Turner, M.G. Landscape ecology: The effect of pattern on process. Annu. Rev. Ecol. Syst. 1989, 20, 171–197. [Google Scholar] [CrossRef]
- Piechowicz, J. Sound wave diffraction at the edge of a sound barrier. Acta Phys. Pol. A 2011, 119, 1040–1045. [Google Scholar] [CrossRef]
- Pérez-Martínez, G.; Torija, A.J.; Ruiz, D.P. Soundscape assessment of a monumental place: A methodology based on the perception of dominant sounds. Landsc. Urban Plan. 2018, 169, 12–21. [Google Scholar] [CrossRef]
- Mohammadzadeh, N.; Karimi, A.; Brown, R.D. The influence of outdoor thermal comfort on acoustic comfort of urban parks based on plant communities. Build. Environ. 2023, 228, 109884. [Google Scholar] [CrossRef]
- Li, Y.; Xue, C.; Shao, H.; Shi, G.; Jiang, N. Study of the spatiotemporal variation characteristics of forest landscape patterns in Shanghai from 2004 to 2014 based on multisource remote sensing data. Sustainability 2018, 10, 4397. [Google Scholar] [CrossRef]
- Liu, J.; Kang, J.; Behm, H.; Luo, T. Landscape spatial pattern indices and soundscape perception in a multi-functional urban area, Germany. J. Environ. Eng. Landsc. Manag. 2014, 22, 208–218. [Google Scholar] [CrossRef]
- Ren, Y.; Wei, X.; Wang, D.; Luo, Y.; Song, X.; Wang, Y.; Yang, Y.; Hua, L. Linking landscape patterns with ecological functions: A case study examining the interaction between landscape heterogeneity and carbon stock of urban forests in Xiamen, China. For. Ecol. Manag. 2013, 293, 122–131. [Google Scholar] [CrossRef]
- Dzhambov, A.M.; Markevych, I.; Tilov, B.; Arabadzhiev, Z.; Stoyanov, D.; Gatseva, P.; Dimitrova, D.D. Lower noise annoyance associated with GIS-derived greenspace: Pathways through perceived greenspace and residential noise. Int. J. Environ. Res. Public Health 2018, 15, 1533. [Google Scholar] [CrossRef]
Functional Zone | Code | Area (ha) | Number of Sampling Sites | Brief Description |
---|---|---|---|---|
Forest landscape | FL | 75 | 5 | This area is full of natural resources, especially forest landscapes. |
Recreation | RC | 37 | 7 | This area contains several specialized botanical gardens, places for outdoor activities (e.g., barbecues, picnics, and children playing), and a few museums. |
Waterside | WS | 47 | 4 | This area is centered on the “Bayi” Reservoir, a famous reservoir in Fuzhou, and its surrounding waterfront landscapes. |
Cultural landscape | CL | 59 | 5 | This area is characterized by rich historical elements and cultural landscapes, such as historical temples and monumental sites. |
Main Category Sound | Code | Sub-Category Sound |
---|---|---|
Natural sounds | NS | Birds, insects, frogs, wind-induced vegetation, wind, waterfall, stream, water drops |
Human activity sounds | HS | Talking, footsteps, hawking, recreational activity, playing, exercise |
Mechanical sounds | MS | Broadcasting, phones ringing, alarms, construction, traffic, musical instruments, music on the radio |
