Effect of Caragana microphylla Lam. on Desertified Grassland Restoration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design and Data Collection
2.3. Data Analysis
3. Results
3.1. Impacts of C. microphylla on Understory Vegetation Community Characteristics at Different Stage of Vegetation Restoration in Desertified Grassland
3.2. Effects of C. microphylla on Soil Physicochemical Properties across Various Stages of Vegetation Restoration in Desertified Grassland
3.2.1. Analysis of Soil Physical Properties
3.2.2. Analysis of Soil Chemical Properties
3.3. Correlation between Soil Physicochemical Properties and Vegetation Characteristics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- D’Odorico, P.; Bhattachan, A.; Davis, K.F.; Ravi, S.; Runyan, C.W. Global Desertification: Drivers and Feedbacks. Adv. Water Resour. 2013, 51, 326–344. [Google Scholar] [CrossRef]
- Chapman, S.K.; Newman, G.S. Biodiversity at the Plant-Soil Interface: Microbial Abundance and Community Structure Respond to Litter Mixing. Oecologia 2010, 162, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Biradar, C.M.; Xiao, X.; Dong, J.; Zhou, Y.; Qin, Y.; Zhang, Y.; Liu, F.; Ding, M.; Thomas, R.J. Exacerbated Grassland Degradation and Desertification in Central Asia during 2000–2014. Ecol. Appl. 2018, 28, 442–456. [Google Scholar] [CrossRef]
- Wang, B.; Xue, S.; Liu, G.B.; Zhang, G.H.; Li, G.; Ren, Z.P. Changes in Soil Nutrient and Enzyme Activities under Different Vegetations in the Loess Plateau Area, Northwest China. CATENA 2012, 92, 186–195. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, C.; Long, R.; Yang, Y. Rangeland Governance in China: Overview, Impacts on Sunan County in Gansu Province and Future Options. Rangel. J. Rangel. J. 2010, 32, 155–163. [Google Scholar] [CrossRef]
- Wang, F.; Pan, X.; Gerlein-Safdi, C.; Cao, X.; Wang, S.; Gu, L.; Wang, D.; Lu, Q. Vegetation Restoration in Northern China: A Contrasted Picture. L. Degrad. Dev. 2020, 31, 669–676. [Google Scholar] [CrossRef]
- Brooker, R.W.; Maestre, F.T.; Callaway, R.M.; Lortie, C.L.; Cavieres, L.A.; Kunstler, G.; Liancourt, P.; Tielbörger, K.; Travis, J.M.J.; Anthelme, F.; et al. Facilitation in Plant Communities: The Past, the Present, and the Future. J. Ecol. 2008, 96, 18–34. [Google Scholar] [CrossRef]
- Teixeira, L.H.; Weisser, W.; Ganade, G. Facilitation and Sand Burial Affect Plant Survival during Restoration of a Tropical Coastal Sand Dune Degraded by Tourist Cars. Restor. Ecol. 2016, 24, 390–397. [Google Scholar] [CrossRef]
- Rozé, F.; Lemauviel, S. Sand Dune Restoration in North Brittany, France: A 10-Year Monitoring Study. Restor. Ecol. 2004, 12, 29–35. [Google Scholar] [CrossRef]
- Dohn, J.; Dembélé, F.; Karembé, M.; Moustakas, A.; Amévor, K.A.; Hanan, N.P. Tree Effects on Grass Growth in Savannas: Competition, Facilitation and the Stress-Gradient Hypothesis. J. Ecol. 2013, 101, 202–209. [Google Scholar] [CrossRef]
- Lozano, Y.M.; Hortal, S.; Armas, C.; Pugnaire, F.I. Complementarity in Nurse Plant Systems: Soil Drives Community Composition While Microclimate Enhances Productivity and Diversity. Plant Soil 2020, 450, 385–396. [Google Scholar] [CrossRef]
- Domínguez, M.T.; Pérez-Ramos, I.M.; Murillo, J.M.; Marañón, T. Facilitating the Afforestation of Mediterranean Polluted Soils by Nurse Shrubs. J. Environ. Manag. 2015, 161, 276–286. [Google Scholar] [CrossRef]
- Maestre, F.T.; Callaway, R.M.; Valladares, F.; Lortie, C.J. Refining the Stress-Gradient Hypothesis for Competition and Facilitation in Plant Communities. J. Ecol. 2009, 97, 199–205. [Google Scholar] [CrossRef]
