Trends of Peatland Research Based on Topic Modeling: Toward Sustainable Management under Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Framework
2.2. Data Collection and Pre-Processing
2.3. Determination of Hyperparameters
2.4. Dynamic Topic Modeling
2.5. Network Analysis
3. Results
3.1. Dynamic Topic Modeling
3.1.1. Topic Interpretation
3.1.2. Temporal Change in Topics
3.1.3. Temporal Changes in Keyword Occurrence Probability within Topics
3.2. Network Analysis
4. Discussion
4.1. Toward Sustainable Management of Peatland under Climate Change
4.2. Dynamic Change in Keywords in Topics with a Large Number of Studies and Increasing Trends
4.3. Greenhouse Gas Had the Greatest Impact on Other Topics in Peatland Research
4.4. Limitations of This Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dargie, G.C.; Lewis, S.L.; Lawson, I.T.; Mitchard, E.T.A.; Page, S.E.; Bocko, Y.E.; Ifo, S.A. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature 2017, 542, 86–90. [Google Scholar] [CrossRef]
- International Peatland Society. IPS. In What Is Peat? International Peatland Society: Jyväskylä, Finland, 2023; Available online: https://peatlands.org/peat/peat (accessed on 14 March 2023).
- Joosten, H.; Clarke, D. Wise Use of Mires and Peatlands—Background and Principles Including a Framework for Decision-Making; International Mire Conservation Group and International Peat Society: Jyväskylä, Finland, 2002; p. 304. [Google Scholar]
- Lourenco, M.; Fitchett, J.M.; Woodborne, S. Peat definitions: A critical review. Prog. Phys. Geogr. 2022, 47, 506–520. [Google Scholar] [CrossRef]
- Xu, J.; Morris, P.J.; Liu, J.; Holden, J. PEATMAP: Refining estimates of global peatland distribution based on a meta-analysis. Catena 2018, 160, 134–140. [Google Scholar] [CrossRef]
- Müller, J.; Joos, F. Global peatland area and carbon dynamics from the Last Glacial Maximum to the present—A process-based model investigation. Biogeosciences 2020, 17, 5285–5308. [Google Scholar] [CrossRef]
- Hodgkins, S.B.; Richardson, C.J.; Dommain, R.; Wang, H.; Glaser, P.H.; Verbeke, B.; Winkler, B.R.; Cobb, A.R.; Rich, V.I.; Missilmani, M.; et al. Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance. Nat. Commun. 2018, 9, 3640. [Google Scholar] [CrossRef]
- Ribeiro, K.; Pacheco, F.S.; Ferreira, J.W.; de Sousa-Neto, E.R.; Hastie, A.; Krieger Filho, G.C.K.; Alvalá, P.C.; Forti, M.C.; Ometto, J.P. Tropical peatlands and their contribution to the global carbon cycle and climate change. Glob. Chang. Biol. 2021, 27, 489–505. [Google Scholar] [CrossRef] [PubMed]
- Joosten, H. Peatlands across the globe. In Peatland Restoration and Ecosystem Services: Science. Policy and Practice; Bonn, A., Allott, T., Evans, M., Joosten, H., Stoneman, R., Eds.; Cambridge University Press: Cambridge, UK, 2016; pp. 19–43. [Google Scholar] [CrossRef]
- Yu, Z.; Loisel, J.; Brosseau, D.P.; Beilman, D.W.; Hunt, S.J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 2010, 37, L13402. [Google Scholar] [CrossRef]
- Rezanezhad, F.; Price, J.S.; Quinton, W.L.; Lennartz, B.; Milojevic, T.; Van Cappellen, P. Structure of peat soils and implications for water storage, flow and solute transport: A review update for geochemists. Chem. Geol. 2016, 429, 75–84. [Google Scholar] [CrossRef]
- Martin-Ortega, J.; Allot, T.E.H.; Glenk, K.; Schaafsma, M. Valuing water quality improvements from peatland restoration: Evidence and challenges. Ecosyst. Serv. 2014, 9, 34–43. [Google Scholar] [CrossRef]