Main Category | Extracted Principal Components | Code | Explained Variance (%) | Cumulative Variance (%) |
---|---|---|---|---|
Overall soundscape perception | Pleasantness | PLE | 45.8 | 91.1 |
Eventfulness | EVE | 45.3 | ||
Terrain | Composite terrain features | CTF | 66.8 | 66.8 |
Area proportion of land cover type | Area ratio of artificial land cover to forests | Prop_AtF | 72.6 | 92.2 |
Area ratio of shrublands to artificial land cover | Prop_StA | 19.6 | ||
Distance to land cover type | Distance to natural land cover | Dist_NLC | 22.5 | 83.5 |
Distance to artificial land cover | Dist_ALC | 35.8 | ||
Distance to urban transportation | Dist_UT | 25.2 | ||
Landscape: spatial patterns | Landscape structural diversity | LSD | 63.1 | 92.5 |
Landscape shape complexity | LSC | 29.4 |
Sound Attribute | Effect | Type III Sum of Squares | df | Mean Square | F | Sig. | Partial Eta Squared |
---|---|---|---|---|---|---|---|
SHD_NS a | Time | 55.238 | 2 | 27.62 | 6.38 ** | 0.002 | 0.016 |
Space | 392.186 | 3 | 130.73 | 30.19 *** | 0.000 | 0.101 | |
Time × Space | 56.869 | 6 | 9.48 | 2.19 * | 0.042 | 0.016 | |
SHD_HS b | Time | 196.259 | 2 | 98.13 | 13.15 *** | 0.000 | 0.032 |
Space | 67.604 | 3 | 22.53 | 3.02 * | 0.029 | 0.011 | |
Time × Space | 39.927 | 6 | 6.65 | 0.89 | 0.500 | 0.007 | |
SHD_MS c | Time | 144.527 | 2 | 72.26 | 25.91 *** | 0.000 | 0.061 |
Space | 52.605 | 3 | 17.54 | 6.29 *** | 0.000 | 0.023 | |
Time × Space | 75.964 | 6 | 12.66 | 4.54 *** | 0.000 | 0.033 | |
PLE d | Time | 0.244 | 2 | 0.12 | 0.13 | 0.878 | 0.000 |
Space | 43.258 | 3 | 14.42 | 15.35 *** | 0.000 | 0.054 | |
Time × Space | 10.854 | 6 | 1.81 | 1.93 | 0.074 | 0.014 | |
EVE e | Time | 0.681 | 2 | 0.34 | 0.35 | 0.702 | 0.001 |
Space | 22.708 | 3 | 7.57 | 7.86 *** | 0.000 | 0.029 | |
Time × Space | 16.663 | 6 | 2.78 | 2.88 ** | 0.009 | 0.021 |
Acoustic Feature | Effect | Type III Sum of Squares | df | Mean Square | F | Sig. | Partial Eta Squared |
---|---|---|---|---|---|---|---|
LAeq a | Time | 3925.767 | 2 | 1962.88 | 64.13 *** | 0.000 | 0.138 |
Space | 6450.619 | 3 | 2150.21 | 70.24 *** | 0.000 | 0.208 | |
Time × Space | 5618.213 | 6 | 936.37 | 30.59 *** | 0.000 | 0.186 | |
L10 b | Time | 5228.180 | 2 | 2614.09 | 98.62 *** | 0.000 | 0.197 |
Space | 7269.518 | 3 | 2423.17 | 91.42 *** | 0.000 | 0.255 | |
Time × Space | 5190.332 | 6 | 865.06 | 32.64 *** | 0.000 | 0.196 | |
L90 c | Time | 3274.579 | 2 | 1637.29 | 144.31 *** | 0.000 | 0.265 |
Space | 3117.913 | 3 | 1039.30 | 91.60 *** | 0.000 | 0.255 | |
Time × Space | 1055.648 | 6 | 175.94 | 15.51 *** | 0.000 | 0.104 | |
L10–90 d | Time | 266.106 | 2 | 133.05 | 11.53 *** | 0.000 | 0.028 |
Space | 1149.717 | 3 | 383.24 | 33.21 *** | 0.000 | 0.110 | |
Time × Space | 3185.377 | 6 | 530.90 | 46.00 *** | 0.000 | 0.256 |
Dependent Variable | Sampling Period | Independent Variable | Beta | Tolerance | VIF | Adjusted R2 | F |
