Soil Properties and Forest Decline in the North-Western Part of Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Sample Processing
2.2. Soil Sampling
2.3. Methods
2.3.1. Soil Chemical Parameters
2.3.2. Abundance of Bacteria
2.3.3. Ecoplates (BIOLOG™) Method
2.3.4. Determination of Arbuscular Mycorrhizal Potential
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Medvedeva, M.V.; Bakhmet, O.N. Changes in the Microbiological Properties of Soils along the Gradient of the Altitude Zone of Mount Kivaka in Eastern Fennoscandia, Russia. Forests 2022, 13, 849. [Google Scholar] [CrossRef]
- Wang, Q.; Pan, J.; Ke, Y.; Yu, S.; Murray, P.J.; Luo, T.; Zhang, L.; Liu, W. Impact of Aspect on Arbuscular Mycorrhizal Fungal Diversity and Community Composition in a Natural Toona ciliata var. pubescens Forest in Subtropical China. Forests 2022, 13, 2100. [Google Scholar] [CrossRef]
- Merino-Martín, L.; Hernández-Cáceres, D.; Reverchon, F.; Angeles-Alvarez, G.; Zhang, G.; Dunoyer de Segonzac, D.; Dezette, D.; Stokes, A. Habitat partitioning of soil microbial communities along an elevation gradient: From plant root to landscape scale. Oikos 2022, 2023, e09034. [Google Scholar] [CrossRef]
- Shen, C.; Gunina, A.; Luo, Y.; Wang, J.; He, J.Z.; Kuzyakov, Y.; Hemp, A.; Classen, A.T.; Ge, Y. Contrasting patterns and drivers of soil bacterial and fungal diversity across a mountain gradient. Environ. Microbiol. 2020, 22, 3287–3301. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yang, T.; Shi, Y.; Zhu, Y.; He, M.; Zhao, Y.; Adams, J.M.; Chu, H. Strong partitioning of soil bacterial community composition and co-occurrence networks along a small-scale elevational gradient on Zijin Mountain. Soil Ecol. Lett. 2021, 3, 290–302. [Google Scholar] [CrossRef]
- Praeg, N.; Seeber, J.; Leitinger, G.; Tasser, E.; Newesely, C.; Tappeiner, U.; Illmer, P. The role of land management and elevation in shaping soil microbial communities: Insights from the Central European Alps. Soil Biol. Biochem. 2020, 150, 107951. [Google Scholar] [CrossRef]
- Odriozola, I.; Navrátilová, D.; Tláskalová, P.; Klinerová, T.; Červenková, Z.; Kohout, P.; Větrovský, T.; Čížková, P.; Starý, M.; Baldrian, P. Predictors of soil fungal biomass and community composition in temperate mountainous forests in Central Europe. Soil Biol. Biochem. 2021, 161, 108366. [Google Scholar] [CrossRef]
- Mu, D.; Tang, J.; Cai, N.; Chen, S.; He, Y.; Deng, Z.; Yang, Y.; Yang, D.; Xu, Y.; Chen, L. Effects of Microbial Communities on Elevational Gradient Adaptation Strategies of Pinus yunnanensis Franch. and Pinus densata Mast. in a Mixed Zone. Forests 2023, 14, 685. [Google Scholar] [CrossRef]
- Tarek, Z.; Elshewey, A.M.; Shohieb, S.M.; Elhady, A.M.; El-Attar, N.E.; Elseuofi, S.; Shams, M.Y. Soil Erosion Status Prediction Using a Novel Random Forest Model Optimized by Random Search Method. Sustainability 2023, 15, 7114. [Google Scholar] [CrossRef]
- Kucuker, D.M.; Giraldo, D.C. Assessment of soil erosion risk using an integrated approach of GIS and Analytic Hierarchy Process (AHP) in Erzurum, Türkiye. Ecol. Inform. 2022, 71, 101788. [Google Scholar] [CrossRef]
