Vegetation Recovery Patterns at Jeongseon Alpine Stadium, Mount Gariwang, in the Republic of Korea, After the PyeongChang 2018 Winter Olympics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Survey Site Location and Site Conditions
2.2. Field Survey Method and Analysis
2.2.1. Field Survey Method
2.2.2. Analysis Method
3. Results and Discussion
3.1. Differential Species Groups and Characteristics of Vegetation Units
3.2. Species Composition Characteristics According to Disturbance Types and Altitude
3.3. Species Diversity Depending on Disturbance Types
3.4. Detrended Correspondence Analysis Based on Disturbance Types
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tansley, A.G. The use and abuse of vegetational concepts and terms. Ecology 1935, 16, 284–307. [Google Scholar] [CrossRef]
- Golley, F.B. The ecosystem concept: A search for order. Ecol. Res. 1991, 6, 129–138. [Google Scholar] [CrossRef]
- Bradshaw, A.D. Ecological principles and land reclamation practice. Landsc. Plan. 1984, 11, 35–48. [Google Scholar] [CrossRef]
- Shon, Y.H.; Koo, C.D.; Kim, C.S.; Park, P.S.; Yun, C.W.; Lee, K.H. Forest Ecology, 3rd ed.; Hyangmonsa Publishing Company: Seoul, Republic of Korea, 2024; p. 366. [Google Scholar]
- Likens, G.E. The Ecosystem Approach: Its Use and Abuse; Ecology Institute: Oldendorf-Luhe, Germany, 1992; p. 166. [Google Scholar]
- Begon, M.; Townsend, C.R.; Harper, J.L. Ecology: From Individuals to Ecosystems, 5th ed.; Blackwell, Wiley: Hoboken, NJ, USA, 2020; p. 864. [Google Scholar]
- Cowls, H. The ecological relations of the vegetation on the sand dunes of Lake Michigan. Bot. Gaz. 1899, 27, 167–202. [Google Scholar] [CrossRef]
- Clements, F.E. Plant Succession: An Analysis of the Development of Vegetation; Caregie Institution of Washington: Washington, DC, USA, 1916; p. 512. [Google Scholar]
- Kim, G.H.; Sung, H.C.; Choi, J.Y.; Heo, Y.J. Ecology Restoration, Korean ed.; Kimoondang: Seoul, Republic of Korea, 2018; p. 232. [Google Scholar]
- Bill, F. Environmental Ecology: The Ecological Effects of Pollution, Disturbance, and Other Stresses, 2nd ed.; Academic Press: San Diego, CA, USA, 1995; p. 5. [Google Scholar]
- Cho, D.G. Ecological Restoration Planning and Design Vol. 1—Theories, Law, and Institutions in Ecological Restoration, 2nd ed.; Nexus Environmental Design Institute Press: Seoul, Republic of Korea, 2017; p. 583. [Google Scholar]
- Song, J.H.; Yun, C.W.; Cho, Y.H.; Kang, H.K. A study vegetation structure changes between natural land and damaged land in Regional Ecological Network at Chungnam Province. J. Korean Soc. Environ. Restor. Technol. 2017, 20, 13–35. [Google Scholar] [CrossRef]
- Bradshaw, A.D.; Chadwick, J. The Restoration of Land: The Ecology and Reclamation of Derelict and Degraded Land; Blackwell, Wiley: Hoboken, NJ, USA, 1980; p. 317. [Google Scholar]
- SER (Society for Ecological Restoration). Available online: https://www.ser.org/ (accessed on 15 December 2023).
