Detecting Trends in Post-Fire Forest Recovery in Middle Volga from 2000 to 2023
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Method
2.2.1. Remote Sensing
2.2.2. Climate Data
2.2.3. Burn Severity
2.2.4. LandTrendr Algorithm
2.2.5. Spectral Forest Recovery Metrics
2.2.6. Reference Data Collection and Validation
2.2.7. Trend Analysis
3. Results
3.1. Burn Severity Analysis
3.2. Statistical Comparison of the Spectral Metrics
3.3. Vegetation Recovery Following Wildfire
3.4. Spatial Analyses of Forest Recovery
3.5. Assessing the Impact of Climate Factors on Forest Recovery
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poorter, L.; Craven, D.; Jakovac, C.C.; van der Sande, M.T.; Amissah, L.; Bongers, F.; Chazdon, R.L.; Farrior, C.E.; Kambach, S.; Meave, J.A.; et al. Multidimensional tropical forest recovery. Science 2021, 374, 1370–1376. [Google Scholar] [PubMed]
- Alayan, R.; Rotich, B.; Lakner, Z.A. Comprehensive framework for forest restoration after forest fires in theory and practice: A systematic review. Forests 2022, 13, 1354. [Google Scholar] [CrossRef]
- Strassburg, B.B.N.; Beyer, H.L.; Crouzeilles, R.; Iribarrem, A.; Barros, F.; de Siqueira, M.F.; Sánchez-Tapia, A.; Balmford, A.; Sansevero, J.B.B.; Brancalion, P.H.S.; et al. Strategic approaches to restoring ecosystems can triple conservation gains and halve costs. Nat. Ecol. Evol. 2019, 3, 62–70. [Google Scholar] [CrossRef] [PubMed]
- FAO. Global Forest Resources Assessment 2020: Main Report; FAO: Rome, Italy, 2020; 184p. [Google Scholar]
- Chen, X.; Chen, W.; Xu, M. Remote-sensing monitoring of postfire vegetation dynamics in the Greater Hinggan mountain range based on long time-series data: Analysis of the effects of six topographic and climatic factors. Remote Sens. 2022, 14, 2958. [Google Scholar] [CrossRef]
- Lasslop, G.; Hantson, S.; Harrison, S.P.; Bachelet, D.; Burton, C.; Forkel, M.; Forrest, M.; Li, F.; Melton, J.R.; Yue, C.; et al. Global ecosystems and fire: Multi-model assessment of fire-induced tree-cover and carbon storage reduction. Glob. Chang. Biol. 2020, 26, 5027–5041. [Google Scholar] [CrossRef]
- Vasques, A.; Baudena, M.; Vallejo, V.R.; Kefi, S.; Bautista, S.; Santana, V.M.; Baeza, M.J.; Maia, P.; Keizer, J.J.; Rietkerk, M. Post-fire regeneration traits of understorey shrub species modulate successional responses to high severity fire in Mediterranean pine forests. Ecosystems 2022, 26, 146–160. [Google Scholar] [CrossRef]
- Otoda, T.; Doi, T.; Sakamoto, K.; Hirobe, M.; Nachin, B.; Yoshikawa, K. Frequent fires may alter the future composition of the boreal forest in northern Mongolia. J. For. Res. 2012, 18, 246–255. [Google Scholar] [CrossRef]
- Chu, T.; Guo, X. Remote sensing techniques in monitoring post-fire effects and patterns of forest recovery in boreal forest regions: A review. Remote Sens. 2014, 6, 470–520. [Google Scholar]
- Kurbanov, E.; Vorobev, O.; Lezhnin, S.; Sha, J.; Wang, J.; Li, X.; Cole, J.; Dergunov, D.; Wang, Y. Remote sensing of forest burnt area, burn severity, and post-fire recovery: A review. Remote Sens. 2022, 14, 4714. [Google Scholar] [CrossRef]