---|---|---|---|---|---|---|---|
SHD_NS | P1 | Dist_UT | 0.202 *** | 0.873 | 1.145 | 0.154 | 27.403 *** |
LSD | −0.415 *** | 0.873 | 1.145 | ||||
P2 | CTF | 0.214 ** | 0.422 | 2.368 | 0.173 | 24.259 *** | |
LSD | −0.213 ** | 0.425 | 2.351 | ||||
LSC | −0.128 * | 0.969 | 1.032 | ||||
P3 | Prop_AtF | 0.466 * | 0.149 | 6.719 | 0.226 | 14.862 *** | |
LSD | −0.735 *** | 0.145 | 6.899 | ||||
LSC | −0.208 ** | 0.850 | 1.177 | ||||
SHD_HS | P1 | CTF | 0.407 *** | 0.244 | 4.093 | 0.095 | 6.245 *** |
Prop_StA | −0.264 ** | 0.402 | 2.490 | ||||
Dist_UT | 0.526 *** | 0.307 | 3.261 | ||||
LSC | 0.156 * | 0.717 | 1.394 | ||||
LSD | 0.257 ** | 0.321 | 3.120 | ||||
P2 | None | - | - | - | - | - | |
P3 | Prop_StA | 0.207 * | 0.949 | 1.053 | 0.086 | 7.253 *** | |
LSD | 0.166 * | 0.949 | 1.053 | ||||
SHD_MS | P1 | Dist_ALC | 0.262 * | 0.186 | 5.387 | 0.068 | 11.069 *** |
LSD | 0.472 *** | 0.186 | 5.387 | ||||
P2 | Prop_AtF | −0.366 ** | 0.226 | 4.434 | 0.037 | 6.673 *** | |
LSD | 0.241 * | 0.226 | 4.434 | ||||
P3 | None | - | - | - | - | - | |
PLE | P1 | LSD | −0.287 *** | 1.000 | 1.000 | 0.082 | 27.148 *** |
P2 | Prop_AtF | 0.373 ** | 0.226 | 4.434 | 0.075 | 14.236 *** | |
LSD | −0.538 *** | 0.226 | 4.434 | ||||
P3 | LSD | −0.170 * | 1.000 | 1.000 | 0.029 | 4.596 * | |
EVE | P1 | Prop_StA | −0.190 *** | 1.000 | 1.000 | 0.036 | 11.325 *** |
P2 | CTF | 0.108 * | 1.000 | 1.000 | 0.024 | 4.201 *** | |
Prop_StA | −0.11 * | 1.000 | 1.000 | ||||
P3 | Prop_AtF | 0.571 ** | 0.171 | 5.862 | 0.147 | 13.230 *** | |
LSD | −0.821 *** | 0.171 | 5.862 |
Dependent Variable | Functional Zone | Independent Variable | Beta | Tolerance | VIF | Adjusted R2 | F-Statistic |
---|---|---|---|---|---|---|---|
SHD_NS | FL | None | - | - | - | - | - |
RC | Dist_NLC | −0.525 *** | 0.745 | 1.342 | 0.211 | 42.195 *** | |
LSD | 0.343 *** | 0.745 | 1.342 | ||||
WS | Dist_ALC | −0.350 *** | 1.000 | 1.000 | 0.122 | 24.096 *** | |
CL | Prop_StA | 0.272 * | 0.205 | 4.872 | 0.174 | 25.595 *** | |
Dist_NLC | 0.641 *** | 0.205 | 4.872 | ||||
SHD_HS | FL | Dist_ALC | 0.267 * | 1.000 | 1.000 | 0.071 | 5.607 * |
RC | Dist_UT | 0.142 * | 1.000 | 1.000 | 0.020 | 6.506 * | |
WS | Prop_StA | −0.166 * | 1.000 | 1.000 | 0.028 | 4.910 * | |
CL | Prop_AtF | 0.264 *** | 1.000 | 1.000 | 0.070 | 18.235 *** | |
SHD_MS | FL | None | - | - | - | - | - |
RC | Prop_StA | 0.410 ** | 0.119 | 8.393 | 0.177 | 16.818 *** | |
Prop_AtF | 1.059 *** | 0.106 | 9.398 | ||||
Dist_UT | −0.569 *** | 0.124 | 8.062 | ||||
LSD | −0.935 *** | 0.134 | 7.480 | ||||
WS | Dist_NLC | −0.316 *** | 1.000 | 1.000 | 0.100 | 19.226 *** | |
CL | Prop_AtF | 0.229 *** | 1.000 | 1.000 | 0.053 | 13.548 *** | |
PLE | FL | Prop_StA | 0.269 * | 1.000 | 1.000 | 0.072 | 5.702 * |
RC | CTF | −0.320 *** | 0.819 | 1.220 | 0.094 | 16.267 *** | |
Dist_NLC | −0.235 *** | 0.819 | 1.220 | ||||