- Salmon, V.G.; Brice, D.J.; Bridgham, S.; Childs, J.; Graham, J.; Griffiths, N.A.; Hofmockel, K.; Iversen, C.M.; Jicha, T.M.; Kolka, R.K.; et al. Nitrogen and phosphorus cycling in an ombrotrophic peatland: A benchmark for assessing change. Plant Soil. 2021, 466, 649–674. [Google Scholar] [CrossRef]
- Bonn, A.; Allott, T.; Evans, M.; Joosten, H.; Stoneman, R. Peatland restoration and ecosystem services: An introduction. In Peatland Restoration and Ecosystem Services: Science. Policy and Practice; Bonn, A., Allott, T., Evans, M., Joosten, H., Stoneman, R., Eds.; Cambridge University Press: Cambridge, UK, 2016; pp. 1–16. [Google Scholar] [CrossRef]
- Tanneberger, F.; Birr, F.; Couwenberg, J.; Kaiser, M.; Luthardt, V.; Nerger, M.; Pfister, S.; Oppermann, R.; Zeitz, J.; Beyer, C.; et al. Saving soil carbon, greenhouse gas emissions, biodiversity and the economy: Paludiculture as sustainable land use option in German fen peatlands. Reg. Environ. Chang. 2022, 22, 69. [Google Scholar] [CrossRef]
- Thornton, S.A.; Setiana, E.; Yoyo, K.; Dudin; Yulintine; Harrison, M.E.; Page, S.E.; Upton, C. Towards biocultural approaches to peatland conservation: The case for fish and livelihoods in Indonesia. Environ. Sci. Policy 2020, 114, 341–351. [Google Scholar] [CrossRef]
- Yuwati, T.W.; Rachmanadi, D.; Pratiwi Turjaman, M.; Indrajaya, Y.; Nugroho, H.Y.S.H.; Qirom, M.A.; Narendra, B.H.; Winarno, B.; Lestari, S.; Santosa, P.B.; et al. Restoration of Degraded Tropical Peatland in Indonesia: A Review. Land 2021, 10, 1170. [Google Scholar] [CrossRef]
- Flood, K.; Mahon, M.; McDonagh, J. Assigning value to cultural ecosystem services: The significance of memory and imagination in the conservation of Irish peatlands. Ecosyst. Serv. 2021, 50, 101326. [Google Scholar] [CrossRef]
- Page, S.; Mischra, S.; Agus, F.; Anshari, G.; Dargie, G.; Evers, S.; Jauhiainen, J.; Jaya, A.; Jovani-Sancho, A.J.; Laurén, A.; et al. Anthropogenic impacts on lowland tropical peatland biogeochemistry. Nat. Rev. Earth Environ. 2022, 3, 426–443. [Google Scholar] [CrossRef]
- Phung, V.L.H.; Uttajug, A.; Ueda, K.; Yulianti, N.; Latif, M.T.; Naito, D. A scoping review on the health effects of smoke haze from vegetation and peatland fires in Southeast Asia: Issues with study approach sand interpretation. PLoS ONE 2022, 17, e0274433. [Google Scholar] [CrossRef]
- Astuti, R. Fixing flammable forests: The scalar politics of peatland governance and restoration in Indonesia. Asia Pac. Viewp. 2020, 61, 283–300. [Google Scholar] [CrossRef]
- Andersen, R.; Farrell, C.; Graf, M.; Muller, F.; Calvar, E.; Frankard, P.; Capron, S.; Anderson, P. An overview of the progress and challenges of peatland restoration in Western Europe. Restor. Ecol. 2016, 25, 271–282. [Google Scholar] [CrossRef]
- Chimner, R.A.; Cooper, D.J.; Wurster, F.C.; Rochefort, L. An overview of peatland restoration in North America: Where are we after 25 years? Restor. Ecol. 2016, 25, 283–292. [Google Scholar] [CrossRef]
- Van Bellen, S.; Larivière, V. The ecosystem of peatland research: A bibliometric analysis. Mires Peat 2020, 26, 30. [Google Scholar] [CrossRef]
- Chang, J.; Boyd-Graber, J.; Gerrish, S.; Wang, C.; Blei, D. Reading tea leaves: How humans interpret topic models. In Advances in Neural Information Processing Systems 22, NIPS 2009; Vancouver, British Columbia, Canada, 7–10 December 2009; Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C., Culotta, A., Eds.; MIT Press: Cambridge, MA, USA, 2009; pp. 288–296. [Google Scholar]
- Kherwa, P.; Bansal, P. Topic modeling: A comprehensive review. EAI Endorsed Trans. Scalable Inf. Syst. 2019, 20, e2. [Google Scholar] [CrossRef]