- Souza-Alonso, P.; Saiz, G.; García, R.A.; Pauchard, A.; Ferreira, A.; Merino, A. Post-fire ecological restoration in Latin American forest ecosystems: Insights and lessons from the last two decades. For. Ecol. Manag. 2022, 509, 120083. [Google Scholar]
- Frazier, R.J.; Coops, N.C.; Wulder, M.A.; Hermosilla, T.; White, J.C. Analyzing spatial and temporal variability in short-term rates of post-fire vegetation return from Landsat time series. Remote Sens. Environ. 2018, 205, 32–45. [Google Scholar] [CrossRef]
- Gitas, I.; Mitri, G.; Veraverbeke, S.; Polychronaki, A. Advances in remote sensing of post-fire vegetation recovery monitoring—A review. In Remote Sensing of Biomass—Principles and Applications; Fatoyinbo, L., Ed.; InTech: London, UK, 2012; ISBN 978-953-51-0313-4. [Google Scholar]
- Perez-Cabello, F.; Montorio, R.; Alves, D.B. Remote sensing techniques to assess post-fire vegetation recovery. Curr. Opin. Environ. Sci. Health 2021, 21, 100251. [Google Scholar] [CrossRef]
- Alatorre, L.; Sánchez, E.; Amado, J.; Wiebe, L.; Torres, M.; Rojas, H.; Bravo, L.; López, E. Analysis of the temporal and spatial evolution of recovery and degradation processes in vegetated areas using a time series of Landsat TM images (1986–2011): Central region of Chihuahua, Mexico. Open J. For. 2015, 5, 162–180. [Google Scholar] [CrossRef]
- Bartels, S.F.; Chen, H.Y.H.; Wulder, M.A.; White, J.C. Trends in post-disturbance recovery rates of Canada’s forests following wildfire and harvest. For. Ecol. Manag. 2016, 361, 194–207. [Google Scholar] [CrossRef]
- Hislop, S.; Haywood, A.; Jones, S.; Soto-Berelov, M.; Skidmore, A.; Nguyen, T.H. A satellite data driven approach to monitoring and reporting fire disturbance and recovery across boreal and temperate forests. Int. J. Appl. Earth Obs. Geoinf. 2020, 87, 102034. [Google Scholar] [CrossRef]
- Chu, T.; Guo, X.; Takeda, K. Effects of burn severity and environmental conditions on post-fire regeneration in Siberian Larch forest. Forests 2017, 8, 76. [Google Scholar] [CrossRef]
- Santana, N.C.; Júnior, O.A.d.C.; Gomes, R.A.T.; Fontes Guimarães, R. Comparison of post-fire patterns in Brazilian savanna and tropical forest from remote sensing time series. ISPRS Int. J. Geo-Inf. 2020, 9, 659. [Google Scholar] [CrossRef]
- Ryu, J.-H.; Han, K.-S.; Hong, S.; Park, N.-W.; Lee, Y.-W.; Cho, J. Satellite-based evaluation of the post-fire recovery process from the worst forest fire case in South Korea. Remote Sens. 2018, 10, 918. [Google Scholar] [CrossRef]
- Avetisyan, D.; Velizarova, E.; Filchev, L. Post-fire forest vegetation state monitoring through satellite remote sensing and in situ data. Remote Sens. 2022, 14, 6266. [Google Scholar] [CrossRef]
- Ba, R.; Lovallo, M.; Song, W.; Zhang, H.; Telesca, L. Multifractal analysis of MODIS Aqua and Terra satellite time series of normalized difference vegetation index and enhanced vegetation index of sites affected by wildfires. Entropy 2022, 24, 1748. [Google Scholar] [CrossRef]
- Bonannella, C.; Chirici, G.; Travaglini, D.; Pecchi, M.; Vangi, E.; D’Amico, G.; Giannetti, F. Characterization of wildfires and harvesting forest disturbances and recovery using Landsat time series: A case study in Mediterranean forests in central Italy. Fire 2022, 5, 68. [Google Scholar] [CrossRef]