- Choi, J.Y.; Lee, S.H.; Ji, S.Y.; Lee, S.H. Evaluation method development for ecological restorations by damaged types. J. Korean Soc. Environ. Restor. Technol. 2016, 19, 121–133. [Google Scholar] [CrossRef]
- Jeong, S.J.; Oh, K.K.; Oh, J.G. A study on restoration measures of vegetation for devastated ridge line area in national park, Korea. Korean J. Environ. Ecol. 2001, 15, 69–78. [Google Scholar]
- Lee, H.J.; Kim, D.K.; Oh, J.H.; Cha, D.S. Development of soil bioengineering technique for natural recovering of artificial earthworks (Ⅱ). J. Korea Soc. Eng. Technol. 2006, 4, 208–215. [Google Scholar]
- Lee, S.H.; Lee, S.H.; Lee, S.A.; Choi, J.Y. Development of evaluation indices for ecological restoration of degraded environments near DMZ in the Republic of Korea. J. Korean Soc. Environ. Restor. Technol. 2015, 18, 135–151. [Google Scholar] [CrossRef]
- Jang, G.S.; Jeon, S.W.; Kim, S.S. Analysis characteristics of forest damage within the Geum-buk mountain range. J. Korean Inst. Landsc. Archit. 2008, 36, 55–63. [Google Scholar]
- Lee, Y.S.; Lee, D.G.; Yu, Y.G.; Lee, H.J. Application of drone photogrammetry for current state analysis of damage in forest damage areas. J. Korean Soc. Geospat. Inf. Sci. 2016, 24, 49–58. [Google Scholar] [CrossRef]
- Lee, S.H.; Yun, J.U.; Choi, I.Y. Analysis of damage status to the trail in Unmunsan County Park. J. Natl. Park Res. 2021, 12, 1–9. [Google Scholar] [CrossRef]
- Guariguata, M.; Ostertag, R. Neotropical secondary forest succession: Changes in structural and functional characteristics. For. Ecol. Manag. 2001, 148, 158–206. [Google Scholar] [CrossRef]
- Calvo, L.; Tárrega, R.; Luis, E.D. Secondary succession after perturbations in a shrubland community. Acta Oecol. 2002, 23, 393–404. [Google Scholar] [CrossRef]
- Li, B.; Zeng, T.; Ran, J.; Yue, B.; Zhang, M.; Shang, T.; Zhu, D. Characteristics of the early secondary succession after landslides in a broad-leaved deciduous forest in the south Minshan Mountains. For. Ecol. Manag. 2017, 405, 238–245. [Google Scholar] [CrossRef]
- Pueyo, Y.; Beguería, S. Modelling the rate of secondary succession after farmland abandonment in a Mediterranean mountain area. Landsc. Urban Plan. 2007, 83, 245–254. [Google Scholar] [CrossRef]
- KIGMR (Korea Institute of Geoscience and Mineral Resources). Available online: https://data.kigam.re.kr/ (accessed on 26 February 2024).
- Walter, H.; Harnickell, E.; Müller-Dombois, D. Climate-Diagram Maps of the Individual Continents and the Ecological Climatic Regions of the Earth; Springer: Berlin, Germany, 1975; p. 37. [Google Scholar]
- KMA (Korea Meteorological Administration). Available online: https://data.kma.go.kr/ (accessed on 23 January 2024).
- Ellenberg, H. Aufgaben und Methoden der Vegetationskunde; Verlag Eugen Ulmer: Stutthart, Germany, 1956; p. 136. [Google Scholar]
- Braun-Blanquet, J. Pflanzensoziologie Grundzüge der Vegetation der Vegetation, 3rd ed.; Springer: Wien, Austria, 1964; p. 631. [Google Scholar]
- Kim, J.W.; Lee, Y.K. Classification and Assessment of Plant Communities; Worldscience Pulishing Company: Seoul, Republic of Korea, 2006; p. 240. [Google Scholar]
- Lee, C.B. Coloured Flora of Korea, 3rd ed.; Hyangmonsa Publishing Company: Seoul, Republic of Korea, 2003; p. 1828. [Google Scholar]
- Cho, Y.H.; Kim, J.H.; Park, S.H. Grasses and Sedges in South Korea; Geobook Publishing Company: Seoul, Republic of Korea, 2016; p. 528. [Google Scholar]
- Lee, C.S.; Lee, K.H. Pteridophytes of Korea: Lycophytes & Ferns; Geobook Publishing Company: Seoul, Republic of Korea, 2018; p. 492. [Google Scholar]
- KNA(Korea National Arboretum). Checklist of Alien Plants in Korea; Korea National Arboretum: Pocheon, Republic of Korea, 2019; p. 225. [Google Scholar]
- Yun, C.W. Field Guide to Trees and Shrubs; Geobook Publishing Company: Seoul, Republic of Korea, 2023; p. 704. [Google Scholar]
- KNA (Korea National Arboretum). Available online: http://www.nature.go.kr/main/Main.do (accessed on 20 December 2023).
