Changes in Leaf Functional Traits with Leaf Age for Coexisting Woody Species in Temperature Forest of Northern China
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Site and Species Selection
2.2. Sampling and Trait Measurements
2.2.1. Morphology and Stoichiometry Traits
2.2.2. Stomatal Traits
2.3. Data Analyses
3. Results
3.1. Variation in Leaf Traits
3.2. Multidimensionality and Bivariate Trait Relationship
4. Discussion
4.1. Effects of Leaf Age on Leaf Functional Traits of Different Life Forms
4.2. Variation of Leaf Functional Traits among Different Life Forms
4.3. Effects of Leaf Age on Trait Relationships
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Niinemets, Ü.; Keenan, T.F.; Hallik, L. A Worldwide Analysis of Within-Canopy Variations in Leaf Structural, Chemical and Physiological Traits across Plant Functional Types. New Phytol. 2015, 205, 973–993. [Google Scholar] [CrossRef] [PubMed]
- Garnier, E.; Cortez, J.; Billès, G.; Navas, M.-L.; Roumet, C.; Debussche, M.; Laurent, G.; Blanchard, A.; Aubry, D.; Bellmann, A.; et al. Plant Functional Markers Capture Ecosystem Properties during Secondary Succession. Ecology 2004, 85, 2630–2637. [Google Scholar] [CrossRef]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.C.; Diemer, M.; et al. The Worldwide Leaf Economics Spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Díaz, S.; Kattge, J.; Cornelissen, J.H.C.; Wright, I.J.; Lavorel, S.; Dray, S.; Reu, B.; Kleyer, M.; Wirth, C.; Colin Prentice, I.; et al. The Global Spectrum of Plant Form and Function. Nature 2016, 529, 167–171. [Google Scholar] [CrossRef]
- Wang, H.; Prentice, I.C.; Wright, I.J.; Warton, D.I.; Qiao, S.; Xu, X.; Zhou, J.; Kikuzawa, K.; Stenseth, N.C. Leaf Economics Fundamentals Explained by Optimality Principles. Sci. Adv. 2023, 9, eadd5667. [Google Scholar] [CrossRef]
- Siefert, A.; Violle, C.; Chalmandrier, L.; Albert, C.; Taudiere, A.; Fajardo, A.; Aarssen, L.; Baraloto, C.; Carlucci, M.; Cianciaruso, M.; et al. A Global Meta-Analysis of the Relative Extent of Intraspecific Trait Variation in Plant Communities. Ecol. Lett. 2015, 18, 1406–1419. [Google Scholar] [CrossRef]
- Chave, J.; Coomes, D.; Jansen, S.; Lewis, S.L.; Zanne, A.E. Towards a Worldwide Wood Economics Spectrum. Ecol. Lett. 2010, 12, 351–366. [Google Scholar] [CrossRef]
- Volkenburgh, E.V. Leaf Expansion—An Integrating Plant Behaviour. Plant Cell Environ. 1999, 22, 1463–1473. [Google Scholar] [CrossRef]
- Marchi, S.; Tognetti, R.; Minnocci, A.; Borghi, M.; Sebastiani, L. Variation in Mesophyll Anatomy and Photosynthetic Capacity during Leaf Development in a Deciduous Mesophyte Fruit Tree (Prunus persica) and an Evergreen Sclerophyllous Mediterranean Shrub (Olea europaea). Trees 2008, 22, 559–571. [Google Scholar] [CrossRef]
- Menezes, J.; Garcia, S.; Grandis, A.; Nascimento, H.; Domingues, T.F.; Guedes, A.V.; Aleixo, I.; Camargo, P.; Campos, J.; Damasceno, A.; et al. Changes in Leaf Functional Traits with Leaf Age: When Do Leaves Decrease Their Photosynthetic Capacity in Amazonian Trees? Tree Physiol. 2022, 42, 922–938. [Google Scholar] [CrossRef]
- Shipley, B.; Vile, D.; Garnier, E.; Wright, I.J.; Poorter, H. Functional Linkages between Leaf Traits and Net Photosynthetic Rate: Reconciling Empirical and Mechanistic Models. Funct. Ecol. 2005, 19, 602–615. [Google Scholar] [CrossRef]