- Vandansambuu, B.; Gantumur, B.; Wu, F.; Byambasuren, O.; Bayarsaikhan, S.; Chantsal, N.; Batsaikhan, N.; Bao, Y.; Vandansambuu, B.; Jimseekhuu, M.-E. Assessment of burn severity and monitoring of the wildfire recovery process in Mongolia. Fire 2023, 6, 373. [Google Scholar] [CrossRef]
- White, J.C.; Hermosilla, T.; Wulder, M.A.; Coops, N.C. Mapping, validating, and interpreting spatio-temporal trends in post-disturbance forest recovery. Remote Sens. Environ. 2022, 271, 112904. [Google Scholar]
- Meneses, B.M. Vegetation recovery patterns in burned areas assessed with Landsat 8 OLI imagery and environmental biophysical data. Fire 2021, 4, 76. [Google Scholar] [CrossRef]
- Han, A.; Qing, S.; Bao, Y.; Na, L.; Bao, Y.; Liu, X.; Zhang, J.; Wang, C. Short-term effects of fire severity on vegetation based on sentinel-2 satellite data. Sustainability 2021, 13, 432. [Google Scholar] [CrossRef]
- Sun, Q.; Burrell, A.; Barrett, K.; Kukavskaya, E.; Buryak, L.; Kaduk, J.; Baxter, R. Climate variability may delay post-fire recovery of boreal forest in southern Siberia, Russia. Remote Sens. 2021, 13, 2247. [Google Scholar] [CrossRef]
- Hao, B.; Xu, X.; Wu, F.; Tan, L. Long-term effects of fire severity and climatic factors on post-forest-fire vegetation recovery. Forests 2022, 13, 883. [Google Scholar] [CrossRef]
- Wilson, A.M.; Latimer, A.M.; Silander, J.A. Climatic controls on ecosystem resilience: Postfire regeneration in the Cape floristic region of South Africa. Proc. Natl. Acad. Sci. USA 2015, 112, 9058–9063. [Google Scholar] [CrossRef]
- Viana-Soto, A.; Aguado, I.; Salas, J.; García, M. Identifying post-fire recovery trajectories and driving factors using Landsat Time series in fire-prone Mediterranean pine forests. Remote Sens. 2020, 12, 1499. [Google Scholar] [CrossRef]
- Bassett, M.; Leonard, S.W.; Chia, E.K.; Clarke, M.F.; Bennett, A.F. Interacting effects of fire severity, time since fire and topography on vegetation structure after wildfire. For. Ecol. Manag. 2017, 396, 26–34. [Google Scholar]
- Haffey, C.; Sisk, T.D.; Allen, C.D.; Thode, A.E.; Margolis, E.Q. Limits to ponderosa pine regeneration following large high-severity forest fires in the United States Southwest. Fire Ecol. 2018, 14, 143–163. [Google Scholar]
- Rammer, W.; Braziunas, K.H.; Hansen, W.D.; Ratajczak, Z.; Westerling, A.L.; Turner, M.G.; Seidl, R. Widespread regeneration failure in forests of Greater Yellowstone under scenarios of future climate and fire. Glob. Chang. Biol. 2021, 27, 4339–4351. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Wang, L.; Luo, J.; Zhang, B.; Deng, Q.; Liu, H. Topographic factors drive short-term understory revegetation in burned areas. Fire 2022, 5, 171. [Google Scholar] [CrossRef]
- Christopoulou, A.; Mallinis, G.; Vassilakis, E.; Farangitakis, G.-P.; Fyllas, N.M.; Kokkoris, G.D.; Arianoutsou, M. Assessing the impact of different landscape features on post-fire forest recovery with multitemporal remote sensing data: The case of Mount Taygetos (southern Greece). Int. J. Wildl. Fire 2019, 28, 521–532. [Google Scholar] [CrossRef]
- Alegria, C. Vegetation monitoring and post-fire recovery: A case study in the centre inland of Portugal. Sustainability 2022, 14, 12698. [Google Scholar] [CrossRef]