- Curtis, J.T.; McIntosh, R.P. An Upland Forest Continuum in the Prairie-Forest Border Region of Wisconsin. Ecology 1951, 32, 476–496. [Google Scholar] [CrossRef]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Champaign, IL, USA, 1998; p. 144. [Google Scholar]
- Brower, J.E.; Zar, J.H. Field and Laboratory Methods for General Ecology; Wm C Brown Company: Dubuque, IA, USA, 1977; p. 288. [Google Scholar]
- McCune, B.; Grace, J.B. Analysis of Ecological Communities; MjM Software: Eugene, OR, USA, 2002; p. 300. [Google Scholar]
- Hill, M.O. DECORANA—A FORTRAN Program for Detrended Correspondence Analysis and Reciprocal Averaging; Cornell University: Ithaca, NY, USA, 1979; p. 52. [Google Scholar]
- Choung, Y.S.; Lee, J.S.; Cho, S.Y.; Noh, J.S. Review on the succession process of Pinus densiflora forests in South Korea: Progressive and disturbance-driven succession. J. Ecol. Environ. 2020, 44, 16. [Google Scholar] [CrossRef]
- Kondratenko, L.; Gura, D.; Shaidullina, V.; Rogulin, R.; Kondrashev, S. Restoration of vegetation around mining enterprises. Saudi J. Biol. Sci. 2022, 29, 1881–1886. [Google Scholar] [CrossRef]
- Western, L.; Juvik, J.O. Roadside plant communities on Mauna Loa, Hawaii. J. Biogeogr. 1983, 10, 307–316. [Google Scholar] [CrossRef]
- Tyser, R.W.; Worley, C.A. Alien flora in grasslands adjacent to road and trail corridors in Glacier National Park, Montana (USA). Conserv. Biol. 1992, 6, 253–262. [Google Scholar] [CrossRef]
- Wein, R.W.; Wein, G.; Bahret, S.; Cody, W.J. Northward invading non-native vascular plant species in and adjacent to Wood Buffalo national park, Canada. Can. Field-Nat. 1992, 106, 216–224. [Google Scholar] [CrossRef]
- Greenberg, C.H.; Crownover, S.H.; Gordon, D.R. Roadside soil: A corridor for invasion of xeric scrub by nonindigenous plants. Nat. Areas J. 1997, 17, 99–109. [Google Scholar]
- Birdsall, J.L.; McCaughey, W.; Runyon, J.B. Roads impact the recruitment and distribution of noxious weeds more than restoration treatments in a lodgepole pine forest in Montana, USA. Restor. Ecol. 2012, 20, 517–523. [Google Scholar] [CrossRef]
- Clifford, H.T. Seed dispersal by motor vehicles. J. Ecol. 1959, 47, 311–315. [Google Scholar] [CrossRef]
- Schmidt, W. Plant dispersal by motor cars. Vegetatio 1989, 80, 147–152. [Google Scholar] [CrossRef]
- Davis, M.A.; Grime, J.P.; Thompson, K. Fluctuating resources in plant communities: A general theory of invisibility. J. Ecol. 2000, 88, 528–534. [Google Scholar] [CrossRef]
- Parendes, L.A.; Jones, J.A. Role of light availability and dispersal in exotic plant invasion along roads and streams in the H.J. Andrews experimental Forest, Oregon. Conserv. Biol. 2000, 14, 64–75. [Google Scholar] [CrossRef]
- Lee, C.H. Characters and mass propagation of Pteridophyta native to Korea. Korean J. Plant Resour. 2000, 13, 1–10. [Google Scholar]
- Kim, M.H.; Choi, S.K.; Kim, M.K.; Choe, L.J.; Hong, S.C.; Jung, G.B.; Cho, K.J.; Han, D.U.; Oh, Y.J.; Lee, W.J.; et al. Characteristics of flora on dry field margins in Korean peninsula. Korean J. Environ. Agric. 2015, 34, 77–90. [Google Scholar] [CrossRef]