- Stefanidis, S.; Alexandridis, V.; Mallinis, G. A cloud-based mapping approach for assessing spatiotemporal changes in erosion dynamics due to biotic and abiotic disturbances in a Mediterranean Peri-Urban forest. Catena 2022, 218, 106564. [Google Scholar] [CrossRef]
- Oktan, E.; Kezik, U.; Hacisalihoglu, S.; Yucesan, Z. Effects of Deforestation on Soil Erosion and Carbon Sequestration in the Soil. Fresenius Environ. Bull 2022, 31, 2239–2249. [Google Scholar]
- Sun, W.; Niu, X.; Wang, Y.; Yin, X.; Teng, H.; Gao, P.; Liu, A. Effects of forest age on soil erosion and nutrient loss in Dianchi watershed, China. Environ. Monit. Assess. 2023, 195, 340. [Google Scholar] [CrossRef]
- Samec, P.; Kučera, A.; Tomášová, G. Soil Degradation Processes Linked to Long-Term Forest-Type Damage. In Forest Degradation Under Global Change; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Venanzi, R.; Picchio, R.; Grigolato, S.; Spinelli, R. Soil Disturbance Induced by Silvicultural Treatment in Chestnut (Castanea sativa Mill.) Coppice and Post-Disturbance Recovery. Forests 2020, 11, 1053. [Google Scholar] [CrossRef]
- Istocescu, D.; Istocescu, F. Considerațiigeologiceasupradepozitelorneogene ale BazinuluiCrişurilor. Studiişicercetări de geologie, geofizică, geografie. Ser. Geol. 1974, 19, 115–127. [Google Scholar]
- Popa, M. Lithostratigraphy of the Miocene deposits in the eastern part of Borod Basin (northwestern of Romania). Stud. Univ. Babeş-Bolyai Ser. Geol. 2000, XLV/2, 93–108. [Google Scholar]
- Filipescu, S.; Miclea, A.; Gross, M.; Harzhauser, M.; Zágoršek, K.; Jipa, C. Early Sarmatian paleoenvironments in the easternmost Pannonian Basin (Borod Depression, Romania) revealed by the micropaleontological data. Geol. Carpathica 2014, 65, 67–81. [Google Scholar] [CrossRef]
- Reichenbach, P.; Rossi, M.; Malamud, B.; Mihir, M.; Guzzetti, F. A review of statistically-based landslide susceptibility models. Earth-Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Hír, J.; Codrea, V.; Prieto, J. Two new early Sarmatian s. str. (latest middle Miocene) rodent faunas from the Carpathian Basin. Palaeobiodivers. Palaeoenviron. 2020, 100, 849–902. [Google Scholar] [CrossRef]
- Lazar, D.F.; Bucur, I.I.; Cociuba, I.; Sasaran, E. Sedimentary succesion of the Lower Cretaceous deposits from the north-western part of PadureaCraiului (Apuseni Mountains, Romania). Stud. UBB Geol. 2012, 57, 33–51. [Google Scholar] [CrossRef]
- Papp, D.C.; Cociuba, I.; Lazăr, D.F. Carbon and oxygen-isotope stratigraphy of the Early Cretaceous carbonate platform of PădureaCraiului (Apuseni Mountains, Romania): A chemostratigraphic correlation and paleoenvironmental tool. Appl. Geochem. 2013, 32, 3–16. [Google Scholar] [CrossRef]
- Barklay, I. Risk Assesement for Tailings Impoundments. In Proceedings of the Mining Environment Congress, Baile Felix, Romania, 25–30 June 2001. [Google Scholar]
- Popovici, L.; Moruzi, C.; Toma, I. Botanical Book. Pedagogical Publishing House: Bucharest, Romania, 2002. [Google Scholar]
- Sabau, N.C.; Domuta, C.; Berchez, O. Genesis, Degradation and Pollution of the Soil, Part II. Degradation and Pollution of the Soil; University of Oradea Publishing House: Oradea, Romania, 2002. [Google Scholar]
- SR 7184/2001; Soluri. ASRO: Bucureşti, Romania, 2001.