- Walker, A.P.; Beckerman, A.P.; Gu, L.; Kattge, J.; Cernusak, L.A.; Domingues, T.F.; Scales, J.C.; Wohlfahrt, G.; Wullschleger, S.D.; Woodward, F.I. The Relationship of Leaf Photosynthetic Traits—Vcmax and Jmax—To Leaf Nitrogen, Leaf Phosphorus, and Specific Leaf Area: A Meta-Analysis and Modeling Study. Ecol. Evol. 2014, 4, 3218–3235. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Miyajima, Y. Relationships between Leaf Life Span, Leaf Mass per Area, and Leaf Nitrogen Cause Different Altitudinal Changes in Leaf δ13C between Deciduous and Evergreen Species. Botany 2008, 86, 1233–1241. [Google Scholar] [CrossRef]
- Pantin, F.; Simonneau, T.; Muller, B. Coming of Leaf Age: Control of Growth by Hydraulics and Metabolics during Leaf Ontogeny. New Phytol. 2012, 196, 349–366. [Google Scholar] [CrossRef] [PubMed]
- Waring, R.; Landsberg, J.; Linder, S. Tamm Review: Insights Gained from Light Use and Leaf Growth Efficiency Indices. For. Ecol. Manag. 2016, 379, 232–242. [Google Scholar] [CrossRef]
- Weraduwage, S.M.; Chen, J.; Anozie, F.C.; Morales, A.; Weise, S.E.; Sharkey, T.D. The Relationship between Leaf Area Growth and Biomass Accumulation in Arabidopsis thaliana. Front. Plant Sci. 2015, 6, 167. [Google Scholar] [CrossRef]
- Gratani, L.; Bonito, A. Leaf Traits Variation during Leaf Expansion in Quercus ilex L. Photosynthetica 2009, 47, 323–330. [Google Scholar] [CrossRef]
- Gratani, L.; Ghia, E. Changes in Morphological and Physiological Traits during Leaf Expansion of Arbutus Unedo. Environ. Exp. Bot. 2002, 48, 51–60. [Google Scholar] [CrossRef]
- Catoni, R.; Bracco, F.; Gratani, L.; Granata, M.U. Physiological, Morphological and Anatomical Leaf Traits Variation across Leaf Development in Corylus Avellana. Mediterr. Bot. 2019, 40, 185–192. [Google Scholar] [CrossRef]
- Niinemets, Ü. Leaf Age Dependent Changes in Within-Canopy Variation in Leaf Functional Traits: A Meta-Analysis. J. Plant Res. 2016, 129, 313–338. [Google Scholar] [CrossRef]
- Barton, K.E.; Edwards, K.F.; Koricheva, J. Shifts in Woody Plant Defence Syndromes during Leaf Development. Funct. Ecol. 2019, 33, 2095–2104. [Google Scholar] [CrossRef]
- Hetherington, A.M.; Woodward, F.I. The Role of Stomata in Sensing and Driving Environmental Change. Nature 2003, 424, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Wolz, K.J.; Wertin, T.M.; Abordo, M.; Wang, D.; Leakey, A.D.B. Diversity in Stomatal Function Is Integral to Modelling Plant Carbon and Water Fluxes. Nat. Ecol. Evol. 2017, 1, 1292–1298. [Google Scholar] [CrossRef]
- Dow, G.J.; Bergmann, D.C.; Berry, J.A. An Integrated Model of Stomatal Development and Leaf Physiology. New Phytol. 2014, 201, 1218–1226. [Google Scholar] [CrossRef] [PubMed]
- Durand, M.; Brendel, O.; Buré, C.; Le Thiec, D. Changes in Irradiance and Vapour Pressure Deficit under Drought Induce Distinct Stomatal Dynamics between Glasshouse and Field-Grown Poplars. New Phytol. 2020, 227, 392–406. [Google Scholar] [CrossRef] [PubMed]
- Chavana-Bryant, C.; Malhi, Y.; Wu, J.; Asner, G.P.; Anastasiou, A.; Enquist, B.J.; Cosio Caravasi, E.G.; Doughty, C.E.; Saleska, S.R.; Martin, R.E.; et al. Leaf Aging of Amazonian Canopy Trees as Revealed by Spectral and Physiochemical Measurements. New Phytol. 2017, 214, 1049–1063. [Google Scholar] [CrossRef] [PubMed]
- Yin, Q.; Wang, L.; Lei, M.; Dang, H.; Quan, J.; Tian, T.; Chai, Y.; Yue, M. The Relationships between Leaf Economics and Hydraulic Traits of Woody Plants Depend on Water Availability. Sci. Total Environ. 2018, 621, 245–252. [Google Scholar] [CrossRef]
- Warton, D.I.; Duursma, R.A.; Falster, D.S.; Taskinen, S. Smatr 3—An R Package for Estimation and Inference about Allometric Lines: The Smatr 3—An R Package. Methods Ecol. Evol. 2012, 3, 257–259. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: http://www.R-project.org (accessed on 6 April 2024).