- Kondo, T.; Tsuyuzaki, S. Natural regeneration patterns of the introduced larch, Larix kaempferi (Pinaceae), on the volcano Mount Koma, northern Japan. Divers. Distrib. 1999, 5, 223–233. [Google Scholar] [CrossRef]
- Telenius, B.F. Stand growth of deciduous pioneer tree species on fertile agricultural land in southern Sweden. Biomass Bioenergy 1999, 16, 13–23. [Google Scholar] [CrossRef]
- Hynynen, J.; Niemistö, P.; Viherä-Aarnio, A.; Brunner, A.; Hein, S.; Velling, P. Silviculture of birch (Betula pendula Roth and Betula pubescens Ehrh.) in northern Europe. Forestry 2010, 83, 103–119. [Google Scholar] [CrossRef]
- Byeon, S.Y.; Yun, C.W. Stand structure of actual vegetation in the natural forests and plantation area of Mt. Janggunbong, Bonghwa-gun. Korean J. Environ. Ecol. 2016, 30, 1032–1046. [Google Scholar] [CrossRef]
- Kong, W.S. Species composition and distribution of Korean alpine plants. J. Korean Geogr. Soc. 2002, 37, 357–370. [Google Scholar]
- Kim, Y.S.; Chon, S.H.; Kang, K.H. Floristic study of Odaesan National Park. Korean J. Environ. Ecol. 1996, 9, 77–98. [Google Scholar]
- An, J.H.; Park, H.J.; Nam, G.H.; Lee, B.Y.; Park, C.H.; Kim, J.H. Vertical distribution of vascular plant species along an elevational gradients in the Gyebangsan area of Odaesan National Park. Korean J. Ecol. Environ. 2017, 50, 381–402. [Google Scholar] [CrossRef]
- Yu, J.E.; Lee, J.H.; Kwon, K.W. An analysis of forest community and dynamics according to elevation in Mt. Sokri and Odae. Korean J. Agric. For. Meteorol. 2003, 5, 238–246. [Google Scholar]
- Han, S.H.; Han, S.H.; Yun, C.W. Classification and stand characteristics of subalpine forest vegetation at Hyangjeukbong and Jungbong in Mt. Deogyusan. J. Korean For. Soc. 2016, 105, 48–62. [Google Scholar] [CrossRef]
- Oliver, C.D.; Larson, B.C. Forest Stand Dynamics (Biological Resource Management Series); McGraw-Hill Publishing Company: New York, NY, USA, 1990; p. 467. [Google Scholar]
- Byun, J.G.; Jang, J.W.; Yang, J.C.; Lee, Y.M.; Jung, S.Y.; Ji, S.J.; Jang, J.; Lee, H.J.; Hwang, H.S.; Oh, S.H. The flora of vascular plants in Mt. Gariwang protected area for forest genetic resource conservation, South Korea. Korean J. Plant Resour. 2013, 26, 566–588. [Google Scholar] [CrossRef]
- Zhang, M.; Kim, J.S.; Cho, Y.C.; Bae, S.W.; Yun, C.W.; Byun, B.K.; Bae, K.H. Initial responses of understory vegetation to 15% aggregated retention Harvest in mature oak (Quercus mongolica) forest in Gyunsangbukdo. J. Korea Soc. For. Sci. 2013, 102, 239–246. [Google Scholar]
- Kim, H.H.; Lee, J.E.; Lee, S.Y.; Park, D.E.; Yun, C.W. Vegetation structure of urban forest on Mt. Goehwa, Sejong-si. J. Korea Soc. For. Sci. 2024, 113, 51–65. [Google Scholar] [CrossRef]
- Forman, R.T.T.; Sperling, D.; Bissonette, J.A.; Clevenger, A.P.; Cutshall, C.D.; Dale, V.H. Road Ecology: Science and Solutions; Island Press: Washington, DC, USA, 2003; p. 504. [Google Scholar]
- Mehrhoff, L.A. Reproductive vigor and environmental factors in populations of an endangered North American orchid, Isotria medeoloides (Pursh) Rafinesque. Biol. Conserv. 1989, 47, 281–296. [Google Scholar] [CrossRef]