- Blei, D.M.; Lafferty, J.D. Dynamic Topic Models. In Proceedings of the 23rd International Conference on Machine Learning, ICML 2006, Pittsburgh, PA, USA, 25–29 June 2006; Association for Computing Machinery: New York, NY, USA, 2006; pp. 113–120. [Google Scholar] [CrossRef]
- Sha, H.; Hasan, M.A.; Mohler, G.; Brantingham, P.J. Dynamic topic modeling of the COVID-19 Twitter narrative among U.S. governors and cabinet executives. Phys. Soc. Arxiv 2020, 2004, 11692. [Google Scholar] [CrossRef]
- Yao, F.; Wang, Y. Tracking urban geo-topics based on dynamic topic model. Comput. Environ. Urban Syst. 2020, 79, 101419. [Google Scholar] [CrossRef]
- Ha, T.; Beijnon, B.; Kim, S.; Lee, S.; Kim, J.H. Examining user perceptions of smartwatch through dynamic topic modeling. Telemat. Inform. 2017, 34, 1262–1273. [Google Scholar] [CrossRef]
- Müller-Hansen, F.; Callaghan, M.W.; Lee, Y.T.; Leipprand, A.; Flachsland, C.; Minx, J.C. Who cares about coal? Analyzing 70 years of German parliamentary debates on coal with dynamic topic modeling. Energy Res. Soc. Sci. 2021, 72, 101869. [Google Scholar] [CrossRef]
- Greene, D.; Cross, J.P. Exploring the political agenda of the European Parliament using a dynamic topic modeling approach. Polit. Anal. 2017, 25, 77–94. [Google Scholar] [CrossRef]
- Röder, M.; Both, A.; Hinneburg, A. Exploring the space of topic coherence measures. In Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, Shanghai, China, 2–6 February 2015; Association for Computing Machinery: New York, NY, USA, 2015; pp. 399–408. [Google Scholar] [CrossRef]
- Wang, C.; Blei, D.; Heckerman, D. Continuous time dynamic topic model. In Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence (UAI ’08), Helsinki, Finland, 9–12 July 2008; pp. 579–586. [Google Scholar]
- Das, K.; Samanta, S.; Pal, M. Study on centrality measures in social networks: A survey. Soc. Netw. Anal. Min. 2018, 8, 13. [Google Scholar] [CrossRef]
- Yun, M.R.; Kim, Y.K. A semantic network analysis of research trends on adolescent dietary life. Korean J. Hum. Ecol. 2021, 30, 513–527. [Google Scholar] [CrossRef]
- Yu, S.-Y.; Lee, J.Y. Journal Citation Analysis for Library Services on Interdisciplinary Domains: A Case Study of Department of Biotechnology, Y university. J. Korean Soc. Inf. Manag. 2008, 25, 283–308. [Google Scholar] [CrossRef]
- Yan, E.; Ding, Y. Applying centrality measures to impact analysis: A coauthorship network analysis. J. Am. Soc. Inf. Sci. Technol. 2009, 60, 2107–2118. [Google Scholar] [CrossRef]
- Bonacich, P. Power and centrality: A family of measures. Am. J. Sociol. 1987, 92, 1170–1182. [Google Scholar] [CrossRef]
- Lan, F. Research on text similarity measurement hybrid algorithm with term semantic information and TF-IDF method. Hindawi. 2022, 2022, 7923262. [Google Scholar] [CrossRef]
- Puspitaloka, D.; Kim, Y.-S.; Purnomo, H.; Fulé, P.Z. Analysis of challenges, costs, and governance alternative for peatland restoration in Central Kalimantan, Indonesia. Trees For. People 2021, 6, 100131. [Google Scholar] [CrossRef]
- Bonn, A.; Reed, M.S.; Evans, C.D.; Joosten, H.; Bain, C.; Farmer, J.; Emmer, I.; Couwenberg, J.; Moxey, A.; Artz, R.; et al. Investing in nature: Developing ecosystem service markets for peatland restoration. Ecosyst. Serv. 2014, 9, 54–65. [Google Scholar] [CrossRef]
- Ziegler, R.; Wichtmann, W.; Abel, S.; Kemp, R.; Simard, M.; Joosten, H. Wet peatland utilisation for climate protection—An international survey of paludiculture innovation. Clean. Eng. Technol. 2021, 5, 100305. [Google Scholar] [CrossRef]
