Ectomycorrhizal Community of Norway Spruce Stands with Different Degrees of Tree Decline
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Soil Analysis
2.3. Sampling, Analyses of Fine Roots, and Morphotyping
2.4. Molecular Identification of Ectomycorrhizal Fungi
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ciesla, W.M.; Donaubauer, E. Decline and Dieback of Trees and Forests: A Global Overview; FAO: Rome, Italy, 1994. [Google Scholar]
- Levanič, T.; Gričar, J.; Gagen, M.; Jalkanen, R.; Loader, N.J.; McCarroll, D.; Oven, P.; Robertson, I. The climate sensitivity of Norway spruce [Picea abies (L.) Karst.] in the southeastern European Alps. Trees 2009, 23, 169–180. [Google Scholar] [CrossRef]
- Boden, S.; Kahle, H.P.; von Wilpert, K.; Spiecker, H. Resilience of Norway spruce (Picea abies (L.) Karst) growth to changing climatic conditions in Southwest Germany. For. Ecol. Manag. 2014, 315, 12–21. [Google Scholar] [CrossRef]
- Klavina, D.; Menkis, A.; Gaitnieks, T.; Velmala, S.; Lazdins, A.; Rajala, T.; Pennanen, T. Analysis of Norway spruce dieback phenomenon in Latvia–a belowground perspective. Scand. J. For. Res. 2016, 31, 156–165. [Google Scholar] [CrossRef]
- Sierota, Z.; Grodzki, W. Picea abies–Armillaria–Ips: A Strategy or Coincidence? Forests 2020, 11, 1023. [Google Scholar] [CrossRef]
- Kamińska, A.; Lisiewicz, M.; Kraszewski, B.; Stereńczak, K. Mass outbreaks and factors related to the spatial dynamics of spruce bark beetle (Ips typographus) dieback considering diverse management regimes in the Białowieża forest. For. Ecol. Manag. 2021, 498, 119530. [Google Scholar] [CrossRef]
- Miletić, B.R.; Matović, B.; Orlović, S.; Gutalj, M.; Đorem, T.; Marinković, G.; Simović, S.; Dugalić, M.; Stojanović, D.B. Quantifying Forest Cover Loss as a Response to Drought and Dieback of Norway Spruce and Evaluating Sensitivity of Various Vegetation Indices Using Remote Sensing. Forests 2024, 15, 662. [Google Scholar] [CrossRef]
- Matović, B.; Stojanović, D.; Kesić, L.; Stjepanović, S. Uticaj klime na rast i vitalnost smrče na Kopaoniku. [Impact of climate on growth and vitality of Norway spruce at Kopaonik mountain]. Topola/Poplar 2018, 201–202, 99–116. (In Serbian) [Google Scholar]
- Tanovski, V.; Matović, B.; Kesić, L.; Stojanović, D.B. A review of the influence of climate change on coniferous forests in the Balkan peninsula. Topola/Poplar 2022, 210, 41–64. [Google Scholar] [CrossRef]
- Stojanović, D.B.; Orlović, S.; Zlatković, M.; Kostić, S.; Vasić, V.; Miletić, B.; Kesić, L.; Matović, B.; Boanić, D.; Pavlović, L.; et al. Climate change within Serbian forests: Current state and future perspectives. Topola/Poplar 2021, 208, 39–56. [Google Scholar] [CrossRef]
- Karadžić, D.; Milanović, S.; Golubović Ćurguz, V. Uzroci Sušenja Smrče (Picea abies Karst.) na Području Parka Prirode „Golija“, Monograph, [Causes of Spruce (Picea abies Karst.) Decline in the Area of the "Golija" Nature Park]; University of Belgrade, Forestry Faculty: Belgrade, Serbia, 2017; p. 96. (In Serbian) [Google Scholar]
- Simard, S.; Austin, M. The role of mycorrhizas in forest soil stability with climate change, climate change and variability. In Climate Change and Variability; Simard, S., Ed.; IntechOpen: Rijeka, Croatia, 2010; pp. 275–302. [Google Scholar]
- Milović, M.; Kebert, M.; Orlović, S. How mycorrhizas can help forests to cope with ongoing climate change? Sumar. List 2021, 5–6, 279–286. [Google Scholar] [CrossRef]