- Čaňová, I.; Ďurkovič, J.; Hladká, D.; Lukáčik, I. Changes in Stomatal Characteristics and Photochemical Efficiency during Leaf Development in Six Species of Sorbus. Photosynthetica 2012, 50, 635–640. [Google Scholar] [CrossRef]
- Wu, B.-J.; Chow, W.S.; Liu, Y.-J.; Shi, L.; Jiang, C.-D. Effects of Stomatal Development on Stomatal Conductance and on Stomatal Limitation of Photosynthesis in Syringa oblata and Euonymus japonicus Thunb. Plant Sci. 2014, 229, 23–31. [Google Scholar] [CrossRef]
- Camargo, M.A.B.; Marenco, R.A. Density, Size and Distribution of Stomata in 35 Rainforest Tree Species in Central Amazonia. Acta Amaz. 2011, 41, 205–212. [Google Scholar] [CrossRef]
- Doheny-Adams, T.; Hunt, L.; Franks, P.J.; Beerling, D.J.; Gray, J.E. Genetic Manipulation of Stomatal Density Influences Stomatal Size, Plant Growth and Tolerance to Restricted Water Supply across a Growth Carbon Dioxide Gradient. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Franks, P.J.; Beerling, D.J. Maximum Leaf Conductance Driven by CO2 Effects on Stomatal Size and Density over Geologic Time. Proc. Natl. Acad. Sci. USA 2009, 106, 10343–10347. [Google Scholar] [CrossRef] [PubMed]
- Drake, P.L.; Froend, R.H.; Franks, P.J. Smaller, Faster Stomata: Scaling of Stomatal Size, Rate of Response, and Stomatal Conductance. J. Exp. Bot. 2013, 64, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Jin, G.; Liu, Z. Importance of Organ Age in Driving Intraspecific Trait Variation and Coordination for Three Evergreen Coniferous Species. Ecol. Indic. 2021, 121, 107099. [Google Scholar] [CrossRef]
- Turgeon, R. The Sink-Source Transition in Leaves. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1989, 40, 119–138. [Google Scholar] [CrossRef]
- Kursar, T.A.; Coley, P.D. Convergence in Defense Syndromes of Young Leaves in Tropical Rainforests. Biochem. Syst. Ecol. 2003, 31, 929–949. [Google Scholar] [CrossRef]
- Poorter, H.; Niinemets, Ü.; Poorter, L.; Wright, I.J.; Villar, R. Causes and Consequences of Variation in Leaf Mass per Area (LMA): A Meta-Analysis. New Phytol. 2009, 182, 565–588. [Google Scholar] [CrossRef]
- Chai, Y.; Liu, X.; Yue, M.; Guo, J.; Wang, M.; Wan, P.; Zhang, X.; Zhang, C. Leaf Traits in Dominant Species from Different Secondary Successional Stages of Deciduous Forest on the Loess Plateau of Northern China. Appl. Veg. Sci. 2015, 18, 50–63. [Google Scholar] [CrossRef]
- Tomlinson, K.W.; Poorter, L.; Sterck, F.J.; Borghetti, F.; Ward, D.; de Bie, S.; van Langevelde, F. Leaf Adaptations of Evergreen and Deciduous Trees of Semi-Arid and Humid Savannas on Three Continents. J. Ecol. 2013, 101, 430–440. [Google Scholar] [CrossRef]
- Onoda, Y.; Wright, I.J.; Evans, J.R.; Hikosaka, K.; Kitajima, K.; Niinemets, Ü.; Poorter, H.; Tosens, T.; Westoby, M. Physiological and Structural Tradeoffs Underlying the Leaf Economics Spectrum. New Phytol. 2017, 214, 1447–1463. [Google Scholar] [CrossRef] [PubMed]
- Tay, A.-C.; Furukawa, A. Variations in Leaf Stomatal Density and Distribution of 53 Vine Species in Japan. Plant Species Biol. 2008, 23, 2–8. [Google Scholar] [CrossRef]