- SNH. Scotland’s National Peatland Plan—Working for Our Future; Scottish Natural Heritage: Edinburgh, Scotland, 2015. [Google Scholar]
- NRW. National Peatland Action Programme, 2020–2025; Natural Resources Wales: Wales, UK, 2020. [Google Scholar]
- KLHDK. Rencana Perlindungan dan Pengelolaan Ekosistem Gambut Nasional Tahun 2020–2049; Keputusan Menteri Lingkungan Hidup Dan Kehutanan: Jakarta, Indonesia, 2020. [Google Scholar]
- Parish, F.; Lew, S.Y.; Hassan, A.H.M. National strategies on responsible management of tropical peatland in Malaysia. In Tropical Peatland Eco-Management; Osaki, M., Tsuji, N., Foead, N., Rieley, J., Eds.; Springer: Singapore, 2021; pp. 677–723. [Google Scholar] [CrossRef]
- FAO. Peatlands and Climate Planning. Part 1: Peatlands and Climate Commitments; Food and Agriculture Organization of the United Nations: Rome, Italy, 2022; p. x. [Google Scholar]
- Wiese, L.; Wollenberg, E.; Alcántara-Shivapatham, V.; Richards, M.; Shelton, S.; Hönle, S.E.; Heidecke, C.; Madari, B.E.; Chenu, C. Countries’ commitments to soil organic carbon in Nationally Determined Contributions. Clim. Policy 2021, 21, 1005–1019. [Google Scholar] [CrossRef]
- Gao, Q.; Huang, X.; Dong, K.; Liang, Z.; Wu, J. Semantic-enhanced topic evolution analysis: A combination of the dynamic topic model and word2vec. Scientometrics 2022, 127, 1543–1563. [Google Scholar] [CrossRef]
- Kim, Y. Understanding and Application of Social Network Analysis Technique: Network Structure, Clustering, and QAP; Korea Institute of Public Administration: Seoul, Republic of Korea, 2020; p. 60. [Google Scholar]
- Shi, Y.; Matsunaga, T.; Saito, M.; Yamaguchi, Y.; Chen, X. Comparison of global inventories of CO2 emissions from biomass burning during 2002–2011 derived from multiple satellite products. Environ. Pollut. 2015, 206, 479–487. [Google Scholar] [CrossRef]
- Hong, Y.T.; Hong, B.; Lin, Q.H.; Shibata, Y.; Hirota, M.; Zhu, Y.X.; Leng, X.T.; Wang, Y.; Wang, H.; Yi, L. Inverse phase oscillations between the East Asian and Indian Ocean summer monsoons during the last 12,000 years and paleo-El Niño. Earth Planet. Sci. Lett. 2005, 231, 337–346. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, D.; Li, M.; Yan, F.; Xu, Q. Significant weak monsoon events during the early to Middle Holocene transition Pollen evidence from an alpine lake in North China. Quat. Sci. Rev. 2022, 282, 107454. [Google Scholar] [CrossRef]
- Morozova, G.S.; Smith, N.D. Holocene avulsion styles and sedimentation patterns of the Saskatchewan River, Cumberland Marshes, Canada. Sediment. Geol. 2000, 130, 81–105. [Google Scholar] [CrossRef]
- Smith, N.D.; Pérez-Arlucea, M. Effects of peat on the shapes of alluvial channels: Examples from the Cumberland Marshes, Saskatchewan, Canada. Geomorphology 2004, 61, 323–335. [Google Scholar] [CrossRef]
- Pellicer, X.M.; Gibson, P. Electrical resistivity and Ground Penetrating Radar for the characterization of the internal architecture of Quaternary sediments in the Midlands of Ireland. J. Appl. Geophys. 2011, 75, 638–647. [Google Scholar] [CrossRef]
- Allen, J.R.L. Late Quaternary stratigraphy in the Gwent Levels (southeast Wales): The subsurface evidence. Proc. Geol. Assoc. 2001, 112, 289–315. [Google Scholar] [CrossRef]
- Manley, W.F.; Lokrantz, H.; Gataullin, V.; Ingólfsson, Ó.; Forman, S.L.; Andersson, T. Late Quaternary stratigraphy, radiocarbon chronology, and glacial history at Cape Shpindelr, southern Kara Sea, Arctic Russia. Glob. Planet. 2001, 31, 239–254. [Google Scholar] [CrossRef]