- Mcintire, E.J.B.; Fajardo, A. Facilitation as a Ubiquitous Driver of Biodiversity. New Phytol. 2014, 201, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, Y.; Cao, W.; Wang, X.; Duan, Y.; Liu, X.; Yao, C. Response of the Plant–Soil System to Desertification in the Hulun Buir Sandy Land, China. L. Degrad. Dev. 2023, 34, 2024–2037. [Google Scholar] [CrossRef]
- Miao, R.; Jiang, D.; Musa, A.; Zhou, Q.; Guo, M.; Wang, Y. Effectiveness of Shrub Planting and Grazing Exclusion on Degraded Sandy Grassland Restoration in Horqin Sandy Land in Inner Mongolia. Ecol. Eng. 2015, 74, 164–173. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Y.; Jia, X.; Shao, M.; An, Z. Impacts of Shrub Introduction on Soil Properties and Implications for Dryland Revegetation. Sci. Total Environ. 2020, 742, 140498. [Google Scholar] [CrossRef]
- Temperton, V.M.; Mwangi, P.N.; Scherer-Lorenzen, M.; Schmid, B.; Buchmann, N. Positive Interactions between Nitrogen-Fixing Legumes and Four Different Neighbouring Species in a Biodiversity Experiment. Oecologia 2007, 151, 190–205. [Google Scholar] [CrossRef]
- Hu, G.Z.; Liu, H.Y.; Yin, Y.; Song, Z.L. The Role of Legumes in Plant Community Succession of Degraded Grasslands in Northern China. Land Degrad. Dev. 2016, 27, 366–372. [Google Scholar] [CrossRef]
- De Deyn, G.B.; Cornelissen, J.H.C.; Bardgett, R.D. Plant Functional Traits and Soil Carbon Sequestration in Contrasting Biomes. Ecol. Lett. 2008, 11, 516–531. [Google Scholar] [CrossRef]
- Ouyang, S.; Tian, Y.; Liu, Q.; Zhang, L.; Sun, Y.; Xu, X.; Liu, Y. Symbiotic Nitrogen Fixation and Interspecific Transfer by Caragana microphylla in a Temperate Grassland with 15N Dilution Technique. Appl. Soil Ecol. 2016, 108, 221–227. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Yu, Q.; Lü, X.T.; Trumbore, S.E.; Yang, J.J.; Han, X.G. Impacts of Leguminous Shrub Encroachment on Neighboring Grasses Include Transfer of Fixed Nitrogen. Oecologia 2016, 180, 1213–1222. [Google Scholar] [CrossRef] [PubMed]
- Jie, Y. Analysis on the Changes of Land Desertification in Hulunbeier Sandy Land Area over the Last 10 Years. For. Resour. Manag. 2002, 4, 39–43. [Google Scholar]
- Shan, D.; Zhu, Y.; Wang, B.; Liu, Y.; Shi, Z.; Yang, X. Relationship between plant community distribution pattern and soil characteristics in the northern sand belt of Hulunbuir Sandyland. J. Desert Res. 2020, 40, 145–155. [Google Scholar]
- Bai, Y.; Zhang, Y.; Michalet, R.; She, W.; Jia, X.; Qin, S. Responses of Different Herb Life-History Groups to a Dominant Shrub Species along a Dune Stabilization Gradient. Basic Appl. Ecol. 2019, 38, 1–12. [Google Scholar] [CrossRef]
- Nelson, D.W.; Le, S. Total Carbon, Organic Carbon and Organic Matter. In Methods of Soil Analysis; Sparks, D.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Yang, Y.; Liu, B. Effects of Planting Caragana Shrubs on Soil Nutrients and Stoichiometries in Desert Steppe of Northwest China. CATENA 2019, 183, 104213. [Google Scholar] [CrossRef]
- Stirling, G.; Wilsey, B. Empirical Relationships between Species Richness, Evenness, and Proportional Diversity. Am. Nat. 2001, 158, 286–299. [Google Scholar] [CrossRef]
- Mod, H.K.; Le Roux, P.C.; Luoto, M. Outcomes of Biotic Interactions Are Dependent on Multiple Environmental Variables. J. Veg. Sci. 2014, 25, 1024–1032. [Google Scholar] [CrossRef]
- Pistón, N.; Michalet, R.; Schöb, C.; Macek, P.; Armas, C.; Pugnaire, F.I. The Balance of Canopy and Soil Effects Determines Intraspecific Differences in Foundation Species’ Effects on Associated Plants. Funct. Ecol. 2018, 32, 2253–2263. [Google Scholar] [CrossRef]