- Oneț, A.; Teușdea, A.; Boja, N.; Domuța, C.; Oneț, C. Effects of common oak (Quercus robur L.) defoliation on the soil properties of an oak forest in Western Plain of Romania. Ann. For. Res. 2016, 59, 33–47. [Google Scholar] [CrossRef]
- Margesin, R.; Schinner, F. Manual for Soil Analysis-Monitoring and Assessing Soil Bioremediation; Springer Science & Business Media: Berlin, Germany, 2005; Volume 5. [Google Scholar]
- Bloem, J.; Hopkins, D.W.; Benedetti, A. Census of Microbiological Methods for Soil Quality; CABI Publishing: Wallingford, UK, 2005. [Google Scholar] [CrossRef]
- Singh, S.R.; Yadav, P.; Singh, D.; Bahadur, L.; Singh, S.P.; Yadav, A.S.; Mishra, A.; Yadav, P.P.; Kumar, S. Impact of different cropping systems on the land nutrient index, microbial diversity, and soil quality. Land Degrad. Dev. 2021, 32, 3973–3991. [Google Scholar] [CrossRef]
- Stoian, V.; Vidican, R.; Florin, P.; Corcoz, L.; Pop-Moldovan, V.; Vaida, I.; Vâtcă, S.D.; Stoian, V.A.; Pleșa, A. Exploration of Soil Functional Microbiomes—A Concept Proposal for Long-Term Fertilized Grasslands. Plants 2022, 11, 1253. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.H.; Dobbs, F.C. Comparison of two kinds of Biolog microplates (GN and ECO) in their ability to distinguish among aquatic microbial communities. J. Microbiol. Methods 1999, 36, 203–213. [Google Scholar] [CrossRef]
- Garland, J.L. Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microbiol. Ecol. 1997, 24, 289–300. [Google Scholar] [CrossRef]
- Andrango, C.; Cueva, M.; Viera, W.; Duchicela, J. Evaluation of methods to estimate mycorrhizal inoculums potential in field soils. Ciencia 2016, 18, 329–352. [Google Scholar]
- Ryan, M.H.; Kidd, D.R.; Sandral, G.A.; Yang, Z.; Lambers, H.; Culvenor, R.A.; Stefanski, A.; Nichols, P.G.; Haling, R.E.; Simpson, R.J. High variation in the percentage of root length colonised by arbuscular mycorrhizal fungi among 139 lines representing the species subterranean clover (Trifolium subterraneum). Appl. Soil Ecol. 2016, 98, 221–232. [Google Scholar] [CrossRef]
- Corcoz, L.; Păcurar, F.; Pop-Moldovan, V.; Vaida, I.; Pleșa, A.; Stoian, V.; Vidican, R. Long-term fertilization alters mycorrhizal colonization strategy in the roots of agrostiscapillaris. Agriculture 2022, 12, 847. [Google Scholar] [CrossRef]
- Stoian, V.; Vidican, R.; Corcoz, L.; Pop-Moldovan, V. Mycorrhizal maps as a tool to explore colonization patterns and fungal strategies in the roots of festuca rubra and zea mays. JoVE (J. Vis. Exp.) 2022, 186, e63599. [Google Scholar]
- Stoian, V.; Vidican, R.; Crişan, I.; Puia, C.; Şandor, M.; Stoian, V.A.; Păcurar, F.; Vaida, I. Sensitive approach and future perspectives in microscopic patterns of mycorrhizal roots. Sci. Rep. 2019, 9, 10233. [Google Scholar] [CrossRef] [PubMed]
- Corcoz, L.; Păcurar, F.; Vaida, I.; Pleșa, A.; Moldovan, C.; Stoian, V.; Vidican, R. Deciphering the colonization strategies in roots of long-term fertilized festuca rubra. Agronomy 2022, 12, 650. [Google Scholar] [CrossRef]
