Wildfires’ Effect on Soil Properties and Bacterial Biodiversity of Postpyrogenic Histic Podzols (Middle Taiga, Komi Republic)
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. The Effect of Fire on the Soil Properties
3.2. The Effect of Fire on Soil Heavy Metals
3.3. The Effect of Fire on Soil Bacterial Community
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gonzalez-Perez, J.A.; Gonza’lez-Vila, F.J.; Almendros, G.; Knicker, H. The effect of fire on soil organic matter—A review. Environ. Int. 2004, 30, 855–870. [Google Scholar] [CrossRef] [PubMed]
- Nary, D.G. Forest soil disturbance: Implications of factors contributing to the wildland fire nexus. Soil Sci. Soc. Am. J. 2019, 831s, S228. [Google Scholar] [CrossRef]
- Mataix-Solera, J.; Guerrero, C.; García-Orenes, F.; Bárcenas, G.M.; Torres, M.P. Forest fire effects on soil microbiology. In Fire Effects on Soils and Restoration Strategies; Chapter: 5; Science Publishers, Inc.: Enfield, NH, USA; Jersey, Plymouth, UK, 2009; pp. 133–175. [Google Scholar] [CrossRef]
- Glückler, R.; Geng, R.; Grimm, L.; Baisheva, I.; Herzschuh, U.; Stoof-Leichsenring, K.R.; Kruse, S.; Andreev, A.; Pestryakova, L.; Dietze, E. Holocene wildfire and vegetation dynamics in Central Yakutia, Siberia, reconstructed from lake-sediment proxies. Front. Ecol. Evol. 2022, 10, 962906. [Google Scholar] [CrossRef]
- Makhnykina, A.; Panov, A.; Prokushkin, A. The impact of wildfires on soil CO2 emission in middle taiga forests in Central Siberia. Land 2023, 12, 1544. [Google Scholar] [CrossRef]
- Leifeld, J.; Alewell, C.; Bader, C.; Krüger, J.P.; Mueller, C.W.; Sommer, M.; Steffens, M.; Szidat, S. Pyrogenic carbon contributes substantially to carbon storage in intact and degraded northern peatlands. Land Degrad. Dev. 2018, 29, 2082–2091. [Google Scholar] [CrossRef]
- Dymov, A.A.; Startsev, V.V.; Yakovleva, E.V.; Dubrovskiy, Y.A.; Milanovsky, E.Y.; Severgina, D.A.; Panov, A.V.; Prokushkin, A.S. Fire-induced alterations of soil properties in Albic Podzols developed under pine forests (middle taiga, Krasnoyarsky Kray). Fire 2023, 6, 67. [Google Scholar] [CrossRef]
- Startsev, V.; Gorbach, N.; Mazur, A.; Prokushkin, A.; Karpenko, L.; Dymov, A. Macrocharcoal signals in Histosols reveal wildfire history of vast Western Siberian forest-peatland complexes. Plants 2022, 11, 3478. [Google Scholar] [CrossRef]
- Likhanova, I.A.; Deneva, S.V.; Kholopov, Y.V.; Kuznetsova, E.G.; Shakhtarova, O.V.; Lapteva, E.M. The effect of hydromorphism on soils and soil organic matter during the primary succession processes of forest vegetation on ancient alluvial sands of the European North-East of Russia. Forests 2022, 13, 230. [Google Scholar] [CrossRef]
- Chevychelov, A.P. Pyrogenesis and post-pyrogenic transformations of properties and composition of permafrost soils. Sib. Ecol. J. 2002, 9, 273–278. [Google Scholar]
- Stolpe, N.B.; Sanchez-Hernandez, J.C.; Ruiz, C.G.; Sandoval, M. Fire impacts on soil and post fire emergency stabilization treatments in Mediterranean-climate regions. Chil. J. Agric. Res. 2022, 82, 335–347. [Google Scholar] [CrossRef]
- De la Rosa, J.M.; Gonzalez-Perez, J.A.; Gonzalez-Vazquez, R.; Knicker, H.; Lopez-Capel, E.; Manning, D.A.C.; Gonzalez-Vila, F.J. Use of pyrolysis/GC–MS combined with thermal analysis to monitor C and N changes in soil organic matter from a Mediterranean fi re affected forest. Catena 2008, 74, 296–303. [Google Scholar] [CrossRef]
- Kawahigashi, M.; Prokushkin, A.; Sumida, H. Effect of fire on solute release from organic horizons under larch forest in Central Siberian permafrost terrain. Geoderma 2011, 166, 171–180. [Google Scholar] [CrossRef]
- Chebykina, E.; Polyakov, V.; Abakumov, E.; Petrov, A. Wildfire effects on cryosols in Central Yakutia Region, Russia. Atmosphere 2022, 13, 1889. [Google Scholar] [CrossRef]