- Erdős, L.; Gallé, R.; Körmöczi, L.; Bátori, Z. Species composition and diversity of natural forest edges: Edge responses and local edge species. Community Ecol. 2013, 14, 48–58. [Google Scholar] [CrossRef]
- Krebs, C.J. Ecology: The Experimental Analysis of Distribution and Abundance, 3rd ed.; Haber and Row Publishing Company: New York, NY, USA, 1985; p. 672. [Google Scholar]
- Cho, M.G.; Chung, J.M.; Im, H.I.; Noh, I.; Kim, T.W.; Kim, C.Y.; Moon, H.S. Ecological characteristics of sub-alpine coniferous forest on Banyabong in Mt. Jiri. J. Clim. Change Res. 2016, 7, 465–476. [Google Scholar] [CrossRef]
- Whittaker, R.H. Dominance and diversity in land plant communities: Numerical relations of species express the importance of competition in community function and evolution. Science 1965, 147, 250–260. [Google Scholar] [CrossRef]
Environmental Factors | Site | ||||||||
---|---|---|---|---|---|---|---|---|---|
Low Altitude | Middle Altitude | High Altitude | |||||||
C | E | D | C | E | D | C | E | D | |
Altitude (m) | 655.0 | 656.0 | 658.0 | 1057.4 | 1049.8 | 1044.9 | 1359.0 | 1359.0 | 1361.8 |
Slope degree (°) | 15.4 | 13.5 | 15.0 | 12.4 | 14.6 | 15.7 | 10.1 | 3.5 | 5.3 |
Aspect | N | N | N | N | N | N | NE | NE | N |
Bare rock (%) | 36.0 | 65.0 | 71.7 | 40.0 | 59.0 | 55.7 | 9.2 | 23.8 | 21.3 |
Altitudes | Disturbance Types | |||
---|---|---|---|---|
C | E | D | Total | |
Low | 5 | 2 | 6 | 13 |
Middle | 10 | 5 | 7 | 22 |
High | 7 | 4 | 4 | 15 |
Total | 22 | 11 | 17 | 50 |
Species | Community Types | ||
---|---|---|---|
Scientific Name | i | ii | iii |
1. Characteristic species group for three vegetation types; | |||
Fraxinus rhynchophylla | IV + 3 | IV + 2 | IV + 2 |
Rubus crataegifolius | III + 2 | V + 4 | V + 4 |
Stephanandra incisa | II + 3 | III + 4 | III + 2 |
Weigela florida | II + 2 | III + 2 | III + 3 |
Acer pseudosieboldianum | III + 4 | II++ | II++ |
Tripterygium regelii | III + 3 | III + 3 | II++ |
Calamagrostis arundinacea | II + 4 | II + 3 | II + 2 |
Rubus idaeus var. microphyllus | II + 1 | II + 2 | IIr2 |
2. Characteristic and differential species group of the ii and iii communities; | |||
Betula costata | I + 3 | IV14 | IV + 4 |
Prunus glandulifolia | R22 | II + 3 | III + 5 |
Lespedeza bicolor | · | III++ | III + 4 |
Lespedeza cyrtobotrya | · | III + 3 | III + 2 |
Salix caprea | R11 | III + 1 | III + 2 |
Sorbaria sorbifolia var. stellipila | · | II + 2 | III + 2 |
Pinus densiflora | · | III + 3 | IIIr1 |
Maackia amurensis | I++ | III + 1 | III + 1 |
Aralia elata | I + 1 | III + 1 | II + 1 |
Cornus controversa | I + 4 | III +1 | IIr1 |
Carex planiculmis | · | II12 | II + 2 |
Patrinia villosa | · | II + 3 | II + 2 |
Oenothera biennis * | · | II + 2 | II + 1 |
Plantago asiatica | · | II + 1 | IIr+ |
3. Characteristic and differential species group of the i community; | |||
Dryopteris crassirhizoma | IV + 3 | I11 | · |
Polystichum tripteron | IIIr2 | I11 | · |
Deutzia glabrata | II13 | I++ | · |