- Pop-Moldovan, V.; Corcoz, L.; Stoian, V.; Moldovan, C.; Pleșa, A.; Vâtcă, S.; Vidican, R. Models of mycorrhizal colonization patterns and strategies induced by biostimulator treatments in Zea mays roots. Front. Plant Sci. 2022, 13, 1052066. [Google Scholar] [CrossRef] [PubMed]
- Faghihinia, M.; Zou, Y.; Chen, Z.; Bai, Y.; Li, W.; Marrs, R.; Staddon, P.L. The response of grassland mycorrhizal fungal abundance to a range of long-term grazing intensities. Rhizosphere 2020, 13, 100178. [Google Scholar] [CrossRef]
- Xu, W.; Ge, Z.; Poudel, D.R. Application and optimization of biologecoplates in functional diversity studies of soil microbial communities. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2015; Volume 22, p. 04015. [Google Scholar]
- Klimek, B.; Chodak, M.; Jaźwa, M.; Solak, A.; Tarasek, A.; Niklińska, M. The relationship between soil bacteria substrate utilisation patterns and the vegetation structure in temperate forests. Eur. J. For. Res. 2016, 135, 179–189. [Google Scholar] [CrossRef]
- Pająk, M.; Błońska, E.; Frąc, M.; Oszust, K. Functional diversity and microbial activity of forest soils that are heavily contaminated by lead and zinc. Water Air Soil Pollut. 2016, 227, 348. [Google Scholar] [CrossRef] [PubMed]
- Treseder, K.K.; Mack, M.C.; Cross, A. Relationships among fires, fungi, and soil dynamics in Alaskan boreal forests. Ecol. Appl. 2004, 14, 1826–1838. [Google Scholar] [CrossRef]
- Xiao, W.; Fei, F.; Diao, J.; Chen, B.J.; Guan, Q. Thinning intensity affects microbial functional diversity and enzymatic activities associated with litter decomposition in a Chinese fir plantation. J. For. Res. 2018, 29, 1337–1350. [Google Scholar] [CrossRef]
- Maillard, F.; Leduc, V.; Bach, C.; Reichard, A.; Fauchery, L.; Saint-André, L.; Zeller, B.; Buée, M. Soil microbial functions are affected by organic matter removal in temperate deciduous forest. Soil Biol. Biochem. 2019, 133, 28–36. [Google Scholar] [CrossRef]
- Lagerlöf, J.; Adolfsson, L.; Boerjesson, G.; Ehlers, K.; Vinyoles, G.P.; Sundh, I. Land-use intensification and agroforestry in the Kenyan highland: Impacts on soil microbial community composition and functional capacity. Appl. Soil Ecol. 2014, 82, 93–99. [Google Scholar] [CrossRef]
- Wang, Y.; Ouyang, Z.; Zheng, H.; Wang, X.; Chen, F.; Zeng, J. Carbon metabolism of soil microbial communities of restored forests in Southern China. J. Soils Sediments 2011, 11, 789–799. [Google Scholar] [CrossRef]
- Kučera, A.; Holík, L.; Rosíková, J.; Volařík, D.; Kneifl, M.; Vichta, T.; Knott, R.; Friedl, M.; Uherková, B.; Kadavý, J. Soil Microbial Functional Diversity under the Single-Season Influence of Traditional Forest Management in a Sessile Oak Forest of Central Europe. Forests 2021, 12, 1187. [Google Scholar] [CrossRef]
- Xu, M.; Li, X.; Cai, X.; Gai, J.; Li, X.; Christie, P.; Zhang, J. Soil microbial community structure and activity along a montane elevational gradient on the Tibetan Plateau. Eur. J. Soil Biol. 2014, 64, 6–14. [Google Scholar] [CrossRef]