- Blanco-Rodríguez, M.Á.; Ameztegui, A.; Gelabert, P.; Rodrigues, M.; Coll, L. Short-term recovery of post-fire vegetation is primarily limited by drought in Mediterranean forest ecosystems. Fire Ecol. 2023, 19, 68. [Google Scholar] [CrossRef]
- Maillard, O. Post-fire natural regeneration trends in Bolivia: 2001–2021. Fire 2023, 6, 18. [Google Scholar] [CrossRef]
- Key, C.H.; Benson, N.C. Landscape assessment: Remote sensing measure of severity, the normalized burn ratio. In FIREMON: Fire Effects Monitoring and Inventory System; Lute, D.C., Ed.; USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006; pp. 305–325. [Google Scholar]
- Collins, B.M.; Roller, G.B. Early forest dynamics in stand-replacing fire patches in the northern Sierra Nevada. Landsc. Ecol. 2013, 28, 1801–1813. [Google Scholar] [CrossRef]
- Barrett, K.; Baxter, R.; Kukavskaya, E.; Balzter, H.; Shvetsov, E.; Buryak, L. Postfire recruitment failure in Scots pine forests of southern Siberia. Remote Sens. Environ. 2020, 237, 111539. [Google Scholar]
- Guz, J.; Sangermano, F.; Kulakowski, D. The Influence of burn severity on post-fire spectral recovery of three fires in the southern Rocky Mountains. Remote Sens. 2022, 14, 1363. [Google Scholar] [CrossRef]
- Dvornikov, Y.; Novenko, E.; Korets, M.; Olchev, A. Wildfire dynamics along a north-central Siberian latitudinal transect assessed using Landsat imagery. Remote Sens. 2022, 14, 790. [Google Scholar] [CrossRef]
- Crotteau, J.S.; Morgan Varner, J.; Ritchie, M.W. Post-fire regeneration across a fire severity gradient in the southern Cascades. For. Ecol. Manage. 2013, 287, 103–112. [Google Scholar] [CrossRef]
- Viana-Soto, A.; Okujeni, A.; Pflugmacher, D.; García, M.; Aguado, I.; Hostert, P. Quantifying post-fire shifts in woody-vegetation cover composition in Mediterranean pine forests using Landsat time series and regression-based unmixing. Remote Sens. Environ. 2022, 281, 113239. [Google Scholar] [CrossRef]
- Williams, N.G.; Lucash, M.S.; Ouellette, M.R.; Brussel, T.; Gustafson, E.J.; Weiss, S.A.; Sturtevant, B.R.; Schepaschenko, D.G.; Shvidenko, A.Z. Simulating dynamic fire regime and vegetation change in a warming Siberia. Fire Ecol. 2023, 19, 33. [Google Scholar] [CrossRef]
- Wan, H.Y.; Olson, A.C.; Muncey, K.D.; St Clair, S.B. Legacy effects of fire size and severity on forest regeneration, recruitment, and wildlife activity in aspen forests. For. Ecol. Manag. 2014, 329, 59–68. [Google Scholar] [CrossRef]
- Lewis, J.S.; St. Clair, S.B.; Fairweather, M.L.; Rubin, E.S. Fire severity and ungulate herbivory shape forest regeneration and recruitment after a large mixed-severity wildfire. For. Ecol. Manag. 2024, 555, 121692. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar] [CrossRef]
- Velastegui-Montoya, A.; Montalván-Burbano, N.; Carrión-Mero, P.; Rivera-Torres, H.; Sadeck, L.; Adami, M. Google Earth Engine: A global analysis and future trends. Remote Sens. 2023, 15, 3675. [Google Scholar] [CrossRef]
- Huang, C.; Goward, S.N.; Masek, J.G.; Thomas, N.; Zhu, Z.; Vogelmann, J.E. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens. Environ. 2010, 114, 183–198. [Google Scholar] [CrossRef]