- Smith, S.E.; Facelli, E.; Pope, S.; Smith, F.A. Plant performance in stressful environments: Interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 2010, 326, 3–20. [Google Scholar] [CrossRef]
- Arnolds, E. Decline of ectomycorrhizal fungi in Europe. Agric. Ecosyst. Environ. 1991, 35, 209–244. [Google Scholar] [CrossRef]
- Sapsford, S.; Paap, T.; Hardy, G.; Burgess, T. The chicken or the egg: Which comes first, forest tree decline or loss of mycorrhizae? Plant Ecol. 2017, 218, 1093–1106. Available online: https://link.springer.com/article/10.1007/s11258-017-0754-6 (accessed on 14 August 2024). [CrossRef]
- Frymark-Szymkowiak, A.; Kieliszewska-Rokicka, B. The fine root distribution and morphology of mature white poplar in natural temperate riverside forests under periodically flooded or dry hydrological conditions. Forests 2023, 14, 223. [Google Scholar] [CrossRef]
- Frymark-Szymkowiak, A.; Kulczyk-Skrzeszewska, M.; Tyburska-Woś, J. Seasonal dynamics in mycorrhizal colonization and fine root features of the white poplar (Populus alba L.) in natural temperate riverside forests with two contrasting soils. Forests 2024, 15, 64. [Google Scholar] [CrossRef]
- Rudawska, M.L. Mycorrhiza, Biology and Ecology of Norway Spruce. In Biology and Ecology of Norway Spruce; Tjoelker, M.G., Boratynski, A., Bugala, W., Eds.; Springer: Dordrecht, Germany, 2007; pp. 157–194. [Google Scholar]
- Bahadur, A.; Batool, A.; Nasir, F.; Jiang, S.; Mingsen, Q.; Zhang, Q.; Pan, J.; Liu, Y.; Feng, H. Mechanistic insights into arbuscular mycorrhizal fungi-mediated drought stress tolerance in plants. Int. J. Mol. Sci. 2019, 20, 4199. [Google Scholar] [CrossRef]
- Swaty, R.L.; Deckert, R.J.; Whitham, T.G.; Gehring, C.A. Ectomycorrhizal abundance and community composition shifts with drought: Predictions from tree rings. Ecology 2004, 85, 1072–1084. [Google Scholar] [CrossRef]
- Agerer, R. Exploration types of ectomycorrhizae. A proposal to classify ECM mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 2001, 11, 107–114. [Google Scholar] [CrossRef]
- Castaño, C.; Suarez-Vidal, E.; Zas, R.; Bonet, J.A.; Oliva, J.; Sampedro, L. Ectomycorrhizal fungi with hydrophobic mycelia and rhizomorphs dominate in young pine trees surviving experimental drought stress. Soil Biol. Biochem. 2023, 178, 108932. [Google Scholar] [CrossRef]
- Garcia de Jalon, L.; Limousin, J.M.; Richard, F.; Gessler, A.; Peter, M.; Hättenschwiler, S.; Milcu, A. Microhabitat and ectomycorrhizal effects on the establishment, growth and survival of Quercus ilex L. seedlings under drought. PLoS ONE 2020, 15, e0229807. [Google Scholar] [CrossRef]
- Veselá, P.; Vašutová, M.; Hofmannová, K.; Edwards-Jonášová, M.; Cudlín, P. Ectomycorrhizal community on Norway spruce seedlings following bark beetle infestation. Forests 2019, 10, 740. [Google Scholar] [CrossRef]
- Peter, M.; Ayer, F.; Cudlin, P.; Simon, E. Belowground ectomycorrhizal communities in three Norway spruce stands with different degrees of decline in the Czech Republic. Mycorrhiza 2008, 18, 157–169. [Google Scholar] [CrossRef] [PubMed]
- Nonić, D.; Šumarac, P.; Ranković, N.; Ðorđević, I.; Nedeljković, J. Sustainable Management of the National Park Kopaonik—Opportunities and Challenges; Special Edition; Bulletin of the Faculty of Forestry; University of Belgrade: Belgrade, Serbia, 2023; pp. 59–80. (In Serbian) [Google Scholar]
- Republic Hydrometeorological Service of Serbia. Available online: http://www.hidmet.gov.rs/index_lat.php (accessed on 14 August 2024).