Acer pictum var. mono | II + 4 | · | I++ |
Schisandra chinensis | III + 4 | · | · |
Athyrium niponicum | III + 2 | · | · |
Actinidia arguta | III + 1 | · | · |
Prunus padus | II14 | · | · |
Tilia amurensis | II + 3 | · | · |
Ainsliaea acerifolia | II + 2 | · | · |
Polystichum braunii | II++ | · | · |
Alangium platanifolium var. trilobum | IIr2 | · | · |
Actaea dahurica | IIr2 | · | · |
4. Characteristic species and differential species group of the i and ii communities; | |||
Magnolia sieboldii | IV + 3 | III + 1 | I++ |
Philadelphus tenuifolius | III + 2 | III + 1 | I++ |
Isodon excisus | III + 2 | II + 1 | I++ |
Quercus mongolica | II + 5 | II + 2 | I++ |
Rhododendron schlippenbachii | II + 4 | II + 3 | Irr |
5. Characteristic species and differential species group of the iii community; | |||
Artemisia indica | · | I++ | IV + 3 |
Artemisia lancea | · | · | II + 3 |
Larix kaempferi | · | I + 1 | II + 1 |
Betula pendula | · | · | II + 1 |
Populus tremula var. davidiana | · | I++ | II + 1 |
Arundinella hirta var. ciliata | · | I++ | II + 1 |
6. Companion species group; | |||
Pinus koraiensis | I + 1 | Irr | Irr |
Solidago virgaurea subsp. asiatica | I++ | I++ | I++ |
Aster scaber | I++ | I++ | · |
Betula ermanii | · | II++ | I++ |
Bidens frondosa * | · | · | I++ |
Others (156 taxa omitted) | |||
Total (207 taxa) |
Species Scientific Name | Altitudes and Disturbance Types | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Low | Middle | High | Total | |||||||
C | E | D | C | E | D | C | E | D | ||
Quercus mongolica | · | · | · | · | · | · | 100.0 | · | · | 44.3 |
Acer pictum var. mono | · | · | · | 24.4 | · | · | · | · | · | 8.5 |
Tilia mandshurica | 43.3 | · | · | · | · | · | · | · | · | 8.5 |
Cornus controversa | · | · | · | 24.4 | · | · | · | · | · | 8.5 |
Betula costata | · | · | · | 18.6 | · | · | · | · | · | 6.6 |
Fraxinus rhynchophylla | 32.6 | · | · | · | · | · | · | · | · | 6.6 |
Betula schmidtii | · | · | · | 18.6 | · | · | · | · | · | 6.6 |
Ulmus laciniata | · | · | · | 14.0 | · | · | · | · | · | 5.1 |
Quercus serrata | 24.1 | · | · | · | · | · | · | · | · | 5.1 |
Total (n = 9) | 100.0 | · | · | 100.0 | · | · | 100.0 | · | · | 100.0 |
Species Scientific Name | Altitudes and Disturbance Types | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Low | Middle | High | Total | |||||||
C | E | D | C | E | D | C | E | D | ||
Prunus glandulifolia | · | · | 66.5 | 6.3 | 78.8 | · | · | · | · | 25.9 |
Prunus padus | · | · | · | 40.6 | · | · | · | · | · | 15.9 |
Tilia amurensis | · | · | · | · | · | · | 53.5 | · | · | 8.0 |
Magnolia sieboldii | 27.7 | · | · | 4.6 | 21.2 | · | · | · | · | 7.4 |
Acer pictum var. mono | 14.7 | · | · | 9.1 | · | · | · | · | · | 5.5 |
Vitis amurensis | · | · | · | 13.0 | · | · | · | · | · | 5.2 |
Ulmus laciniata | · | · | · | 12.6 | · | · | · | · | · | 4.9 |
Acer pseudosieboldianum | · | · | · | · | · | · | 34.3 | · | · | 4.9 |
Morus bombycis | 37.9 | · | · | · | · | · | · | · | · | 4.9 |
Rhus chinensis | · | · | 14.9 | · | · | · | · | · | · | 3.6 |
Fraxinus rhynchophylla | 19.6 | · | · | · | · | · | · | · | · | 2.5 |