- Jamali, S.; Jönsson, P.; Eklundh, L.; Ardö, J.; Seaquist, J. Detecting changes in vegetation trends using time series segmentation. Remote Sens. Environ. 2015, 156, 182–195. [Google Scholar] [CrossRef]
- Zhu, Z. Change detection using Landsat time series: A review of frequencies, preprocessing, algorithms, and applications. ISPRS J. Photogramm. Remote Sens. 2017, 130, 370–384. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Gorelick, N.; Braaten, J.; Cavalcante, L.; Cohen, W.B.; Healey, S. Implementation of the LandTrendr algorithm on Google Earth Engine. Remote Sens. 2018, 10, 691. [Google Scholar] [CrossRef]
- Cohen, W.; Yang, Z.; Healey, S.; Kennedy, R.; Gorelick, N. A LandTrendr multispectral ensemble for forest disturbance detection. Remote Sens. Environ. 2018, 205, 131–140. [Google Scholar] [CrossRef]
- Cohen, W.B.; Healey, S.P.; Yang, Z.; Stehman, S.V.; Brewer, C.K.; Brooks, E.B.; Gorelick, N.; Huang, C.; Hughes, M.J.; Kennedy, R.E.; et al. How similar are forest disturbance maps derived from different Landsat time series algorithms? Forests 2017, 8, 98. [Google Scholar] [CrossRef]
- Bonney, M.T.; He, Y.; Myint, S.W. Contextualizing the 2019–2020 Kangaroo island bushfires: Quantifying landscape-level influences on past severity and recovery with Landsat and Google Earth Engine. Remote Sens. 2020, 12, 3942. [Google Scholar] [CrossRef]
- Han, Y.; Ke, Y.; Zhu, L.; Feng, H.; Zhang, Q.; Sun, Z.; Zhu, L. Tracking vegetation degradation and recovery in multiple mining areas in Beijing, China, based on time-series Landsat imagery. GISci. Remote Sens. 2021, 58, 1477–1496. [Google Scholar] [CrossRef]
- Hird, J.N.; Kariyeva, J.; McDermid, G.J. Satellite time series and Google Earth Engine democratize the process of forest-recovery monitoring over large areas. Remote Sens. 2021, 13, 4745. [Google Scholar] [CrossRef]
- Zhang, Q.; Homayouni, S.; Zhao, P.; Zhou, M. Burned vegetation recovery trajectory and its driving factors using satellite remote-sensing datasets in the Great Xing’An forest region of Inner Mongolia. Int. J. Wildland Fire 2023, 32, 244–261. [Google Scholar] [CrossRef]
- Bright, B.C.; Hudak, A.T.; Kennedy, R.E.; Braaten, J.D.; Khalyani, A.H. Examining post-fire vegetation recovery with Landsat time series analysis in three western North American forest types. Fire Ecol. 2019, 15, 8. [Google Scholar] [CrossRef]
- Hua, J.; Chen, G.; Yu, L.; Ye, Q.; Jiao, H.; Luo, X. Improved mapping of long-term forest disturbance and recovery dynamics in the subtropical China using all available Landsat time-series imagery on Google Earth Engine platform. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2754–2768. [Google Scholar] [CrossRef]
- Ren, H.; Ren, C.; Wang, Z.; Jia, M.; Yu, W.; Liu, P.; Xia, C. Continuous tracking of forest disturbance and recovery in the Greater Khingan mountains from annual Landsat Imagery. Remote Sens. 2023, 15, 5426. [Google Scholar] [CrossRef]
- Hambinintsoa, A.H.R.; Harto, A.B.; Virtriana, R. Spatio-temporal spectral trajectory pattern to continuous maps of forest disturbance and recovery: Case of tropical forests of Vatovavy Fitovinany, Madagascar. Model. Earth Syst. Environ. 2023, 9, 3597–3608. [Google Scholar] [CrossRef]