- IUSS Working Group WRB. World Reference Base for Soil Resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Galić, Z.; Ponjarac, R.; Kiš, A.; Novčić, Z. Karakteristike zemljišta u GJ Ristovača [Soil types in management unite Ristovača]. Topola/Poplar 2015, 195–196, 5–13. (In Serbian) [Google Scholar]
- Cools, N.; De Vos, B. Part X: Sampling and Analysis of Soil. Version 2020-1. In UNECE ICP Forests Programme Co-ordinating Centre (ed.): Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests; Thünen Institute of Forest Ecosystems: Eberswalde, Germany, 2020; 29p, Available online: http://icp-forests.net/page/icp-forests-manual (accessed on 15 November 2021).
- Agerer, R. Characterization of ectomycorrhiza. In Methods in Microbiology 23; Norris, J.R., Read, D.J., Varma, A.K., Eds.; Academic Press: London, UK, 1991; pp. 25–72. [Google Scholar]
- Kraigher, H. Tipi mikorize: Taksonomija, pomen, aplikacija [Types of ectomycorrhizae—their taxonomy, role and application]. Zborn. Gozdar. Lesar. 1996, 49, 33–66. (In Slovenian) [Google Scholar]
- Agerer, R. Colour Atlas of Ectomycorrhizae 1st–13th Delivery; Einhorn-Verlag Eduard Dietenberger: Schwäbisch Gmünd, Germany, 2008. [Google Scholar]
- Agerer, R.; Rambold, G. DEEMY—An Information System for Characterization and Determination of Ectomycorrhizae; DEEMY: München, Germany, 2004–2024; Available online: www.deemy.de (accessed on 21 January 2024).
- Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes-application to the identification of ectomycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols. A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar]
- National Library of Medicine, The National Center for Biotechnology Information (NCBI) GenBank ® Web Site. Available online: http://www.ncbi.nlm.nih.gov/genbank/index.html (accessed on 7 June 2024).
- Nilsson, R.H.; Larsson, K.-H.; Taylor, A.F.S.; Bengtsson-Palme, J.; Jeppesen, T.S.; Schigel, D.; Kennedy, P.; Picard, K.; Glöckner, F.O.; Tedersoo, L.; et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2018, 47, 259–264. [Google Scholar] [CrossRef]
- Atlas, R.; Bartha, R. Introduction to microbiology. In Microbial Ecology: Fundamentals and Applications; Addison–Wesley Publishing Company: Reading, UK, 1981; pp. 242–244. [Google Scholar]
- Taylor, A.F.S.; Martin, F.; Read, D.J. Fungal diversity in ectomyccorhizal communities of Norway spruce (Picea abies (L.) Karst.) and beech (Fagus sylvatica L.) along north-south transects in Europe. In Carbon and Nitrogen Cycling in European Forest Ecosystems. (Ecological Studies 142); Schulze, E.-D., Ed.; Springer-Verlag: Berlin/Heidelberg, Germany, 2000; pp. 343–365. [Google Scholar]
- Milović, M.; Kovačević, B.; Drekić, M.; Pilipović, A.; Pekeč, S.; Kesić, L.; Đilas, M.; Karaklić, V.; Galić, Z. Ectomycorrhizal diversity in a mature pedunculate oak stand near Morović, Serbia. iForest 2023, 16, 345–351. [Google Scholar] [CrossRef]
- Bartlett, M.S. The Square Root Transformation in Analysis of Variance. Suppl. J. R. Stat. Soc. 1936, 3, 68–78. [Google Scholar] [CrossRef]
- Snedecor, W.; Cochran, W.G. Statistical Methods, 6th ed.; The Iowa State University Press: Ames, IA, USA, 1976; p. 503. [Google Scholar]