- Carrasco, R.M.; Turu, V.; Pedraza, J.; Muñoz-Martín, A.; Ros, X.; Sánchez, J.; Ruiz-Zapata, B.; Olaiz, A.J.; Herrero-Simón, R. Near surface geophysical analysis of the Navamuño depression (Sierra de Béjar, Iberian Central System): Geometry, sedimentary infill and genetic implications of tectonic and glacial footprint. Geomorphology 2018, 315, 1–16. [Google Scholar] [CrossRef]
- Pierik, H.J.; Cohen, K.M.; Vos, P.C.; van der Spek, A.J.F.; Stouthamer, E. Late Holocene coastal-plain evolution of the Netherlands: The role of natural preconditions in human-induced sea ingressions. Proc. Geol. Assoc. 2017, 128, 180–197. [Google Scholar] [CrossRef]
- Nanson, R.A.; Nanson, G.C.; Huang, H.Q. The hydraulic geometry of narrow and deep channels; evidence for flow optimization and controlled peatland growth. Geomorphology 2010, 117, 143–154. [Google Scholar] [CrossRef]
- Warburton, J.; Evans, M. Geomorphic, sedimentary, and potential palaeoenvironmental significance of peat blocks in alluvial river systems. Geomorphology 2011, 130, 101–114. [Google Scholar] [CrossRef]
- Nason, R.A.; Cohen, T.J. Headwater peatland channels in south-eastern Australia; the attainment of equilibrium. Geomorphology 2014, 212, 72–83. [Google Scholar] [CrossRef]
- Kim, H.J.; Tomppo, E. Model-based prediction error uncertainty estimation for k-nn method. Remote Sens. Environ. 2006, 104, 257–263. [Google Scholar] [CrossRef]
- Räsänen, A.; Virtanen, T. Data and resolution requirements in mapping vegetation in spatially heterogeneous landscapes. Remote Sens. Environ. 2019, 230, 111207. [Google Scholar] [CrossRef]
- O’connell, J.; Connolly, J.; Holden, N.M. A monitoring protocol for vegetation change on Irish peatland and heath. Int. J. Appl. Earth Obs. Geoinf. 2014, 31, 130–142. [Google Scholar] [CrossRef]
- Kempen, B.; Brus, D.J.; Heuvelink, G.B.M. Soil type mapping using the generalized linear geostatistical model: A case study in a Dutch cultivated peatland. Geoderma 2012, 189–190, 540–553. [Google Scholar] [CrossRef]
- Katila, M.; Tomppo, E. Selecting estimation parameters for the Finnish multisource National Forest Inventory. Remote Sens. Environ. 2001, 76, 16–32. [Google Scholar] [CrossRef]
- Räsänen, A.; Tolvanen, A.; Kareksela, S. Monitoring peatland water table depth with optical and radar satellite imagery. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102866. [Google Scholar] [CrossRef]
- Nitze, I.; Barrett, B.; Cawkwell, F. Temporal optimisation of image acquisition for land cover classification with Random Forest and MODIS time-series. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 136–146. [Google Scholar] [CrossRef]
- Arroyo-Mora, J.P.; Kalacska, M.; Soffer, R.; Ifimov, G.; Leblanc, G.; Schaaf, E.S.; Lucanus, O. Evaluation of pheneospectral dynamics with Sentinel-2A using a bottom-up approach in a northern ombrotrophic peatland. Remote Sens. Environ. 2018, 216, 544–560. [Google Scholar] [CrossRef]
- Virtanen, T.; Ek, M. The fragmented nature of tundra landscape. Int. J. Appl. Earth Obs. Geoinf. 2014, 27, 4–12. [Google Scholar] [CrossRef]
- Poggio, L.; Lassauce, A.; Gimona, A. Modeling the extent of northern peat soil and its uncertainty with Sentinel: Scotland as example of highly cloudy region. Geoderma 2019, 346, 63–74. [Google Scholar] [CrossRef]