WS | Dist_ALC | −0.496 *** | 1.000 | 1.000 | 0.246 | 56.586 *** | |
CL | Dist_UT | −0.239 *** | 1.000 | 1.000 | 0.057 | 14.721 *** | |
EVE | FL | None | - | - | - | - | - |
RC | LSD | 0.175 ** | 1.000 | 1.000 | 0.031 | 10.019 ** | |
WS | Prop_StA | −0.324 ** | 0.417 | 2.397 | 0.291 | 35.278 *** | |
Dist_NLC | 0.250 * | 0.417 | 2.397 | ||||
CL | Dist_NLC | 0.133 * | 1.000 | 1.000 | 0.018 | 4.415 * |
Dependent Variable | Sampling Period | Independent Variable | Beta | Tolerance | VIF | Adjusted R2 | F-Statistic |
---|---|---|---|---|---|---|---|
LAeq | P1 | Prop_StA | 0.250 *** | 0.467 | 2.140 | 0.383 | 37.160 *** |
Prop_AtF | −0.599 *** | 0.107 | 9.344 | ||||
Dist_UT | −0.173 * | 0.357 | 2.802 | ||||
LSD | 0.735 *** | 0.102 | 9.838 | ||||
LSC | −0.519 *** | 0.387 | 2.584 | ||||
P2 | Prop_StA | 0.268 *** | 0.299 | 3.348 | 0.554 | 71.300 *** | |
Dist_NLC | 0.496 *** | 0.294 | 3.401 | ||||
Dist_ALC | 0.810 *** | 0.110 | 9.090 | ||||
Dist_UT | 0.490 *** | 0.369 | 2.711 | ||||
LSD | 0.631 *** | 0.109 | 9.208 | ||||
LSC | 0.629 *** | 0.382 | 2.618 | ||||
P3 | Prop_StA | −0.368 *** | 0.385 | 2.597 | 0.507 | 31.052 *** | |
Dist_NLC | 0.489 *** | 0.329 | 3.040 | ||||
Dist_UT | 0.329 *** | 0.525 | 1.904 | ||||
LSD | 0.188 ** | 0.811 | 1.233 | ||||
LSC | 0.638 *** | 0.318 | 3.149 | ||||
L10 | P1 | CTF | −0.135 * | 0.951 | 1.052 | 0.163 | 19.566 *** |
Prop_StA | 0.275 *** | 0.760 | 1.316 | ||||
LSC | −0.126 * | 0.762 | 1.312 | ||||
P2 | Dist_NLC | 0.462 *** | 0.556 | 1.797 | 0.464 | 66.458 *** | |
Dist_ALC | 0.225 *** | 0.930 | 1.076 | ||||
Dist_UT | 0.732 *** | 0.785 | 1.275 | ||||
LSC | 0.532 *** | 0.511 | 1.956 | ||||
P3 | CTF | −0.281 *** | 0.911 | 1.098 | 0.504 | 51.760 *** | |
Dist_NLC | 0.615 *** | 0.552 | 1.812 | ||||
LSC | 0.764 *** | 0.593 | 1.686 | ||||
L90 | P1 | Prop_AtF | −0.535 *** | 0.199 | 5.026 | 0.251 | 33.674 *** |
Dist_UT | 0.216 *** | 0.780 | 1.282 | ||||
LSD | 0.731 *** | 0.179 | 5.590 | ||||
P2 | Dist_NLC | 0.284 *** | 0.556 | 1.797 | 0.477 | 79.097 *** | |
Dist_ALC | 0.130 ** | 0.930 | 1.076 | ||||
Dist_UT | 0.768 *** | 0.785 | 1.275 | ||||
LSC | 0.391 *** | 0.511 | 1.956 | ||||
P3 | Prop_AtF | −0.255 *** | 0.841 | 1.189 | 0.519 | 32.557 *** | |
Prop_StA | −0.322 ** | 0.372 | 2.688 | ||||
Dist_NLC | 0.599 *** | 0.292 | 3.419 | ||||
Dist_UT | 0.546 *** | 0.543 | 1.843 | ||||
LSC | 0.686 *** | 0.328 | 3.051 | ||||
L10–90 | P1 | Prop_StA | 0.380 *** | 0.504 | 1.985 | 0.182 | 22.323 *** |
Dist_UT | −0.320 *** | 0.495 | 2.018 | ||||
LSC | −0.296 *** | 0.721 | 1.387 | ||||
P2 | CTF | −0.596 *** | 0.594 | 1.684 | 0.251 | 38.890 *** | |
Dist_ALC | 0.571 *** | 0.588 | 1.700 | ||||
LSC | 0.194 *** | 0.934 | 1.071 | ||||
P3 | Dist_NLC | 0.568 *** | 0.601 | 1.665 | 0.523 | 55.818 *** | |
LSD | 0.411 *** | 0.974 | 1.027 | ||||
LSC | 0.694 *** | 0.590 | 1.694 |
Dependent Variable | Functional Zone | Independent Variable | Beta | Tolerance | VIF | Adjusted R2 | F-Statistic |