- Burrell, A.; Kukavskaya, E.; Baxter, R.; Sun, Q.; Barrett, K. Post-fire recruitment failure as a driver of forest to non-forest ecosystem shifts in boreal regions. In Ecosystem Collapse and Climate Change; Canadell, J.G., Jackson, R.B., Eds.; Springer: Cham, Switzerland, 2021; Volume 241, pp. 69–100. [Google Scholar]
- Shvetsov, E.G.; Kukavskaya, E.A.; Buryak, L.V.; Barrett, K. Assessment of post-fire vegetation recovery in Southern Siberia using remote sensing observations. Environ. Res. Lett. 2019, 14, 05500. [Google Scholar] [CrossRef]
- Perevedentsev, Y.; Sherstyukov, B.; Gusarov, A.; Aukhadeev, T.; Mirsaeva, N. Climate-induced fire hazard in forests in the Volga federal district of European Russia during 1992–2020. Climate 2022, 10, 110. [Google Scholar] [CrossRef]
- Kurbanov, E.; Vorobev, O.; Lezhnin, S.; Dergunov, D.; Wang, J.; Sha, J.; Gubaev, A.; Tarasova, L.; Wang, Y. Temporal and spatial analyses of forest burnt area in the Middle Volga region based on satellite imagery and climatic factors. Climate 2024, 12, 45. [Google Scholar] [CrossRef]
- Loboda, T.; Krankina, O.; Savin, I.; Kurbanov, E.; Joanne, H. Land Management and the impact of the 2010 extreme drought event on the agricultural and ecological systems of European Russia. In Land-Cover and Land-Use Changes in Eastern Europe After the Collapse of the Soviet Union in 1991; Gutman, G., Volker, R., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 173–192. [Google Scholar]
- Vorobyov, O.N.; Lezhnin, S.A.; Kurbanov, E.A.; Yahyayev, A.B.; Dergunov, D.M.; Tarasova, L.V.; Yastrebova, A.V. Predictive analysis of forest cover in the Middle Volga Region based on time series and climate scenarios. Curr. Probl. Remote Sens. Earth Space 2024, 21, 115–130. (In Russian) [Google Scholar] [CrossRef]
- Lerink, B.; Hassegawa, M.; Kryshen, A.; Kovalev, A.; Kurbanov, E.; Nabuurs, G.J.; Moshnikov, S.; Verkerk, P.J. Climate-smart forestry in Russia and potential climate change mitigation benefits. In Russian Forests and Climate Change. What Science Can Tell Us 11; Leskinen, P., Lindner, M., Verkerk, P.J., Nabuurs, G.J., Van Brusselen, J., Kulikova, E., Hassegawa, M., Lerink, B., Eds.; European Forest Institute: Joensuu, Finland, 2020; pp. 73–103. [Google Scholar]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Joseph Hughes, M.; Laue, B. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Claverie, M.; Vermote, E.F.; Franch, B.; Masek, J.G. Evaluation of the Landsat-5 TM and Landsat-7 ETM+ Surface Reflectance Products. Remote Sens. Environ. 2015, 169, 390–403. [Google Scholar] [CrossRef]
- Roy, D.P.; Kovalskyy, V.; Zhang, H.K.; Vermote, E.F.; Yan, L.; Kumar, S.S.; Egorov, A. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 2016, 185, 57–70. [Google Scholar] [CrossRef]
- Kurbanov, E.; Vorobyev, O.; Leznin, S.; Polevshikova, Y.; Demisheva, E. Assessment of burn severity in Middle Povozhje with Landsat multitemporal data. Int. J. Wildland Fire 2017, 26, 772–782. [Google Scholar] [CrossRef]
- Flood, N. Seasonal composite Landsat TM/ETM+ images using the Medoid (A multi-dimensional median). Remote Sens. 2013, 5, 6481–6500. [Google Scholar] [CrossRef]