- Baldelomar, M.; Atala, C.; Molina-Montenegro, M.A. Top-Down and Bottom-Up Effects Deployed by a Nurse Shrub Allow Facilitating an Endemic Mediterranean Orchid. Front. Ecol. Evol. 2019, 7, 1–10. [Google Scholar] [CrossRef]
- Iyengar, S.B.; Bagchi, S.; Barua, D.; Mishra, C.; Sankaran, M. A Dominant Dwarf Shrub Increases Diversity of Herbaceous Plant Communities in a Trans-Himalayan Rangeland. Plant Ecol. 2017, 218, 843–854. [Google Scholar] [CrossRef]
- Li, Q.; Shen, X.; Huang, Q.; Sun, F.; Zhou, J.; Ma, X.; Ran, Z.; Chen, Y.; Li, Z.; Yan, Y.; et al. Resource Islands of Salix Cupularis Facilitating Seedling Emergence of the Companion Herbs in the Restoration Process of Desertified Alpine Meadow, the Tibetan Plateau. J. Environ. Manag. 2021, 289, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Liancourt, P.; Le Bagousse-Pinguet, Y.; Rixen, C.; Dolezal, J. SGH: Stress or Strain Gradient Hypothesis? Insights from an Elevation Gradient on the Roof of the World. Ann. Bot. 2017, 120, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.Z.; Zhao, H.L. Soil Properties and Plant Species in an Age Sequence of Caragana microphylla Plantations in the Horqin Sandy Land, North China. Ecol. Eng. 2003, 20, 223–235. [Google Scholar] [CrossRef]
- Erfanzadeh, R.; Yazdani, M.; Arani, A.M. Effect of Different Shrub Species on Their Sub-Canopy Soil and Vegetation Properties in Semiarid Regions. Land Degrad. Dev. 2021, 32, 3236–3247. [Google Scholar] [CrossRef]
- Lu, R.; Zheng, J.; Jia, C.; Liu, Y.; Huang, Z.; He, H.; Han, F.; Wu, G.L. Nurse Effects of Patch-Canopy Microhabitats Promote Herbs Community Establishment in Sandy Land. Ecol. Eng. 2018, 118, 126–133. [Google Scholar] [CrossRef]
- Michalet, R.; Brooker, R.W.; Lortie, C.J.; Maalouf, J.P.; Pugnaire, F.I. Disentangling Direct and Indirect Effects of a Legume Shrub on Its Understorey Community. Oikos 2015, 124, 1251–1262. [Google Scholar] [CrossRef]
- Sortibrán, L.; Verdú, M.; Valiente-Banuet, A. A Nurse Plant Benefits from Facilitative Interactions through Mycorrhizae. Plant Biol. 2019, 21, 670–676. [Google Scholar] [CrossRef]
- Navarro-Cano, J.A.; Horner, B.; Goberna, M.; Verdú, M. Additive Effects of Nurse and Facilitated Plants on Ecosystem Functions. J. Ecol. 2019, 107, 2587–2597. [Google Scholar] [CrossRef]
- She, W.; Bai, Y.; Zhang, Y.; Qin, S.; Jia, X.; Feng, W.; Lai, Z.; Fu, J.; Qiao, Y. Nitrogen Enrichment Suppresses Revegetated Shrub Growth under Increased Precipitation via Herb-Induced Topsoil Water Limitation in a Desert Ecosystem in Northern China. Plant Soil 2020, 446, 97–110. [Google Scholar] [CrossRef]
Revegetation Stage | Length/(cm) N = 15 | Width/(cm) N = 15 | Height/(cm) N = 15 | Cover/(%) N = 15 |
---|---|---|---|---|
SF | 118.5 ± 16.04 b | 89.70 ± 19.87 b | 112.13 ± 13.76 a | 25.2 ± 8.21 c |
FS | 161 ± 23.55 a | 131.17 ± 23.70 a | 150.53 ± 41.49 a | 48.5 ± 10.54 b |
SG | 122.12 ± 22.12 b | 98.27 ± 27.93 b | 149.00 ± 36.30 b | 83.5 ± 4.57 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, T.; Li, Q. Effect of Caragana microphylla Lam. on Desertified Grassland Restoration. Forests 2024, 15, 1801. https://doi.org/10.3390/f15101801
Zhu T, Li Q. Effect of Caragana microphylla Lam. on Desertified Grassland Restoration. Forests. 2024; 15(10):1801. https://doi.org/10.3390/f15101801
Chicago/Turabian StyleZhu, Tiantian, and Qinghe Li. 2024. "Effect of Caragana microphylla Lam. on Desertified Grassland Restoration" Forests 15, no. 10: 1801. https://doi.org/10.3390/f15101801
APA StyleZhu, T., & Li, Q. (2024). Effect of Caragana microphylla Lam. on Desertified Grassland Restoration. Forests, 15(10), 1801. https://doi.org/10.3390/f15101801