- Bogorodskaya, A.V.; Kukavskaya, E.A.; Kalenskaya, O.P.; Buryak, L.V. Microbiological assessment of soils in coniferous forests of Central Siberia after fires of different severity. Russ. J. For. Sci. 2019, 2, 138–156. [Google Scholar] [CrossRef]
- Geraskina, A.P.; Tebenkova, D.N.; Ershov, D.V.; Ruchinskaya, E.V.; Sibirtseva, N.V.; Lukina, N.V. Wildfires as a factor of the loss of biodiversity and functions of forest ecosystems. For. Sci. Issues 2021, 4, 1–76. [Google Scholar] [CrossRef]
- Dymov, A.A. Soil Successions at Boreal Forests of the Komi Republic; GEOS: Moscow, Russia, 2020; p. 336. [Google Scholar]
- Dove, N.C.; Taş, N.; Hart, S.C. Ecological and genomic responses of soil microbiomes to high-severity wildfire: Linking community assembly to functional potential. ISME J. 2022, 16, 1853–1863. [Google Scholar] [CrossRef]
- Skripnikova, E.V.; Skripnikova, M.K. Features of development of soil microbial complexes after pyrogenic factor influence. Tomsk. State Univ. J. 2013, 18, 905–909. [Google Scholar]
- Grodnitskaya, I.D.; Karpenko, L.V.; Pashkeeva, O.E.; Goncharova, N.N.; Startsev, V.V.; Baturina, O.A.; Dymov, A.A. Impact of forest fires on the microbiological properties of oligotrophic peat soils and gleyed peat podzols of bogs in the Northern Part of the Sym-Dubches Interfluve, Krasnoyarsk Region. Eurasian Soil Sci. 2022, 55, 460–473. [Google Scholar] [CrossRef]
- Maksimova, E.Y.; Kudinova, A.G.; Abakumov, E.V. Functional activity of soil microbial communities in post-fire pine stands of Tolyatti, Samara Oblast. Soil Biol. 2017, 50, 249–255. [Google Scholar] [CrossRef]
- Xiang, X.; Shi, Y.; Yang, J.; Kong, J.; Lin, X.; Zhang, H.; Zeng, J.; Chu, H. Rapid recovery of soil bacterial communities after wildfire in a Chinese boreal forest. Sci. Rep. 2014, 4, 3829. [Google Scholar] [CrossRef]
- Fernandez-Gonzalez, A.J.; Martinez-Hidalgo, P.; Cobo-Diaz, J.F.; Villadas, P.J.; Martínez-Molina, E.; Toro, N.; Tringe, S.G.; Fernández-López, M. The rhizosphere microbiome of burned holm-oak: Potential role of the genus Arthrobacter in the recovery of burned soils. Sci. Rep. 2017, 7, 6008. [Google Scholar] [CrossRef] [PubMed]
- Weber, C.F.; Lockhart, J.S.; Charaska, E.; Aho, K.; Lohse, K.A. Bacterial composition of soils in ponderosa pine and mixed conifer forests exposed to different wildfire burn severity. Soil Biol. Biochem. 2014, 69, 242–250. [Google Scholar] [CrossRef]
- Nelson, A.R.; Narrowe, A.B.; Rhoades, C.C.; Fegel, T.S.; Daly, R.A.; Roth, H.K.; Chu, R.K.; Amundson, K.K.; Young, R.B.; Steindorff, A.S.; et al. Wildfire-dependent changes in soil microbiome diversity and function. Nat. Microbiol. 2022, 7, 1419–1430. [Google Scholar] [CrossRef] [PubMed]
- Maquia, I.S.A.; Fareleira, P.; Castro, I.V.E.; Soares, R.; Brito, D.R.A.; Mbanze, A.A.; Chaúque, A.; Máguas, C.; Ezeokoli, O.T.; Ribeiro, N.S.; et al. The Nexus between fire and soil bacterial diversity in the African Miombo Woodlands of Niassa Special Reserve, Mozambique. Microorganisms 2021, 9, 1562. [Google Scholar] [CrossRef] [PubMed]
- Whitman, T.; Whitman, E.; Woolet, J.; Flannigan, M.D.; Thompson, D.K.; Parisien, M.-A. Soil bacterial and fungal response to wildfires in the Canadian boreal forest across a burn severity gradient. Soil Biol. Biochem. 2019, 138, 107571. [Google Scholar] [CrossRef]
- Honeyman, A.S.; Fegel, T.S.; Peel, H.F.; Masters, N.A.; Vuono, D.C.; Kleiber, W.; Rhoades, C.C.; Spear, J.R. Statistical learning and uncommon soil microbiota explain biogeochemical responses after wildfire. Microb. Ecol. 2022, 88, e00343-22. [Google Scholar] [CrossRef]