- Cai, Y.F.; Barber, P.; Dell, B.; O’brien, P.; Williams, N.; Bowen, B.; Hardy, G.E.S.J. Soil bacterial functional diversity is associated with the decline of Eucalyptus gomphocephala. For. Ecol. Manag. 2010, 260, 1047–1057. [Google Scholar] [CrossRef]
- Available online: https://earth.google.com/web (accessed on 17 May 2023).
- Pignataro, A.; Moscatelli, M.C.; Mocali, S.; Grego, S.; Benedetti, A. Assessment of soil microbial functional diversity in a coppiced forest system. Appl. Soil Ecol. 2012, 62, 115–123. [Google Scholar] [CrossRef]
- Chen, F.; Zheng, H.; Zhang, K.; Ouyang, Z.; Wu, Y.; Shi, Q.; Li, H. Non-Linear Impacts of Eucalyptus Plantation Stand Age on Soil Microbial Metabolic Diversity. J. Soils Sediments 2013, 13, 887–894. [Google Scholar] [CrossRef]
- Wasak, K.; Klimek, B.; Drewnik, M. Rapid Effects of Windfall on Soil Microbial Activity and Substrate Utilization Patterns in the Forest Belt in the Tatra Mountains. J. Soils Sediments 2020, 20, 801–815. [Google Scholar] [CrossRef]
- Bakker, J.D. Increasing the Utility of Indicator Species Analysis. J. Appl. Ecol. 2008, 45, 1829–1835. [Google Scholar] [CrossRef]
- De Cáceres, M.; Legendre, P.; Moretti, M. Improving Indicator Species Analysis by Combining Groups of Sites. Oikos 2010, 119, 1674–1684. [Google Scholar] [CrossRef]
- Rutgers, M.; Wouterse, M.; Drost, S.M.; Breure, A.M.; Mulder, C.; Stone, D.; Creamer, R.E.; Winding, A.; Bloem, J. Monitoring Soil Bacteria with Community-Level Physiological Profiles Using Biolog TM ECO-Plates in the Netherlands and Europe. Appl. Soil Ecol. 2016, 97, 23–35. [Google Scholar] [CrossRef]
- Clivot, H.; Pagnout, C.; Aran, D.; Devin, S.; Bauda, P.; Poupin, P.; Guérold, F. Changes in Soil Bacterial Communities Following Liming of Acidified Forests. Appl. Soil Ecol. 2012, 59, 116–123. [Google Scholar] [CrossRef]
- Jurkšienė, G.; Janušauskaitė, D.; Baliuckas, V. Microbial Community Analysis of Native Pinus sylvestris L. and Alien Pinus mugo L. on Dune Sands as Determined by Ecoplates. Forests 2020, 11, 1202. [Google Scholar] [CrossRef]
Site | AMB (C.F.U./g Soil) | pH | Humus (%) | mobP (ppm) | mobK (ppm) |
---|---|---|---|---|---|
CTRL | 40.80 a ± 4.32 | 4.98 a ± 0.07 | 3.95 b ± 0.36 | 43.70 a ± 12.96 | 90.80 a ± 6.82 |
Site 1 | 24.00 b ± 3.27 | 4.57 b ± 0.10 | 5.47 a ± 0.87 | 42.89 a ± 16.40 | 97.20 a ± 17.92 |
Site 2 | 17.83 b ± 3.45 | 4.58 b ± 0.10 | 5.35 a ± 0.57 | 38.02 a ± 23.77 | 112.80 a ± 4.16 |
Site | Al3 (me/100 g soil) | SB (me/100 g soil) | HA (me/100 g soil) | T (me/100 g soil) | V (%) |
CTRL | 1.39 b ± 0.09 | 1.40 a ± 0.69 | 9.26 a ± 0.34 | 10.66 a ± 0.49 | 12.97 a ± 5.82 |
Site 1 | 2.25 a ± 0.48 | 1.20 a ± 0.20 | 11.52 a ± 1.65 | 12.72 a ± 1.69 | 9.52 a ± 1.80 |
Site 2 | 2.08 a ± 0.11 | 0.67 a ± 0.46 | 11.08 a ± 1.21 | 11.75 a ± 1.67 | 5.40 a ± 2.93 |
Sample | Coarse Sand (%) | Fine Sand (%) | Dust (%) | Colloidal Clay (%) | Physical Clay |
---|---|---|---|---|---|
CTRL | 25.47 b ± 0.75 | 32.30 a ± 2.13 | 31.50 a ± 1.11 | 10.73 a ± 0.96 | 26.83 a ± 1.19 |