- Pickell, P.D.; Hermosilla, T.; Frazier, R.J.; Coops, N.C.; Wulder, M.A. Forest recovery trends derived from Landsat time series for North American boreal forests. Int. J. Remote Sens. 2016, 37, 138–149. [Google Scholar] [CrossRef]
- White, J.C.; Saarinen, N.; Wulder, M.A.; Kankare, V.; Hermosilla, T.; Coops, N.C.; Holopainen, M.; Hyyppä, J.; Vastaranta, M. Assessing spectral measures of post-harvest forest recovery with field plot data. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 102–114. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B.; Pfaff, E.; Braaten, J.; Nelson, P. Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan. Remote Sens. Environ. 2012, 122, 117–133. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: Oxford, UK, 1955. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis. In Henri Theil’s Contributions to Economics and Econometrics; Springer: Berlin/Heidelberg, Germany, 1992; pp. 345–381. [Google Scholar]
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet. Chang. 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Yuan, J.; Bian, Z.; Yan, Q.; Gu, Z.; Yu, H. An approach to the temporal and spatial characteristics of vegetation in the growing season in Western China. Remote Sens. 2020, 12, 945. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; 1535p. [Google Scholar]
No. | Purpose | Data, Product ID | Scale | Source |
---|---|---|---|---|
1 | Monitoring of vegetation recovery | Landsat time series | 30 m | https://earthengine.google.com/ (accessed on 16 September 2024) |
2 | Land Surface Temperature | Monthly MODIS/061/MOD11A1 | 1 km | MOD11A1.061 Terra Land Surface Temperature and Emissivity Daily Global ee.ImageCollection |
3 | Precipitation | Monthly GPM_3IMERGHH | 0.10 × 0.10 | https://giovanni.gsfc.nasa.gov/giovanni/ (accessed on 16 September 2024) |
4 | Validation, accuracy assessment | Google Earth Yandex maps | 10–30 m | https://earth.google.com/web/ https://yandex.ru/maps (accessed on 16 September 2024) |
5 | Field plots of Volgatech | 90 × 90 m |
No. | Spectral Metric | Calculation | Description | Reference |
---|---|---|---|---|
1 | Absolute Recovery Indicator | ARI = NBRy+n − NBRy0 | NBRy+n and NBRy0 correspond to the NBR value n years after and year of the wildfire. | [12,40] |
2 | Relative Recovery Indicator | RRI = ARI/dNBRdist × 100 | A relative measure of short-term recovery; dNBRdist—change in NBR due to the wildfire. | [12,62,82,83] |
3 | NBR prior to wildfire | NBRpre = (NBRy-2 + NBRy-1)/2 | NBR average of 2 years prior to wildfire (y-2 and y-1). | [12,62,82] |
4 | Year to Recovery of 80 Percent | Y2R80 = NBRy+n/0.8 × NBRpre × 100 | Recovery when NBR reach 80% of the NBRpre value | [81,82,83] |
5 | Year-On-Year Average | YrYr= (NBRymax − NBRyo)/Ymax | Average rate of spectral change from the year of fire to the max year of the recovery; NBRymax—maximum value of NBR at Ymax (year of max recovery). | [12] |
6 | Recovery at the end of TS | RecendTS = (NBRlast − NBRy0)/(dNBRdis) × 100 | Spectral recovery observed at the end of the estimated time series. | [62] |
Burn Severity Class | Class Boundary, dNBR | Area, ha/% | BS Groups by Area, ha/% | |||
---|---|---|---|---|---|---|
<50 | 50–200 | 200–1000 | >1000 | |||
Unburned | <50 | 4998/1.9 | 908/42.9 | 1377/27.8 | 1240/8.4 | 1473/0.6 |