- Aponte, H.; Galindo-Castañeda, T.; Yáñez, C.; Hartmann, M.; Rojas, C. Microbial community-level physiological profiles and genetic prokaryotic structure of burned soils under Mediterranean sclerophyll forests in Central Chile. Front. Microbiol. 2022, 13, 824813. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, C.; Suzuki, Y.; Hamashima, R.; Fukagawa, H.; Isono, Y.; Seguchi, T.; Bessho, R.; Akitsu, T. Environmental impact of mercury and forest fires and factory fire. Fire Sci. Technol. 2023, 42, 55–68. [Google Scholar] [CrossRef]
- Ivanov, V.A.; Ivanova, G.A.; Baksheeva, E.O.; Morozov, A.S. Estimating of greenhouse gas emissions from fires in light coniferous forests of the Lower Angara region. Sib. J. For. Sci. 2021, 6, 3–17. [Google Scholar] [CrossRef]
- Bondur, V.G.; Voronova, O.S.; Cherepanova, E.V.; Tsidilina, M.N.; Zima, A.L. Spatiotemporal analysis of multiannual wildfires and emissions of trace gas and aerosol in Russia based of satellite data. Izv. Atmos. Ocean. Phys. 2020, 56, 1457–1469. [Google Scholar] [CrossRef]
- Åström, J.; McNamee, M.; Truchot, B.; Marlair, G.; Hees, P.V. Experimental assessment of emission factors from fires in the built environment including scaling effects. Fire Technol. 2023, 1–25. [Google Scholar] [CrossRef]
- Bertolin, M.L.; Urretavizcaya, M.F.; Defossé, G.E. Fire emissions and carbon uptake in severely burned Lenga Beech (Nothofagus pumilio) Forests of Patagonia, Argentina. Fire Ecol. 2015, 11, 32–54. [Google Scholar] [CrossRef]
- Li, K.; Zhang, Q.; Wang, T.; Rong, R.; Hu, X.; Zhang, Y. Laboratory investigation of pollutant emissions and PM2.5 toxicity of underground coal fires. Sci. Total Environ. 2022, 837, 155537. [Google Scholar] [CrossRef] [PubMed]
- Ryan, K.C.; Noste, N.V. Evaluating prescribed fires. In Proceedings, Symposium and Workshop on Wilderness Fire, 15–18 November 1983, Missoula, MT, USA; Lotan, J.E., Kilgore, B.M., Fischer, W.C., Mutch, R.W., Eds.; General Technical Report INT-182; USDA Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1985; pp. 230–238. [Google Scholar]
- Keeley, J.E. Fire intensity, fire severity and burn severity: A brief review and suggested usage. Int. J. Wildland Fire 2009, 18, 116–126. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Vorobyova, L.A. Theory and Practice of Soil Chemical Analysis; GEOS: Moscow, Russia, 2006; p. 400. [Google Scholar]
- Rastvorova, O.G.; Andreev, D.P.; Gagarina, E.I. Soil Chemical Analysis. Workbook; Publishing House of Saint-Petersburg State University: Saint-Petersburg, Russia, 1995; p. 263. [Google Scholar]
- GOST R 54650-2011; Soils: Determination of Mobile Compounds of Phosphorus and Potassium Using the Kirsanov Method as Modified by TsINAO. Federal Agency on Technical Regulating and Metrology (GOST R): Moscow, Russia, 2011.
- ISO/TS 14256-1:2003; Soil Quality—Determination of Nitrate, Nitrite and Ammonium in Field-Moist Soils by Extraction with Potassium Chloride Solution—Part 1: Manual Method. International Organization for Standardization (ISO): Geneva, Switzerland, 2003.
- Ananyeva, N.D. Microbiological Aspects of Self-Purification and Soil Stability; Nauka: Moscow, Russia, 2003; p. 222. [Google Scholar]
- Savostyanova, A.S.; Semikolennykh, A.A. Comparison the methods of microbial biomass definition for the assessment of soil biological properties. Izv. Samara Sci. Cent. Russ. Acad. Sci. 2012, 14, 2064–2067. [Google Scholar]
- Jenkinson, D.S.; Powlson, D.S. The effects of biocidal treatment on metabolism in soil. V. A method for measuring soil biomass. Soil Biol. Biochem. 1976, 8, 209–213. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 6, 703–707. [Google Scholar] [CrossRef]
- ISO 11047:1998; Soil Quality—Determination of Cadmium, Chromium, Cobalt, Copper, Lead, Manganese, Nickel and Zinc—Flame and Electrothermal Atomic Absorption Spectrometric Methods. International Organization for Standardization (ISO): Geneva, Switzerland, 1998.