Juglans mandshurica | · | · | · | 4.6 | · | · | · | · | · | 1.9 |
Aralia elata | · | · | 9.3 | · | · | · | · | · | · | 1.9 |
Tripterygium regelii | · | · | · | 4.6 | · | · | · | · | · | 1.9 |
Pinus koraiensis | · | · | · | · | · | · | 12.1 | · | · | 1.9 |
Acer barbinerve | · | · | · | 4.6 | · | · | · | · | · | 1.9 |
Cornus controversa | · | · | 9.3 | · | · | · | · | · | · | 1.9 |
Total (n = 17) | 100.0 | · | 100.0 | 100.0 | 100.0 | · | 100.0 | · | · | 100.0 |
Species Scientific Name | Altitudes and Disturbance Types | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Low | Middle | High | Total | |||||||
C | E | D | C | E | D | C | E | D | ||
Stephanandra incisa | 4.4 | 4.4 | 25.4 | 4.9 | 10.1 | · | · | 2.8 | · | 7.1 |
Betula costata | · | 17.0 | 3.2 | · | 3.5 | 15.8 | 4.5 | 20.0 | 12.9 | 6.8 |
Lespedeza cyrtobotrya | · | 4.4 | 17.7 | · | 10.4 | 11.9 | · | 7.2 | 5.5 | 6.5 |
Weigela florida | 3.7 | · | 9.4 | 2.2 | 3.5 | · | 8.0 | 10.0 | 22.5 | 6.0 |
Rubus crataegifolius | 1.5 | · | 9.1 | 0.9 | 7.3 | · | 4.5 | 13.5 | 20.8 | 6.0 |
Prunus padus | · | · | · | 21.8 | · | · | · | · | · | 4.2 |
Rhododendron schlippenbachii | · | · | · | 0.9 | · | · | 34.5 | 7.2 | · | 4.1 |
Lindera obtusiloba | 30.8 | 7.5 | · | · | · | · | · | · | · | 3.7 |
Lespedeza bicolor | · | 3.0 | 1.8 | · | 1.4 | 18.1 | · | 2.0 | 9.4 | 3.4 |
Deutzia glabrata | 6.1 | · | · | 10.7 | 1.4 | · | · | · | · | 2.9 |
Acer pseudosieboldianum | · | · | · | 4.7 | 1.4 | · | 15.7 | · | 1.9 | 2.7 |
Salix caprea | · | · | · | 1.3 | 3.5 | 12.5 | · | 4.8 | 1.9 | 2.6 |
Magnolia sieboldii | 4.4 | 3.0 | · | 3.5 | 4.9 | · | 4.5 | 2.8 | · | 2.6 |
Aralia elata | 2.2 | · | 1.8 | · | 7.3 | · | 4.5 | 2.8 | 5.8 | 2.5 |
Rubus idaeus var. microphyllus | · | · | · | 2.2 | 16.7 | 2.3 | · | · | · | 2.4 |
Prunus glandulifolia | · | · | · | · | 7.0 | 14.0 | · | · | · | 2.4 |
Philadelphus tenuifolius | 4.4 | 3.0 | · | 6.0 | 2.1 | · | 1.9 | · | · | 2.3 |
Tripterygium regelii | · | · | · | 5.8 | 6.6 | · | 2.7 | 2.0 | · | 2.3 |
Sorbaria sorbifolia var. stellipila | · | · | 4.2 | · | · | 6.3 | · | 4.4 | 5.0 | 2.1 |
Rhus chinensis | 3.9 | 7.5 | 4.6 | 0.9 | 2.7 | · | · | · | · | 2.0 |
Fraxinus rhynchophylla | 8.8 | · | 4.2 | · | · | · | · | · | 3.0 | 1.7 |
Lespedeza maximowiczii | 2.2 | 4.4 | 8.0 | · | · | · | · | · | · | 1.7 |
Larix kaempferi | · | · | 7.4 | · | · | 3.8 | · | · | · | 1.5 |
Others (40 taxa) | 27.5 | 46.0 | 3.2 | 34.2 | 10.5 | 15.3 | 19.2 | 20.5 | 11.1 | 20.3 |
Total (n = 63) | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Species Scientific Name | Altitudes and Disturbance Types | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Low | Middle | High | Total | |||||||
C | E | D | C | E | D | C | E | D | ||
Betula costata | · | 1.7 | 0.6 | · | 18.1 | 33.8 | 0.8 | 2.2 | 2.3 | 7.9 |
Rubus crataegifolius | 0.5 | 14.9 | 12.1 | 1.7 | 7.6 | 1.5 | 3.8 | 7.2 | 18.6 | 5.7 |
Calamagrostis arundinacea | · | · | 0.6 | 0.6 | 0.5 | 0.4 | 19.0 | 5.8 | 4.1 | 4.6 |
Schisandra chinensis | 19.4 | · | · | 11.1 | · | · | · | · | · | 3.6 |