Low | 50–200 | 32,871/12.6 | 534/25.2 | 1155/23.3 | 3556/24.1 | 27,626/11.5 |
Moderate | 200–400 | 112,433/42.9 | 430/20.3 | 1427/28.8 | 5724/38.7 | 104,853/43.7 |
High | >400 | 111,511/42.6 | 243/11.5 | 997/20.1 | 4256/28.8 | 106,015/44.2 |
Disturbed | 256,815/98.1 | 1207/57.1 | 3579/72.2 | 13,536/91.6 | 238,494/99.4 | |
Total | 261,813/100 | 2115/100 | 4956/100 | 14,776/100 | 239,967/100 |
Spectral Metric | Recovery Area by BS, ha/% | Total, ha | % of Disturbed Area | ||
---|---|---|---|---|---|
Low | Moderate | High | |||
RRI5 | 4086/9.2 | 18,165/40.8 | 22,282/50.0 | 44,533 | 17.3 |
Y2R80 | 24,379/72.2 | 9376/27.8 | - | 33,755 | 13.1 |
RecendTS | 19,823/13.0 | 73,833/48.6 | 58,357/38.4 | 152,013 | 59.2 |
YrYr | 417/6.0 | 3136/44.8 | 3451/49.2 | 7004 | 2.7 |
YrYr5 | 198/3.1 | 3153/49.3 | 3024/47.6 | 6357 | 2.5 |
M-K tau | Burn Severity Class, ha/% | ||
---|---|---|---|
Low | Moderate | High | |
−1–0 | 1450/14.2 | 3167/2.5 | 4542/3.2 |
0–0.4 | 6640/18.4 | 15,981/13.6 | 16,836/14.8 |
0.41–0.8 | 22,871/72.2 | 80,794/72.7 | 72,115/65.5 |
0.81–1.0 | 1910/5.2 | 12,490/11.2 | 18,017/16.5 |
Total | 32,871/100 | 112,433/100 | 111,511/100 |
Burn Severity | Variable | Estimate | Standard Error | T-Statistic | R2, % | F-Ratio |
---|---|---|---|---|---|---|
5-year period after a wildfire | ||||||
Low | Constant LST Pr | 307.69 4.847 0.046 | 69.491 28.545 1.828 | 69.491 28.545 1.828 | 60.0 | 410.39 |
Moderate | Constant LST Pr | 124.978 6.878 −0.251 | 6.987 0.265 0.039 | 17.886 25.899 −6.318 | 56.5 | 354.05 |
High | Constant LST Pr | −45.696 8.896 −0.181 | 10.377 0.319 0.068 | −4.404 27.844 −2.638 | 60.6 | 471.03 |
5- + 10-year period after a wildfire | ||||||
Low | Constant LST Pr | 231.066 10.098 −0.715 | 11.697 0.386 0.050 | 19.755 26.131 −14.187 | 64.9 | 758.47 |
Moderate | Constant LST Pr | 18.549 0.608 0.081 | 18.549 0.608 0.081 | −6.786 32.935 −8.212 | 66.7 | 878.24 |
High | Constant LST Pr | −179.571 19.399 −0.316 | 20.374 0.675 0.019 | −8.814 28.733 −16.144 | 62.7 | 738.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurbanov, E.; Tarasova, L.; Yakhyayev, A.; Vorobev, O.; Gozalov, S.; Lezhnin, S.; Wang, J.; Sha, J.; Dergunov, D.; Yastrebova, A. Detecting Trends in Post-Fire Forest Recovery in Middle Volga from 2000 to 2023. Forests 2024, 15, 1919. https://doi.org/10.3390/f15111919
Kurbanov E, Tarasova L, Yakhyayev A, Vorobev O, Gozalov S, Lezhnin S, Wang J, Sha J, Dergunov D, Yastrebova A. Detecting Trends in Post-Fire Forest Recovery in Middle Volga from 2000 to 2023. Forests. 2024; 15(11):1919. https://doi.org/10.3390/f15111919
Chicago/Turabian StyleKurbanov, Eldar, Ludmila Tarasova, Aydin Yakhyayev, Oleg Vorobev, Siyavush Gozalov, Sergei Lezhnin, Jinliang Wang, Jinming Sha, Denis Dergunov, and Anna Yastrebova. 2024. "Detecting Trends in Post-Fire Forest Recovery in Middle Volga from 2000 to 2023" Forests 15, no. 11: 1919. https://doi.org/10.3390/f15111919
APA StyleKurbanov, E., Tarasova, L., Yakhyayev, A., Vorobev, O., Gozalov, S., Lezhnin, S., Wang, J., Sha, J., Dergunov, D., & Yastrebova, A. (2024). Detecting Trends in Post-Fire Forest Recovery in Middle Volga from 2000 to 2023. Forests, 15(11), 1919. https://doi.org/10.3390/f15111919