- SanPiN 1.2.3685-21; Hygienic Standards and Requirements for Ensuring the Safety and (or) Harmlessness of Habitat Factors to Humans; Sanitary Regulations and Standards of Russian Federation. Federal Agency on Technical Regulating and Metrology (GOST R): Moscow, Russia, 2021.
- Methodology Instructions of in Russian Federation 2.1.7.730-99; Hygienic Assessment of Soil Quality in Populated Areas. Federal Agency on Technical Regulating and Metrology (GOST R): Moscow, Russia, 1999.
- Perelman, A.I.; Kasimov, N.S. Landscape Geochemistry: Textbook; Astrea: Moscow, Russia, 1999; 764p. [Google Scholar]
- The R Project for Statistical Computing. Getting Started. Available online: https://www.R-project.org/ (accessed on 22 September 2023).
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Gladkov, G.V.; Chebykina, E.Y.; Evdokimova, E.V.; Ivanova, E.A.; Kimeklis, A.K.; Zverev, A.O.; Kichko, A.A.; Andronov, E.E.; Abakumov, E.V. Restoration of soil microbiome in various soil horizons after crown and surface wildfires. Ecol. Genet. 2020, 18, 343–356. [Google Scholar] [CrossRef]
- Pausas, J.G.; Keeley, J.E. A Burning Story: The Role of Fire in the History of Life. BioScience 2009, 59, 593–601. [Google Scholar] [CrossRef]
- Chuvieco, E.; Allgöwer, B.; Salas, F.J. Integration of physical and human factors in fire danger assessment. In Wildland Fire Danger Estimation and Mapping. The Role of Remote Sensing Data; Chuvieco, E., Ed.; World Scientific Publishing: Singapore, 2003; pp. 197–218. [Google Scholar]
- Alekseenko, I.V.; Gamova, N.S. The impact of forest fires on soil properties in boreal landscapes of Khamar-Daban mountain range. Biogeochem. Technog. Mod. Probl. Geochem. Ecol. Barnaul 2015, 1, 171–174. [Google Scholar]
- Forestry of the Komi Republic. Statistical Collection; Komistat: Syktyvkar, Russia, 2019; 347p. [Google Scholar]
- Bogatyrev, L.G.; Demin, V.V.; Matyshak, G.V.; Sapozhnikova, V.A. On some theoretical aspects of studying forest litters. Russ. J. For. Sci. 2004, 4, 17–29. [Google Scholar]
- Atkin, A.S.; Atkina, L.I. Stocks of soil combustible materials in pine forests. In Forest Fires and Their Consequences: Collection of Articles; IL&D: Krasnoyarsk, Russia, 1985; pp. 92–101. [Google Scholar]
- Popova, E.P. Fires influence on edaphic factors of pine forests productivity. In Soil-Ecological Studies in Forest Ecosystems; Science: Novosibirsk, Russia, 1982; pp. 119–138. [Google Scholar]
- Krasnoshchekov, Y.N.; Bezkorovainaya, I.N.; Kuz’michenko, V.V. Transformation of forest litter properties under controlled burning of fir forests defoliated by Siberian moths in the lower Angara river basin. Eurasian Soil. Sci. 2007, 40, 149–157. [Google Scholar] [CrossRef]
- Bodí, M.B.; Martin, D.A.; Balfour, V.N.; Santín, C.; Doerr, S.H.; Pereira, P.; Cerd`a, A.; Mataix-Solera, J. Wildland fire ash: Production, composition and eco-hydrogeomorphic effects. Earth-Sci. Rev. 2014, 130, 103–127. [Google Scholar] [CrossRef]