Carex siderosticta | 1.0 | · | · | · | 1.4 | · | 7.8 | 7.7 | 9.5 | 3.4 |
Carex lanceolata | 0.5 | · | · | 1.8 | 3.3 | · | 14.2 | 3.0 | · | 3.4 |
Fraxinus rhynchophylla | 4.4 | 21.9 | 9.3 | 2.2 | 3.0 | 4.4 | 1.2 | 1.0 | · | 3.3 |
Dryopteris crassirhizoma | 5.8 | · | · | 24.0 | 1.4 | · | · | · | · | 3.3 |
Stephanandra incisa | 1.9 | 7.4 | 9.9 | 7.0 | 4.3 | 0.8 | · | 0.5 | 4.9 | 2.8 |
Artemisia indica | · | 1.7 | 9.8 | · | 0.5 | 6.1 | · | · | 8.3 | 2.6 |
Isodon excisus | 3.6 | 7.4 | 0.6 | 5.7 | 1.1 | · | 0.8 | 1.1 | 1.4 | 2.5 |
Polystichum tripteron | 6.3 | · | · | 3.5 | 1.4 | · | · | · | · | 1.8 |
Tripterygium regelii | 0.5 | · | · | 2.4 | 2.4 | 1.9 | 2.4 | 2.8 | · | 1.5 |
Patrinia villosa | · | · | 1.2 | · | · | 0.4 | · | 5.7 | 6.5 | 1.5 |
Rubus idaeus var. microphyllus | · | · | · | · | 7.1 | 3.1 | 0.8 | · | 1.4 | 1.4 |
Rhododendron schlippenbachii | · | · | · | 0.6 | · | 0.4 | 3.8 | 5.5 | · | 1.4 |
Carex planiculmis | · | · | · | · | 1.4 | 2.1 | · | 4.7 | 3.4 | 1.3 |
Artemisia lancea | · | · | 5.5 | · | · | 4.5 | · | · | 0.7 | 1.2 |
Sorbaria sorbifolia var. stellipila | · | · | · | · | 2.4 | 3.4 | · | 2.5 | 1.4 | 1.2 |
Diarrhena japonica | · | · | 1.2 | · | · | 0.8 | 3.0 | 3.5 | · | 1.1 |
Athyrium niponicum | 3.2 | · | · | 1.1 | · | · | 3.3 | · | · | 1.1 |
Weigela florida | 1.5 | · | 6.7 | · | · | · | 0.4 | 0.5 | 2.3 | 1.1 |
Isodon inflexus | 0.9 | 1.7 | · | 0.6 | 0.5 | 0.8 | 0.8 | 2.7 | 3.0 | 1.1 |
Erigeron annuus * | · | · | 0.6 | · | · | · | · | 7.7 | · | 1.0 |
Others (173 taxa) | 50.6 | 43.2 | 41.9 | 37.8 | 43.6 | 35.8 | 38.0 | 35.8 | 32.2 | 40.1 |
Total (n = 197) | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Site | |||||||||
---|---|---|---|---|---|---|---|---|---|
L | M | H | |||||||
C | E | D | C | E | D | C | E | D | |
S | 25.4 | 19.5 | 17.0 | 19.7 | 23.2 | 21.3 | 21.3 | 28.0 | 22.0 |
H′ | 2.0 | 1.9 | 1.6 | 1.6 | 1.7 | 1.4 | 1.7 | 2.1 | 1.9 |
J′ | 0.6 | 0.7 | 0.5 | 0.5 | 0.5 | 0.5 | 0.6 | 0.6 | 0.6 |
1 − J′ | 0.4 | 0.3 | 0.5 | 0.5 | 0.5 | 0.5 | 0.4 | 0.4 | 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-W.; Lee, J.-E.; Song, J.-H.; Yun, C.-W. Vegetation Recovery Patterns at Jeongseon Alpine Stadium, Mount Gariwang, in the Republic of Korea, After the PyeongChang 2018 Winter Olympics. Forests 2024, 15, 2014. https://doi.org/10.3390/f15112014
Lee S-W, Lee J-E, Song J-H, Yun C-W. Vegetation Recovery Patterns at Jeongseon Alpine Stadium, Mount Gariwang, in the Republic of Korea, After the PyeongChang 2018 Winter Olympics. Forests. 2024; 15(11):2014. https://doi.org/10.3390/f15112014
Chicago/Turabian StyleLee, Su-Won, Jeong-Eun Lee, Ju-Hyeon Song, and Chung-Weon Yun. 2024. "Vegetation Recovery Patterns at Jeongseon Alpine Stadium, Mount Gariwang, in the Republic of Korea, After the PyeongChang 2018 Winter Olympics" Forests 15, no. 11: 2014. https://doi.org/10.3390/f15112014
APA StyleLee, S.-W., Lee, J.-E., Song, J.-H., & Yun, C.-W. (2024). Vegetation Recovery Patterns at Jeongseon Alpine Stadium, Mount Gariwang, in the Republic of Korea, After the PyeongChang 2018 Winter Olympics. Forests, 15(11), 2014. https://doi.org/10.3390/f15112014