- Siegel, S.; Castellan, N.J., Jr. Nonparametric Statistics for the Behavioral Sciences, 2nd ed.; McGraw-Hill: New York, NY, USA, 1988; p. 399. [Google Scholar]
- Engelmann, H.D. Zur Dominanzklassifizierung von Bodenarthropoden. Pedobiologia 1978, 18, 378–380. (In German) [Google Scholar] [CrossRef]
- Defrenne, C.E.; Philpott, T.J.; Guichon, S.H.A.; Roach, W.J.; Pickles, B.J.; Simard, S.W. Shifts in ectomycorrhizal fungal communities and exploration types relate to the environment and fine-root traits across interior Douglas-fir forests of Western Canada. Front. Plant Sci. 2019, 10, 643. [Google Scholar] [CrossRef]
- Liese, R.; Leuschner, C.; Meier, I.C. The effect of drought and season on root life span in temperate arbuscular mycorrhizal and ectomycorrhizal tree species. J. Ecol. 2019, 107, 2226–2239. [Google Scholar] [CrossRef]
- Katanić, M.; Orlović, S.; Grebenc, T.; Bajc, M.; Pekeč, S.; Drekić, M.; Kraigher, H. Ectomycorrhizae of Norway spruce from its southernmost natural distribution range in Serbia. iForest 2019, 12, 43–50. [Google Scholar] [CrossRef]
- Kraigher, H. Diversity of types of ectomycorrhizae on Norway spruce in Slovenia. Phyton 1999, 39, 199–202. [Google Scholar]
- Dahlberg, A.; Jonsson, L.; Nylund, J.E. Species diversity and distribution of biomass above and below ground among ectomycorrhizal fungi in an old-growth Norway spruce forest in south Sweden. Canad. J. Bot. 1997, 75, 1323–1335. [Google Scholar] [CrossRef]
- Karliński, L.; Kieliszewska-Rokicka, B. Diversity of spruce ectomycorrhizal morphotypes in four mature forest stands in Poland. Dendrobiology 2004, 51, 25–35. [Google Scholar]
- Rosinger, C.; Sandén, H.; Matthews, B.; Mayer, M.; Godbold, D.L. Patterns in ectomycorrhizal diversity, community composition, and exploration types in European beech, pine, and spruce forests. Forests 2018, 9, 445. [Google Scholar] [CrossRef]
- O’Hanlon, R.; Harrington, T.J. Similar taxonomic richness but different communities of ectomycorrhizas in native forests and non-native plantation forests. Mycorrhiza 2012, 22, 371–382. [Google Scholar] [CrossRef]
- Geml, J.; Laursen, G.A.; Herriott, I.C.; McFarland, J.M.; Booth, M.G.; Lennon, N.; Chad Nusbaum, H.; Lee Taylor, D. Phylogenetic and ecological analyses of soil and sporocarp DNA sequences reveal high diversity and strong habitat partitioning in the boreal ectomycorrhizal genus Russula (Russulales; Basidiomycota). New Phytol 2010, 187, 494–507. [Google Scholar] [CrossRef]
- Ostonen, I.; Helmisaari, H.-S.; Borken, W.; Tedersoo, L.; Kukumägi, M.; Bahram, M.; Lindroos, A.-J.; Nöjd, P.; Uri, V.; Merilä, P.; et al. Fine root foraging strategies in Norway spruce forests across a European climate gradient. Glob. Chang. Biol. 2011, 17, 3620–3632. [Google Scholar] [CrossRef]
- Baier, R.; Ingenhaag, J.; Blaschke, H.; Göttlein, A.; Agerer, R. Vertical distribution of an ectomycorrhizal community in upper soil horizons of a young Norway spruce (Picea abies [L.] Karst.) stand of the Bavarian Limestone Alps. Mycorrhiza 2006, 16, 197–206. [Google Scholar] [CrossRef]
- Rudawska, M.; Leski, T.; Stasinska, M. Species and functional diversity of ectomycorrhizal fungal communities on Scots pine (Pinus sylvestris L.) trees on three different sites. Ann. For. Sci. 2011, 68, 5–15. [Google Scholar] [CrossRef]