- Sapozhnikov, A.P.; Karpachevsky, L.O.; Ilyina, L.S. Postfire soil formation in cedar-deciduous forests. Bull. Mosc. State For. Univ. For. Bull. 2001, 1, 132–164. [Google Scholar]
- Dymov, A.A.; Abakumov, E.V.; Bezkorovaynaya, I.N.; Prokushkin, A.S.; Kuzyakov, Y.V.; Milanovsky, Y.E. Impact of forest fire on soil properties (review). Theor. Appl. Ecol. 2018, 4, 13–23. [Google Scholar] [CrossRef]
- Dikici, H.; Yilmaz, C.H. Peat fire effects on some properties of an artificially drained peatland. J. Environ. Qual. 2006, 35, 866–872. [Google Scholar] [CrossRef]
- Kosyakov, D.S.; Ul’yanovskii, N.V.; Latkin, T.B.; Pokryshkin, S.A.; Berzhonskis, V.R.; Polyakova, O.V.; Lebedev, A.T. Peat burning—An important source of pyridines in the earth atmosphere. Environ. Pollut. 2020, 266, 115109. [Google Scholar] [CrossRef]
- Adams, M.A.; Attiwill, P.M. Nutrient cycling and nitrogen mineralization in eucalypt forests of South-Eastern Australia. Plant Soil 1986, 92, 341–362. [Google Scholar] [CrossRef]
- Verma, S.; Singh, D.; Singh, A.K.; Jayakumar, S. Post-fire soil nutrient dynamics in a tropical dry deciduous forest of Western Ghats, India. For. Ecosyst. 2019, 6, 1–9. [Google Scholar] [CrossRef]
- Hernandez, T.; Garcia, C.; Reinhardt, I. Short-term effect of wildfire on the chemical, biochemical and microbiological properties of Mediterranean pine forest soils. Biol. Fertil. Soils 1997, 25, 109–116. [Google Scholar] [CrossRef]
- Nearly, D.G.; Klopatek, C.C.; DeBano, L.F.; Ffolliott, P.F. Fire effects on bellowground sustainability: Review and synthesis. For. Ecol. Manag. 1999, 122, 51–71. [Google Scholar] [CrossRef]
- De Marco, A.; Gentile, A.E.; Arena, C.; De Santo, A.V. Organic matter, nutrient content and biological activity in burned and unburned soils of a Mediterranean maquis area of southern Italy. Int. J. Wildland Fire 2005, 14, 365–377. [Google Scholar] [CrossRef]
- Santin, C.; Doerr, S.H.; Jones, M.W.; Merino, A.; Warneke, C.; Roberts, J.M. The relevance of pyrogenic carbon for carbon budgets from fires: Insights from the FIREX experiment. Glob. Biogeochem. Cycles 2020, 34, e2020GB00664. [Google Scholar] [CrossRef]
- Mataix-Solera, J.; Arcenegui, V.; Zavala, L.M.; Pérez-Bejarano, A.; Jordán, A.; Morugán-Coronado, A.; Bárcenas-Moreno, G.; Jiménez-Pinilla, P.; Lozano, E.; Granged, A.J.P.; et al. Small variations of soil properties control fire-induced water repellency. Span. J. Soil. Sci. 2014, 4, 51–60. [Google Scholar] [CrossRef]
- Zaidelman, F.R.; Morozowa, D.I.; Shvarov, A.P. Changes in the properties of pyrogenic formations and vegetation on burnt previously drained peat soils of Polesie Landscapes. Eurasian Soil. Sci. 2003, 36, 1159–1167. [Google Scholar]
- Kutiel, P.; Shavin, A. Effects of soil type, plant composition, and leaching on soil nutrients following simulated forest fire. For. Ecol. Manag. 1992, 53, 329–343. [Google Scholar] [CrossRef]
- Johnston, M.; Elliot, J. The effect of fire severity on ash, and plant and soil nutrient levels following experimental burning in a boreal mixed wood stand. Can. J. Soil. Sci. 1998, 78, 35–44. [Google Scholar] [CrossRef]