---|---|---|---|---|---|---|---|
LAeq | FL | Dist_ALC | 0.551 * | 0.140 | 7.140 | 0.236 | 11.094 *** |
LSC | 0.951 ** | 0.140 | 7.140 | ||||
RC | CTF | 0.543 *** | 0.319 | 3.132 | 0.682 | 133.712 *** | |
Prop_StA | 0.364 *** | 0.148 | 6.760 | ||||
Dist_NLC | 0.747 *** | 0.263 | 3.796 | ||||
Dist_ALC | −0.451 *** | 0.451 | 2.216 | ||||
Dist_UT | −0.442 *** | 0.197 | 5.085 | ||||
WS | Dist_UT | 0.782 *** | 1.000 | 1.000 | 0.612 | 272.430 *** | |
CL | Prop_StA | 0.254 *** | 1.000 | 1.000 | 0.065 | 16.894 *** | |
L10 | FL | Prop_StA | 0.264 * | 0.818 | 1.222 | 0.263 | 12.817 *** |
Dist_UT | −0.566 *** | 0.818 | 1.222 | ||||
RC | CTF | 0.606 *** | 0.319 | 3.132 | 0.686 | 136.417 *** | |
Prop_StA | 0.38 *** | 0.148 | 6.760 | ||||
Dist_NLC | 0.784 *** | 0.263 | 3.796 | ||||
Dist_ALC | −0.409 *** | 0.451 | 2.216 | ||||
Dist_UT | −0.412 *** | 0.197 | 5.085 | ||||
WS | Prop_AtF | −0.68 *** | 1.000 | 1.000 | 0.462 | 148.835 *** | |
CL | Prop_StA | 0.301 *** | 1.000 | 1.000 | 0.091 | 24.301 *** | |
L90 | FL | Prop_StA | 0.333 ** | 1.000 | 1.000 | 0.111 | 9.081 ** |
RC | CTF | −0.513 *** | 0.524 | 1.907 | 0.760 | 197.947 *** | |
Prop_StA | 0.871 *** | 0.247 | 4.046 | ||||
Dist_ALC | −0.905 *** | 0.495 | 2.020 | ||||
Dist_UT | 0.523 *** | 0.182 | 5.482 | ||||
LSC | 0.672 *** | 0.258 | 3.878 | ||||
WS | CTF | −0.159 * | 0.857 | 1.166 | 0.440 | 67.537 *** | |
Prop_AtF | −0.587 *** | 0.857 | 1.166 | ||||
CL | Prop_StA | 0.127 * | 1.000 | 1.000 | 0.016 | 3.999 * | |
L10–90 | FL | Dist_ALC | 1.587 *** | 0.140 | 7.148 | 0.582 | 33.014 *** |
Dist_UT | −0.467 *** | 0.484 | 2.067 | ||||
LSC | 1.470 *** | 0.119 | 8.384 | ||||
RC | Dist_ALC | −0.702 *** | 0.569 | 1.758 | 0.442 | 82.941 *** | |
Dist_UT | −0.694 *** | 0.689 | 1.452 | ||||
LSD | −0.353 *** | 0.775 | 1.290 | ||||
WS | LSD | 0.647 *** | 0.669 | 1.494 | 0.295 | 36.068 *** | |
LSC | 0.250 ** | 0.669 | 1.494 | ||||
CL | CTF | 0.463 *** | 0.369 | 2.709 | 0.288 | 49.134 *** | |
LSD | 0.825 *** | 0.369 | 2.709 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Zhu, T.-Y.; Guo, X.; Liu, J. Landscape Characteristics Influencing the Spatiotemporal Dynamics of Soundscapes in Urban Forests. Forests 2024, 15, 2171. https://doi.org/10.3390/f15122171
Chen Z, Zhu T-Y, Guo X, Liu J. Landscape Characteristics Influencing the Spatiotemporal Dynamics of Soundscapes in Urban Forests. Forests. 2024; 15(12):2171. https://doi.org/10.3390/f15122171
Chicago/Turabian StyleChen, Zhu, Tian-Yuan Zhu, Xuan Guo, and Jiang Liu. 2024. "Landscape Characteristics Influencing the Spatiotemporal Dynamics of Soundscapes in Urban Forests" Forests 15, no. 12: 2171. https://doi.org/10.3390/f15122171
APA StyleChen, Z., Zhu, T.-Y., Guo, X., & Liu, J. (2024). Landscape Characteristics Influencing the Spatiotemporal Dynamics of Soundscapes in Urban Forests. Forests, 15(12), 2171. https://doi.org/10.3390/f15122171