- Courty, P.E.; Buée, M.; Diedhiou, A.G.; Frey-Klett, P.; Le Tacon, F.; Rineau, F.; Turpault, M.P.; Uroz, S.; Garbaye, J. The role of ectomycorrhizal communities in forest ecosystem processes: New perspectives and emerging concepts. Soil Biol. Biochem. 2010, 42, 679–698. [Google Scholar] [CrossRef]
Site | Metođe with No Decline | Vučačko Brdo with Moderate Decline | Jankove Bare with Massive Decline |
---|---|---|---|
Coordinates | N 43°18′17.4″ E 20°50′37.6″ | N 43°20′55.3″ E 20°47′44.9″ | N 43°19′54.6″ E 20°46′59.2″ |
Altitude | 1460 m | 1530 m | 1580 m |
Climate | Temperately continental mountain, subalpine | Temperately continental mountain, subalpine | Temperately continental mountain, subalpine |
Management type | Nature Reserve | Regularly managed stand | Nature Reserve |
Slope aspect | North | North-northeast | West-northwest |
Soil type * | Leptosol | Leptosol | Leptosol |
Species | Natural forest of Picea abies with individual trees of Abies alba and Fagus sylvatica | Natural mixed forest of Picea abies, Fagus sylvatica, and Abies alba | Natural forest of Picea abies with individual trees of Abies alba |
Physical Properties of the Soil | ||||||
Site | Physiologically Active Depth | Humus Accumulative Layer | Volume Mass (g cm−3) | Texture Class | Total Sand (%) | Total Clay (%) |
Metođe with no decline | 17 cm | 25 cm | 0.621 | Loamy sand | 81.2 | 18.8 |
Vučačko brdo with moderate decline | 26 cm | 26 cm | 0.575 | Sandy loam | 80.7 | 19.3 |
Jankove bare with massive decline | 30 cm | 27 cm | 0.794 | Loamy sand | 83.5 | 16.5 |
Chemical properties of the soil | ||||||
pH | Humus content (%) | CaCO3 content (%) | Carbon content (%) | Soil moisture content (%) | ||
Metođe with no decline | 4.91 | 8.69 | 2.26 | 4.91 | 22.51 | |
Vučačko brdo with moderate decline | 3.91 | 8.70 | 0.88 | 5.01 | 18.08 | |
Jankove bare with massive decline | 3.47 | 8.72 | 2.76 | 5.06 | 18.29 |
Site | Metođe with No Decline | Vučačko Brdo with Moderate Decline | Jankove Bare with Massive Decline | |||
---|---|---|---|---|---|---|
Parameter | Total Value per Site | Average Value per Soil Sample | Total Value per Site | Average Value per Soil Sample | Total Value per Site | Average Value per Soil Sample |
Number of ectomycorrhizal fungal taxa | 8 | 3.0 ± 0.4 a* | 9 | 3.2 ± 0.4 a | 8 | 4.0 ± 0.4 a |
Number of vital ectomycorrhizal root tips | 1168 | 237 ± 59 b | 2773 | 554 ± 129 a | 1108 | 228 ± 46 b |
Number of old, non-turgescent and nonmycorrhizal root tips | 1508 | 301 ± 62 b | 3732 | 782 ± 124 a | 4247 | 910 ± 228 a |
Total number of fine roots | 2676 | 539 ± 66 b | 6505 | 1337 ± 225 a | 5355 | 1139 ± 247 a |
% of vital ectomycorrhizal roots | 44 | 44 ± 9 a | 43 | 39.8 ± 7 a | 21 | 22.0 ± 0.3 a |
Species richness index (S) | 2.28 | 0.93 ± 0.3 a | 2.32 | 0.81 ± 0.1 a | 2.30 | 1.29 ± 0.2 a |
Shannon–Weaver index (H) | 1.44 | 0.72 ± 0.2 a | 1.41 | 0.60 ± 0.1 a | 1.76 | 1.04 ± 0.2 a |
Evenness (e) | 1.59 | 1.51 ± 0.4 a | 1.47 | 1.22 ± 0.2 a | 1.95 | 1.71 ± 0.2 a |
Equitability (J) | 0.69 | 0.65 ± 0.2 a | 0.64 | 0.53 ± 0.1 a | 0.84 | 0.74 ± 0.1 a |
Berger–Parker index (BP) | 0.53 | 0.31 ± 0.1 a | 0.43 | 0.28 ± 0.1 a | 0.71 | 0.47 ± 0.1 a |