Site 1 | 33.60 a ± 3.70 | 27.30 b ± 3.41 | 23.60 b ± 2.01 | 15.50 a ± 3.42 | 30.07 a ± 3.82 |
Site 2 | 33.53 a ± 0.51 | 30.63 a ± 1.62 | 23.63 b ± 1.63 | 12.20 a ± 3.08 | 26.70 a ± 1.81 |
All Sample Groups | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variables | AMB | pH | Humus | mobP | mobK | Al3 | SB | HA | T | V |
AMB | 1 | 0.8322 | −0.7295 | 0.3129 | −0.4746 | −0.8018 | 0.4702 | −0.6148 | −0.4305 | 0.6031 |
pH | 0.8322 | 1 | −0.8629 | −0.0917 | −0.3210 | −0.8879 | 0.4367 | −0.8541 | −0.6756 | 0.6221 |
Humus | −0.7295 | −0.8629 | 1 | −0.1220 | 0.0982 | 0.7295 | −0.1961 | 0.8911 | 0.7981 | −0.4166 |
mobP | 0.3129 | −0.0917 | −0.1220 | 1 | −0.0078 | −0.0548 | 0.0784 | 0.0669 | 0.0933 | 0.0824 |
mobK | −0.4746 | −0.3210 | 0.0982 | −0.0078 | 1 | 0.0425 | −0.5141 | −0.0927 | −0.2748 | −0.4692 |
Al3 | −0.8018 | −0.8879 | 0.7295 | −0.0548 | 0.0425 | 1 | −0.2591 | 0.8386 | 0.7243 | −0.4475 |
SB | 0.4702 | 0.4367 | −0.1961 | 0.0784 | −0.5141 | −0.2591 | 1 | −0.1122 | 0.2495 | 0.9679 |
HA | −0.6148 | −0.8541 | 0.8911 | 0.0669 | −0.0927 | 0.8386 | −0.1122 | 1 | 0.9343 | −0.3562 |
T | −0.4305 | −0.6756 | 0.7981 | 0.0933 | −0.2748 | 0.7243 | 0.2495 | 0.9343 | 1 | 0.0001 |
V | 0.6031 | 0.6221 | −0.4166 | 0.0824 | −0.4692 | −0.4475 | 0.9679 | −0.3562 | 0.0001 | 1 |
Group Sample—CTRL | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variables | AMB | pH | Humus | mobP | mobK | Al3 | SB | HA | T | V |
AMB | 1 | −0.8046 | −0.3007 | 0.8455 | 0.8201 | −0.3952 | −0.7616 | 1.0000 | −0.3904 | −0.7834 |
pH | −0.8046 | 1 | −0.3244 | −0.9974 | −0.3201 | 0.8635 | 0.9976 | −0.7994 | 0.8608 | 0.9994 |
Humus | −0.3007 | −0.3244 | 1 | 0.2550 | −0.7923 | −0.7572 | −0.3890 | −0.3090 | −0.7606 | −0.3571 |
mobP | 0.8455 | −0.9974 | 0.2550 | 1 | 0.3879 | −0.8246 | −0.9900 | 0.8408 | −0.8217 | −0.9942 |
mobK | 0.8201 | −0.3201 | −0.7923 | 0.3879 | 1 | 0.2015 | −0.2538 | 0.8251 | 0.2066 | −0.2869 |
Al3 | −0.3952 | 0.8635 | −0.7572 | −0.8246 | 0.2015 | 1 | 0.8963 | −0.3871 | 1.0000 | 0.8805 |
SB | −0.7616 | 0.9976 | −0.3890 | −0.9900 | −0.2538 | 0.8963 | 1 | −0.7559 | 0.8939 | 0.9994 |
HA | 1.0000 | −0.7994 | −0.3090 | 0.8408 | 0.8251 | −0.3871 | −0.7559 | 1 | −0.3823 | −0.7780 |
T | −0.3904 | 0.8608 | −0.7606 | −0.8217 | 0.2066 | 1.0000 | 0.8939 | −0.3823 | 1 | 0.8780 |
V | −0.7834 | 0.9994 | −0.3571 | −0.9942 | −0.2869 | 0.8805 | 0.9994 | −0.7780 | 0.8780 | 1 |
Group Sample—Site 1 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variables | AMB | pH | Humus | mobP | mobK | Al3 | SB | HA | T | V |
AMB | 1 | 0.9574 | −0.6345 | 0.5069 | 0.9995 | −0.9133 | 0.1988 | −0.9458 | −0.9011 | 0.8653 |
pH | 0.9574 | 1 | −0.3841 | 0.2363 | 0.9476 | −0.9920 | 0.4735 | −0.8116 | −0.7374 | 0.9732 |
Humus | −0.6345 | −0.3841 | 1 | −0.9879 | −0.6588 | 0.2647 | 0.6314 | 0.8511 | 0.9069 | −0.1615 |
mobP | 0.5069 | 0.2363 | −0.9879 | 1 | 0.5342 | −0.1120 | −0.7440 | −0.7594 | −0.8305 | 0.0065 |
mobK | 0.9995 | 0.9476 | −0.6588 | 0.5342 | 1 | −0.8999 | 0.1674 | −0.9557 | −0.9145 | 0.8488 |