- Lynham, T.J.; Wickware, G.M.; Manson, J.A. Soil chemical changes and plant succession following experimental burning in immature Jack pine. Can. J. Soil. Sci. 1998, 78, 93–104. [Google Scholar] [CrossRef]
- Gautam, M.K.; Lee, K.S.; Berg, B.; Song, B.-Y.; Yeon, J.-Y. Trends of major, minor and rare earth elements in decomposing litter in a cool temperate ecosystem, South Korea. Chemosphere 2019, 222, 214–226. [Google Scholar] [CrossRef] [PubMed]
- Pereira, P.; Úbeda, X. Spatial distribution of heavy metals released from ashes after a wildfire. J. Environ. Eng. Landsc. Manag. 2010, 18, 13–22. [Google Scholar] [CrossRef]
- Shcherbov, B.L. The role of forest floor in migration of metals and artifical nuclides during forest fires in Siberia. Contemp. Probl. Ecol. 2012, 5, 191–199. [Google Scholar] [CrossRef]
- Kondratova, A.V.; Bryanin, S.V. Dynamics of heavy metals during litter decomposition in fire-affected boreal forests. J. Soils Sediments 2021, 21, 3682–3691. [Google Scholar] [CrossRef]
- Barreiro, A.; Díaz-Raviña, M. Fire impacts on soil microorganisms: Mass, activity, and diversity. Curr. Opin. Environ. Sci. Health 2021, 22, 100264. [Google Scholar] [CrossRef]
- Moya, D.; Fonturbel, T.; Peña, E.; Alfaro-Sanchez, R.; Plaza-Álvarez, P.A.; González-Romero, J.; Lucas-Borja, M.E.; de Las Heras, J. Fire damage to the soil bacterial structure and function depends on burn severity: Experimental burnings at a lysimetric facility (MedForECOtron). Forests 2022, 13, 1118. [Google Scholar] [CrossRef]
- Singh, D.; Sharma, P.; Kumar, U.; Daverey, A.; Arunachalam, K. Effect of forest fire on soil microbial biomass and enzymatic activity in oak and pine forests of Uttarakhand Himalaya, India. Ecol. Process. 2021, 10, 29. [Google Scholar] [CrossRef]
- Korneykova, M.V.; Vasenev, V.I.; Nikitin, D.A.; Soshina, A.S.; Dolgikh, A.V.; Sotnikova, Y.L. Urbanization affects soil microbiome profile distribution in the Russian Arctic region. Int. J. Environ. Res. Public Health 2021, 18, 11665. [Google Scholar] [CrossRef]
- Choma, M.; Šamonil, P.; Kaštovská, E.; Bárta, J.; Tahovská, K.; Valtera, M.; Šantrucková, H. Soil microbiome composition along the natural Norway spruce forest life cycle. Forests 2021, 12, 410. [Google Scholar] [CrossRef]
- Bowd, E.J.; Egidi, E.; Lindenmayer, D.B.; Wardle, D.A.; Kardol, P.; Cary, G.J.; Foster, C. Direct and indirect effects of fire on microbial communities in a pyrodiverse dry-sclerophyll forest. J. Ecol. 2022, 110, 1687–1703. [Google Scholar] [CrossRef]
- Grodnitskaya, I.D.; Pashkeeva, O.E.; Startsev, V.V.; Dymov, A.A. Respiratory activity and biodiversity of microbiomes in Podzolic Soils of post-pyrogenic spruce forests in the Krasnoyarsk Krai and Komi Republic. Eurasian Soil. Sci. 2023, 56, 793–806. [Google Scholar] [CrossRef]