Fungal Partner in Ectomycorrhiza Based on Morpho-Anatomical and Molecular Characterization | Site | Exploration Type | Occurrence in Soil Samples (Frequency) | Absolute Abundance (Number of Ectomycorrhizal Tips) | Relative Abundance in % (Classification *) |
---|---|---|---|---|---|
Amanita olivaceogrisea Kalamees | JB | LD | 1/5 | 10 | 0.9 scattered |
Cenococcum geophilum Fr. | JB, VB | SD | 2/5, 2/5 | 59, 320 | 5.3 often, 7.2 often |
Cortinarius delibutus Fr. | M | MD fringe | 1/5 | 39 | 3.3 often |
Elaphomyces muricatus Fr. | JB | SD | 3/5 | 188 | 17 frequent |
Imleria badia Fr. (Vizzini) | VB, JB | LD | 4/5, 5/5 | 271, 326 | 9.8 often, 29.4 frequent |
Inocybe assimilata Britzelm. | VB | SD | 1/5 | 13 | 0.07 rare |
Russula firmula Jul. Schaf. | M | C | 3/5 | 267 | 22.7 frequent |
Russula integra (L.) Fr. | VB, JB | C | 4/5, 3/5 | 1588, 216 | 57.3 numerous, 19.5 frequent |
Sebacina epigaea (Berk. & Broome) Bourdot & Galzin | M | SD | 2/5 | 179 | 15.2 frequent |
Tomentella stuposa (Link) Stalpers | M, VB, JB | MD smooth | 1/5, 1/5, 2/5 | 1, 33, 218 | 0.08 rare, 1.19 occasional, 19.67 frequent |
Amphinema sp. | M, VB | MD fringe | 1/5, 1/5 | 77, 320 | 6.55 often, 11.54 frequent |
Clavulina sp. | M | C | 2/5 | 554 | 47.11 numerous |
Lactarius sp. | JB | C | 1/5 | 55 | 4.96 often |
Meliniomyces | JB | C | 2/5 | 36 | 3.24 often |
Pseudotomentella sp. | M | MD mat | 2/5 | 55 | 4.68 often |
Russula sp. | VB | C | 1/5 | 321 | 8.33 often |
Tomentella sp. | VB | SD | 1/5 | 2 | 0.08 rare |
Tomentellopsis sp. | VB | MD smooth | 1/5 | 116 | 4.18 often |
Tylospora sp. | M | SD | 2/5 | 4 | 0.34 scattered |
Site | C | SD | MD Smooth | MD Fringe | MD Mat | LD |
---|---|---|---|---|---|---|
Metođe with no decline | 61.4 ± 11.9 a* | 15.8 ± 8 a | 0.1 ± 0.1 a | 8.4 ± 8.4 a | 14.3 ± 11.9 a | 0.0 b |
Vučačko brdo with moderate decline | 53.4 ± 11.5 a | 7.8 ± 5.6 a | 5.8 ± 4.6 a | 7.1 ± 7.1 a | 0.0 a | 23.8 ± 15 a |
Jankove bare with massive decline | 37.1 ± 16 a | 23.9 ± 11.6 a | 12.8 ± 8 a | 0.0 a | 0.0 a | 26.2 ± 12 a |
Site | Number of ECM Taxa | Percentage of ECM Root Tips | ||
---|---|---|---|---|
Basidiomycota | Ascomycota | Basidiomycota | Ascomycota | |
Metođe with no decline | 8 | 0 | 100 | 0 |
Vučačko brdo with moderate decline | 8 | 1 | 93 | 7 |
Jankove bare with massive decline | 5 | 3 | 74 | 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milović, M.; Kovačević, B.; Orlović, S.; Galić, Z.; Drekić, M.; Pekeč, S.; Matović, B. Ectomycorrhizal Community of Norway Spruce Stands with Different Degrees of Tree Decline. Forests 2024, 15, 1838. https://doi.org/10.3390/f15101838
Milović M, Kovačević B, Orlović S, Galić Z, Drekić M, Pekeč S, Matović B. Ectomycorrhizal Community of Norway Spruce Stands with Different Degrees of Tree Decline. Forests. 2024; 15(10):1838. https://doi.org/10.3390/f15101838
Chicago/Turabian StyleMilović, Marina, Branislav Kovačević, Saša Orlović, Zoran Galić, Milan Drekić, Saša Pekeč, and Bratislav Matović. 2024. "Ectomycorrhizal Community of Norway Spruce Stands with Different Degrees of Tree Decline" Forests 15, no. 10: 1838. https://doi.org/10.3390/f15101838
APA StyleMilović, M., Kovačević, B., Orlović, S., Galić, Z., Drekić, M., Pekeč, S., & Matović, B. (2024). Ectomycorrhizal Community of Norway Spruce Stands with Different Degrees of Tree Decline. Forests, 15(10), 1838. https://doi.org/10.3390/f15101838