Al3 | −0.9133 | −0.9920 | 0.2647 | −0.1120 | −0.8999 | 1 | −0.5807 | 0.7316 | 0.6465 | −0.9944 |
SB | 0.1988 | 0.4735 | 0.6314 | −0.7440 | 0.1674 | −0.5807 | 1 | 0.1302 | 0.2458 | 0.6633 |
HA | −0.9458 | −0.8116 | 0.8511 | −0.7594 | −0.9557 | 0.7316 | 0.1302 | 1 | 0.9931 | −0.6556 |
T | −0.9011 | −0.7374 | 0.9069 | −0.8305 | −0.9145 | 0.6465 | 0.2458 | 0.9931 | 1 | −0.5623 |
V | 0.8653 | 0.9732 | −0.1615 | 0.0065 | 0.8488 | −0.9944 | 0.6633 | −0.6556 | −0.5623 | 1 |
Group Sample—Site 2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variables | AMB | pH | Humus | mobP | mobK | Al3 | SB | HA | T | V |
AMB | 1 | −0.9386 | 0.9942 | 0.6708 | −0.8444 | 0.1478 | 0.8444 | 0.7920 | 0.8072 | 0.8516 |
pH | −0.9386 | 1 | −0.9704 | −0.8854 | 0.9774 | −0.4799 | −0.9774 | −0.9540 | −0.9613 | −0.9802 |
Humus | 0.9942 | −0.9704 | 1 | 0.7469 | −0.8973 | 0.2536 | 0.8973 | 0.8532 | 0.8662 | 0.9032 |
mobP | 0.6708 | −0.8854 | 0.7469 | 1 | −0.9637 | 0.8327 | 0.9637 | 0.9841 | 0.9792 | 0.9600 |
mobK | −0.8444 | 0.9774 | −0.8973 | −0.9637 | 1 | −0.6547 | −1.0000 | −0.9958 | −0.9978 | −0.9999 |
Al3 | 0.1478 | −0.4799 | 0.2536 | 0.8327 | −0.6547 | 1 | 0.6547 | 0.7209 | 0.7031 | 0.6443 |
SB | 0.8444 | −0.9774 | 0.8973 | 0.9637 | −1.0000 | 0.6547 | 1 | 0.9958 | 0.9978 | 0.9999 |
HA | 0.7920 | −0.9540 | 0.8532 | 0.9841 | −0.9958 | 0.7209 | 0.9958 | 1 | 0.9997 | 0.9945 |
T | 0.8072 | −0.9613 | 0.8662 | 0.9792 | −0.9978 | 0.7031 | 0.9978 | 0.9997 | 1 | 0.9968 |
V | 0.8516 | −0.9802 | 0.9032 | 0.9600 | −0.9999 | 0.6443 | 0.9999 | 0.9945 | 0.9968 | 1 |
Site | Water | Pyruvic Acid Methyl Ester | Tween 40 | Tween 80 | α-Cyclodextrin | Glycogen |
---|---|---|---|---|---|---|
CTRL | 0.33 c ± 0.01 | 1.35 a ± 0.16 a | 1.00 b ± 0.08 | 1.07 b ± 0.15 | 0.52 b ± 0.26 | 0.77 a ± 0.41 |
Site 1 | 0.62 a ± 0.06 | 1.54 a ± 0.30 a | 1.38 a ± 0.24 | 1.41 a ± 0.06 | 0.92 ab ± 0.34 | 1.11 a ± 0.32 |
Site 2 | 0.51 b ± 0.04 | 1.58 a ± 0.21 a | 1.36 a ± 0.08 | 1.18 b ± 0.08 | 1.16 a ± 0.19 | 1.67 a ± 0.61 |
Site | d-Cellobiose | α-d-Lactose | β-Methyl- d-glucoside | d-Xylose | i-Erythritol | d-Mannitol |
CTRL | 1.16 a ± 0.32 | 0.36 b ± 0.04 | 0.97 a ± 0.94 | 0.60 a ± 0.173 | 0.35 b ± 0.05 | 1.82 a ± 0.17 |
Site 1 | 1.19 a ± 0.34 | 0.89 a ± 0.37 | 1.70 a ± 0.92 | 1.09 a ± 0.475 | 0.66 a ± 0.11 | 2.06 a ± 0.09 |
Site 2 | 1.17 a ± 0.05 | 0.57 ab ± 0.16 | 1.05 a ± 0.85 | 0.85 a ± 0.405 | 0.59 a ± 0.14 | 1.90 a ± 0.31 |
Site | N-Acetyl-d- glucosamine | d-Glucosaminic acid | Glucose-1- phosphate | d,l-α-Glycerol phosphate | d-Galactonic acidγ-lactone | d-Galacturonic acid |
CTRL | 1.27 a ± 0.59 | 1.02 a ± 0.01 | 0.38 b ± 0.12 | 0.39 b ± 0.05 | 1.09 c ± 0.11 | 1.76 a ± 0.68 |
Site 1 | 2.04 a ± 0.78 | 1.16 a ± 0.27 | 1.14 a ± 0.43 | 0.78 a ± 0.17 | 1.40 b ± 0.17 | 2.45 a ± 0.05 |
Site 2 | 2.01 a ± 0.74 | 1.35 a ± 0.07 | 0.70 ab ± 0.41 | 0.67 ab ± 0.18 | 1.73 a ± 0.21 | 1.69 a ± 0.21 |
Site | 2-Hydroxy benzoic acid | 4-Hydroxy benzoic acid | γ-Hydroxy butyric acid | Itaconic acid | α-Keto butyric acid | d-Malic acid |