- Qi, X.; Torii, K.U. Hormonal and Environmental Signals Guiding Stomatal Development. BMC Biol. 2018, 16, 21. [Google Scholar] [CrossRef] [PubMed]
- Bertolino, L.T.; Caine, R.S.; Gray, J.E. Impact of Stomatal Density and Morphology on Water-Use Efficiency in a Changing World. Front. Plant Sci. 2019, 10, 225. [Google Scholar] [CrossRef]
- Xu, Z.; Zhou, G. Responses of Leaf Stomatal Density to Water Status and Its Relationship with Photosynthesis in a Grass. J. Exp. Bot. 2008, 59, 3317–3325. [Google Scholar] [CrossRef]
- Loranger, J.; Shipley, B. Interspecific Covariation between Stomatal Density and Other Functional Leaf Traits in a Local Flora. Botany 2010, 88, 30–38. [Google Scholar] [CrossRef]
- Afas, N.A.; Marron, N.; Ceulemans, R. Variability in Populus Leaf Anatomy and Morphology in Relation to Canopy Position, Biomass Production, and Varietal Taxon. Ann. For. Sci. 2007, 64, 521–532. [Google Scholar] [CrossRef]
- Lomax, B.H.; Woodward, F.I.; Leitch, I.J.; Knight, C.A.; Lake, J.A. Genome Size as a Predictor of Guard Cell Length in Arabidopsis thaliana Is Independent of Environmental Conditions. New Phytol. 2009, 181, 311–314. [Google Scholar] [CrossRef]
- Miyazawa, S.-I.; Livingston, N.J.; Turpin, D.H. Stomatal Development in New Leaves Is Related to the Stomatal Conductance of Mature Leaves in Poplar (Populus trichocarpa × P. deltoides). J. Exp. Bot. 2006, 57, 373–380. [Google Scholar] [CrossRef]
- Cui, E.; Weng, E.; Yan, E.; Xia, J. Robust Leaf Trait Relationships across Species under Global Environmental Changes. Nat. Commun. 2020, 11, 2999. [Google Scholar] [CrossRef]
Source of Variation | df | LNC | LCC | SLA | SL | SW | SD | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SS% | F | SS% | F | SS% | F | SS% | F | SS% | F | SS% | F | ||
Species | 39.00 | 34.28 | 9.42 | 52.29 | 8.75 | 94.00 | 146.09 | 84.63 | 40.35 | 77.17 | 22.48 | 92.45 | 136.03 |
Leaf age | 1.00 | 14.20 | 140.39 | 3.27 | 19.70 | 0.18 | 10.14 | 1.66 | 28.49 | 1.00 | 10.44 | 2.39 | 126.60 |
Species × age | 37.00 | 32.81 | 9.27 | 13.74 | 2.36 | 2.51 | 4.02 | 2.93 | 1.44 | 4.19 | 1.25 | 1.67 | 2.53 |
Residuals | 185.00 | 18.71 | 30.70 | 3.31 | 10.78 | 17.64 | 3.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Zhao, X.; Liu, G.; Wang, Q.; Wang, F.; Li, Y. Changes in Leaf Functional Traits with Leaf Age for Coexisting Woody Species in Temperature Forest of Northern China. Forests 2024, 15, 1803. https://doi.org/10.3390/f15101803
Wang L, Zhao X, Liu G, Wang Q, Wang F, Li Y. Changes in Leaf Functional Traits with Leaf Age for Coexisting Woody Species in Temperature Forest of Northern China. Forests. 2024; 15(10):1803. https://doi.org/10.3390/f15101803
Chicago/Turabian StyleWang, Li, Xueyan Zhao, Guoyu Liu, Qing Wang, Fangyuan Wang, and Yan Li. 2024. "Changes in Leaf Functional Traits with Leaf Age for Coexisting Woody Species in Temperature Forest of Northern China" Forests 15, no. 10: 1803. https://doi.org/10.3390/f15101803
APA StyleWang, L., Zhao, X., Liu, G., Wang, Q., Wang, F., & Li, Y. (2024). Changes in Leaf Functional Traits with Leaf Age for Coexisting Woody Species in Temperature Forest of Northern China. Forests, 15(10), 1803. https://doi.org/10.3390/f15101803