- Wang, L.; Ye, X.; Hu, H.; Du, J.; Xi, Y.; Shen, Z.; Lin, J.; Chen, D. Soil bacterial communities triggered by organic matter inputs associates with a high-yielding pear production. Soil 2022, 8, 337–348. [Google Scholar] [CrossRef]
- Lin, H.; Peddada, S.D. Analysis of compositions of microbiomes with bias correction. Nat. Commun. 2020, 11, 3514. [Google Scholar] [CrossRef] [PubMed]
Plot, Horizon | Change in Organic Horizon | Thickness of Topsoil, cm | Coal Inclusions | Compaction of Topsoil | Soil Density, g/cm3 | Litter Stock, g/m2 | |||
---|---|---|---|---|---|---|---|---|---|
Control | Tirr | Not detected | 23 | 5 | - | - | 0.03 | 25,400 | 1500 |
Oe | Not detected | 13 | - | - | 0.13 | 16,900 | |||
Oa,pyr | Individual coal particles | 5 | + | - | 0.14 | 7000 | |||
Postfire | Qpyr | Complete burnout | 3 | + | + | 0.19 | 5700 |
Horizon, Depth, cm | Soil Moisture Content, % | pHH2O | Ctot, % | Ntot, % | C/N | Vbasal, µg CO2-C/g × hour | Cmic, mg/g | NO3−, mg/kg | NH4+, mg/kg | P2O5, mg/kg | K2O, mg/kg | Soil Density, g/cm3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | ||||||||||||
Tirr 0–5 | 12.88 ± 0.22 | 4.7 ± 1.1 ** | 47.6 ± 1.7 | 1.4 ± 0.2 *** | 34 *** | 105.8 ± 1.6 *** | 0.06 ± 0.5 | 1.5 ± 1.12 | 13.6 ± 1.1 | 578.0 ± 1.0 *** | 350.0 ± 1.5 ** | 0.03 ± 1.1 ** |
Oe 5–18 | 27.54 ± 1.1 | 4.3 ± 1.0 *** | 46.7 ± 1.6 * | 1.1 ± 0.1 *** | 42 *** | 82.2 ± 1.8 *** | 0.01 ± 0.0 | 0.0 ± 1.3 | 3.4 ± 1.2 | 236.0 ± 1.1 *** | 52.0 ± 1.9 *** | 0.1 ± 1.0 |
Oa,pyr 18–23 | 25.01 ± 1.2 | 4.4 ± 1.2 *** | 41.7 ± 1.5 ** | 1.4 ± 0.2 *** | 30 *** | 4.2 ± 1.4 *** | 0.01 ± 0.3 | 0.6 ± 0.9 | 10.5 ± 1.0 | 86.0 ± 1.2 *** | 17.0 ± 1.4 *** | 0.1 ± 1.2 |
Epyr 23–30 | 0.18 ± 0.91 | 4.6 ± 0.2 | 0.5 ± 0.1 *** | 0.1 ± 0.0 | 5 ** | 6.4 ± 0.8 * | nd | 0.1 ± 0.55 | 0.5 ± 0.8 | 3.0 ± 0.6 ** | 4.0 ± 0.5 ** | 1.1 ± 0.0 |
E 30–40 | 0.12 ± 0.05 | 4.7 ± 0.2 * | 0.3 ± 0.1 | 0.1 ± 0.0 | 3 | 4.2 ± 0.9 ** | nd | 0.0 ± 0.8 | 0.6 ± 0.9 | 2.0 ± 0.5 | 6.0 ± 0.6 ** | 1.1 ± 0.6 |
Bs 40–55 | 0.44 ± 0.45 | 5.2 ± 0.5 | 2.1 ± 0.3 * | 0.1 ± 0.1 | 21 * | 11.1 ± 0.5 ** | nd | 0.1 ± 0.05 | 1.0 ± 0.0 | 71.0 ± 0.2 * | 9.0 ± 0.1 * | 1.2 ± 0.4 |
BC 55–80 | 0.85 ± 0.2 | 5.0 ± 0.6 * | 0.5 ± 0.1 | 0.1 ± 0.0 | 5 | nd | nd | 0.1 ± 0.0 | 0.5 ± 0.0 | 23.0 ± 0.2 | 16.0 ± 0.2 * | 1.5 ± 0.6 |
Postfire | ||||||||||||
Qpyr 0–3 | 13.15 ± 1.8 | 5.5 ± 1.0 *** | 48 ± 1.7 *** | 4.2 ± 0.5 *** | 11 *** | 55.6 ± 1.2 *** | 0.02 ± 0.4 | 0.01 ± 1.0 | 55.5 ± 1.2 | 6532.0 ± 1.0 *** | 526.0 ± 1.5 *** | 0.2 ± 0.1 ** |
Epyr 3–10 | 0.20 ± 0.34 | 4.6 ± 0.7 | 1.2 ± 0.3 *** | 0.1 ± 0.0 | 12 ** | 5.6 ± 0.9 * | 0.01 ± 0.3 | 0.1 ± 0.0 | 1.8 ± 0.6 | 16.0 ± 0.1 ** | 14.0 ± 0.2 ** | 0.9 ± 0.1 |
E 10–23 | 0.13 ± 0.07 | 4.5 ± 0.4 * | 0.3 ± 0.1 | 0.1 ± 0.0 | 3 | 7.8 ± 0.1 ** | nd | 0.01 ± 0.0 | 0.4 ± 0.7 | 2.0 ± 0.4 | 12.0 ± 0.3 ** | 1.2 ± 0.9 |
Bs 23–30 | 1.28 ± 0.15 | 5.2 ± 0.0 | 1.9 ± 0.4 * | 0.1 ± 0.0 | 19 * | 6.4 ± 0.6 ** | nd | 0.03 ± 0.0 | 0.6 ± 0.5 | 47.0 ± 0.1 * | 15.0 ± 0.4 * | 1.1 ± 0.4 |
BC 30–40 | 0.56 ± 0.5 | 5.3 ± 0.6 * | 0.5 ± 0.1 | 0.1 ± 0.0 | 5 | nd | nd | 0.03 ± 0.2 | 5.2 ± 0.1 | 22.0 ± 0.1 | 6.0 ± 0.8 * | 1.4 ± 0.0 |