CTRL | 0.35 b ± 0.04 | 2.07 a ± 0.03 | 2.16 a ± 0.49 | 2.44 a ± 0.18 | 0.35 b ± 0.01 | 0.94 a ± 0.85 |
Site 1 | 0.74 a ± 0.20 | 2.32 a ± 0.16 | 2.75 a ± 0.38 | 2.15 a ± 0.44 | 0.75 a ± 0.09 | 1.23 a ± 0.20 |
Site 2 | 0.49 b ± 0.07 | 2.27 a ± 0.21 | 2.56 a ± 0.37 | 2.25 a ± 0.16 | 0.51 b ± 0.15 | 1.17 a ± 0.10 |
Site | l-Arginine | l-Asparagine | l-Phenylalanine | l-Serine | l-Threonine | Glycyl-l- Glutamicacid |
CTRL | 1.85 a ± 0.36 | 2.74 b ± 0.10 | 0.83 b ± 0.05 | 1.87 a ± 0.20 | 0.84 a ± 0.84 | 0.44 b ± 0.15 |
Site 1 | 2.23 a ± 0.35 | 2.98 a ± 0.16 | 1.07 a ± 0.15 | 1.86 a ± 0.26 | 0.77 a ± 0.16 | 0.79 a ± 0.16 |
Site 2 | 2.29 a ± 0.32 | 2.72 b ± 0.06 | 0.90 ab ± 0.12 | 1.90 a ± 0.46 | 0.58 a ± 0.17 | 0.66 ab ± 0.18 |
Site | Phenylethylamine | Putrescine | Sum | AWCD | Polymers | Carbohydrates |
CTRL | 1.47 a ± 0.46 | 1.08 a ± 0.36 | 35.30 b ± 3.35 | 0.81 a ± 0.11 | 3.36 b ± 0.54 | 8.66 b ± 0.71 |
Site 1 | 1.53 a ± 0.54 | 1.37 a ± 0.20 | 45.38 a ± 4.00 | 0.85 a ± 0.12 | 4.81 ab ± 0.88 | 13.02 a ± 2.54 |
Site 2 | 1.61 a ± 0.24 | 1.52 a ± 0.39 | 42.67 a ± 0.88 | 0.87 a ± 0.06 | 5.36 a ± 0.73 | 11.09 ab ± 1.43 |
Site | Carboxylicand aceticacids | Amino acids | Amines/ amides | Shannon | Simpson | |
CTRL | 12.18 b ± 1.68 | 8.56 a ± 0.91 | 2.55 a ± 0.72 | 3.23 b ± 0.03 | 0.96 a ± 0.01 | |
Site 1 | 14.96 a ± 0.68 | 9.70 a ± 0.78 | 2.89 a ± 0.74 | 3.33 a ± 0.07 | 0.96 a ± 0.01 | |
Site 2 | 14.02 ab ± 0.25 | 9.05 a ± 0.83 | 3.14 a ± 0.37 | 3.31 a ± 0.02 | 0.96 a ± 0.01 |
Sample | Frequency (%) | Intensity (%) | Arbuscules (%) | Vesicles (%) |
---|---|---|---|---|
CTRL | 34.67 a ± 9.98 | 16.51 a ± 9.33 | 3.64 b ± 3.03 | 1.38 a ± 0.83 |
Site 1 | 43.36 a ± 6.26 | 24.56 a ± 4.59 | 11.36 a ± 4.47 | 0.44 a ± 0.08 |
Site 2 | 33.04 a ± 4.56 | 17.51 a ± 5.07 | 2.80 b ± 2.43 | 1.44 a ± 2.01 |
Sample | Non-mycorrhizal area (%) | Colonization degree (%) | Mycorrhizal/Non-mycorrhizal | |
CTRL | 83.49 a ± 9.33 | 12.28 a ± 7.98 | 0.30 a ± 0.25 | |
Site 1 | 75.44 a ± 4.59 | 17.70 a ± 6.39 | 0.55 a ± 0.24 | |
Site 2 | 82.49 a ± 5.07 | 11.42 a ± 3.89 | 0.31 a ± 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onet, A.; Vidican, R.; Ghergheles, C.; Corcoz, L.; Stoian, V.; Onet, C.; Teusdea, A.C. Soil Properties and Forest Decline in the North-Western Part of Romania. Forests 2024, 15, 124. https://doi.org/10.3390/f15010124
Onet A, Vidican R, Ghergheles C, Corcoz L, Stoian V, Onet C, Teusdea AC. Soil Properties and Forest Decline in the North-Western Part of Romania. Forests. 2024; 15(1):124. https://doi.org/10.3390/f15010124
Chicago/Turabian StyleOnet, Aurelia, Roxana Vidican, Carmen Ghergheles, Larisa Corcoz, Vlad Stoian, Cristian Onet, and Alin Cristian Teusdea. 2024. "Soil Properties and Forest Decline in the North-Western Part of Romania" Forests 15, no. 1: 124. https://doi.org/10.3390/f15010124
APA StyleOnet, A., Vidican, R., Ghergheles, C., Corcoz, L., Stoian, V., Onet, C., & Teusdea, A. C. (2024). Soil Properties and Forest Decline in the North-Western Part of Romania. Forests, 15(1), 124. https://doi.org/10.3390/f15010124