C 40–65 | 0.63 ± 0.02 | 5.3 ± 0.1 | 0.3 ± 0.1 | 0.1 ± 0.0 | 3 | nd | nd | 0.1 ± 0.1 | 0.6 ± 0.1 | 21.0 ± 0.1 | 11.0 ± 0.1 | 1.4 ± 0.0 |
Post hoc test Postfire—Control | 0.20 | p << 0.05 | p << 0.05 | p << 0.05 | p << 0.05 | p << 0.05 | 0.15 | 0.13 | 0.11 | p << 0.05 | p << 0.05 | p << 0.05 |
Significance of differences | Insign. | Sign. | Sign. | Sign. | Sign. | Sign. | Insign. | Insign. | Insign. | Sign. | Sign. | Sign. |
Horizon | Depth, cm | Cu | Zn | Ni | Pb | Cd |
---|---|---|---|---|---|---|
Control | ||||||
Tirr | 0–5 | 2.5 ± 1.0 ** | 35.7 ± 1.5 *** | 2.2 ± 1.0 ** | 1.4 ± 1.3 *** | 0.3 ± 0.3 ** |
Oe | 5–18 | 2.2 ± 1.2 ** | 29.2 ± 1.0 *** | 6.8 ± 1.0 * | 10.5 ± 1.1 *** | 0.3 ± 0.0 ** |
Oa,pyr | 18–23 | 3.1 ± 1.1 ** | 20.5 ± 1.6 *** | 3.7 ± 1.0 ** | 2.6 ± 1.6 *** | 0.2 ± 0.0 ** |
Epyr | 23–30 | <0.1 | 0.2 ± 0.9 * | 0.6 ± 0.1 | <0.1 | 0.2 ± 0.0 |
E | 30–40 | 1.2 ± 0.1 * | 0.5 ± 0.9 * | 0.6 ± 0.5 | <0.1 | 0.2 ± 0.0 |
Bs | 40–55 | 2.7 ± 0.0 ** | 8.6 ± 0.1 | 6.9 ± 0.5 * | 2.1 ± 0.1 * | 0.1 ± 0.1 |
BC | 55–80 | 1.1 ± 0.1 * | 5.6 ± 0.0 * | 5.5 ± 0.0 * | 0.2 ± 0.4 | 0.1 ± 0.1 |
Postfire | ||||||
Qpyr | 0–3 | 6.8 ± 1.0 ** | 127.4 ± 1.0 *** | 8.1 ± 1.0 ** | 28.3 ± 1.9 *** | 1.1 ± 1.0 ** |
Epyr | 3–10 | 0.3 ± 0.6 | 0.5 ± 0.5 * | 0.8 ± 0.6 | <0.1 | 0.1 ± 0.0 |
E | 10–23 | <0.1 * | <0.1 * | 0.5 ± 0.4 | <0.1 | 0.1 ± 0.0 |
Bs | 23–30 | 1.8 ± 0.1 ** | 8.8 ± 0.9 | 8.2 ± 0.4 * | 1.5 ± 0.6 ** | 0.1 ± 0.1 |
BC | 30–40 | 1.8 ± 0.6 * | 6.9 ± 0.1 * | 7.5 ± 0.1 * | 0.9 ± 0.7 | 0.1 ± 0.1 |
C | 40–65 | 2.6 ± 0.4 | 5.9 ± 0.0 | 8.1 ± 0.3 | 0.9 ± 0.1 | 0.1 ± 0.0 |
Post hoc test Postfire—Control | p << 0.05 | p << 0.05 | p << 0.05 | p << 0.05 | p << 0.05 | |
Singnificance of differences | Sign. | Sign. | Sign. | Sign. | Sign. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chebykina, E.Y.; Abakumov, E.V.; Kimeklis, A.K.; Gladkov, G.V.; Andronov, E.E.; Dymov, A.A. Wildfires’ Effect on Soil Properties and Bacterial Biodiversity of Postpyrogenic Histic Podzols (Middle Taiga, Komi Republic). Forests 2024, 15, 145. https://doi.org/10.3390/f15010145
Chebykina EY, Abakumov EV, Kimeklis AK, Gladkov GV, Andronov EE, Dymov AA. Wildfires’ Effect on Soil Properties and Bacterial Biodiversity of Postpyrogenic Histic Podzols (Middle Taiga, Komi Republic). Forests. 2024; 15(1):145. https://doi.org/10.3390/f15010145
Chicago/Turabian StyleChebykina, Ekaterina Yu., Evgeny V. Abakumov, Anastasiia K. Kimeklis, Grigory V. Gladkov, Evgeny E. Andronov, and Alexey A. Dymov. 2024. "Wildfires’ Effect on Soil Properties and Bacterial Biodiversity of Postpyrogenic Histic Podzols (Middle Taiga, Komi Republic)" Forests 15, no. 1: 145. https://doi.org/10.3390/f15010145
APA StyleChebykina, E. Y., Abakumov, E. V., Kimeklis, A. K., Gladkov, G. V., Andronov, E. E., & Dymov, A. A. (2024). Wildfires’ Effect on Soil Properties and Bacterial Biodiversity of Postpyrogenic Histic Podzols (Middle Taiga, Komi Republic). Forests, 15(1), 145. https://doi.org/10.3390/f15010145