- Al- Sabaeei, A.M.; Al-Fakih, A.; Noura, S.; Yaghoubi, E.; Alaloul, W.; Al-Mansob, R.A.; Imaran Khan, M.; Aliyu Yaro, N.S. Utilization of palm oil and its by-products in bio-asphalt and bio-concrete mixtures: A review. Constr. Build. Mater. 2022, 337, 127552. [Google Scholar] [CrossRef]
- Yee, K.F.; Tan, T.K.; Abdullah, A.Z.; Lee, K.T. Life cycle assessment of palm biodiesel: Revealing facts and benefits for sustainability. Appl. Energy 2009, 86, S189–S196. [Google Scholar] [CrossRef]
- Méndez, A.; Paz-Ferreiro, J.; Gil, E.; Gascó, G. The effect of paper sludge and biochar addition on brown peat and coir based growing media properties. Sci. Hortic. 2015, 193, 225–230. [Google Scholar] [CrossRef]
- Madsen, A.M.; Crook, B. Occupational exposure of fungi on recyclable paper pots and growing media and associated health effects—A review of the literature. Sci. Total Environ. 2021, 788, 147832. [Google Scholar] [CrossRef]
- Gu, J.; Wang, S.; Lu, T.; Wu, Y.; Yuan, H.; Chen, Y. Synthesis and evaluation of pyrolysis waste peat char supported catalyst for steam reforming of toluene. Renew. Energy 2020, 160, 964–973. [Google Scholar] [CrossRef]
- Nocentini, M.; Panettieri, M.; García de Castro Barragán, J.M.; Mastrolonardo, G.; Knicker, H. Recycling pyrolyzed organic waste from plant nurseries, rice production and shrimp industry as peat substitute potting substrates. J. Environ. Manage. 2021, 277, 111436. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Wang, Q.; Lv, Z.; Cai, Y.; Zhu, M.; Li, J.; Ma, X.; Cui, Z.; Ren, L. Novel seedling substrate made by different types of biogas residues: Feasibility, carbon emission reduction and economic benefit potential. Ind. Crops Prod. 2022, 184, 115028. [Google Scholar] [CrossRef]
- Harsono, S.S.; Grundmann, P.; Siahaan, D. Role of Biogas and Biochar Palm Oil Residues for Reduction of Greenhouse Gas Emissions in the Biodiesel Production. Energy Procedia 2015, 65, 344–351. [Google Scholar] [CrossRef]
- Vandecasteele, B.; Blindeman, L.; Amery, F.; Pieters, C.; Ommeslag, S.; Van Loo, K.; De Tender, C.; Debode, J. Grow—Store—Steam—Re-peat: Reuse of spent growing media for circular cultivation of Chrysanthemum. J. Clean. Prod. 2020, 276, 124128. [Google Scholar] [CrossRef]
- Fascella, G.; D’Angiolillo, F.; Ruberto, G.; Napoli, E. Agronomic performance, essential oils and hydrodistillation wastewaters of Lavandula angustifolia grown on biochar-based substrates. Ind. Crops Prod. 2020, 154, 112733. [Google Scholar] [CrossRef]
- Gong, Y.; Wu, J.; Vogt, J.; Le, T.B. Warming reduces the increase in N2O emission under nitrogen fertilization in a boreal peatland. Sci. Total Environ. 2019, 664, 72–78. [Google Scholar] [CrossRef]
- Wang, M.; Wu, J.; Lafleur, P.M.; Luan, J.; Chen, H.; Zhu, X. Temporal shifts in controls over methane the positive effect of warming on methane fluxes in a coastal bog. Agric. For. Meteorol. 2018, 262, 120–134. [Google Scholar] [CrossRef]
- Gong, Y.; Wu, J.; Sey, A.A.; Le, T.B. Nitrogen addition (NH4NO3) mitigates the positive effect of warming on methane fluxes in a coastal bog. Catena 2021, 203, 105356. [Google Scholar] [CrossRef]
- Chen, M.; Chang, L.; Zhang, J.; Guo, F.; Vymazal, J.; He, Q.; Chen, Y. Global nitrogen input of wetland ecosystem: The driving mechanism of soil labile carbon and nitrogen on greenhouse gas emissions. Environ. Sci. Ecotechnology 2020, 4, 100063. [Google Scholar] [CrossRef]
- Kivimäki, S.K.; Sheppard, L.J.; Leith, I.D.; Grace, J. Long-term enhanced nitrogen deposition increases ecosystem respiration and carbon loss from s Sphagnum bog in the Scottish Borders. Environ. Exp. Bot. 2013, 90, 53–61. [Google Scholar] [CrossRef]
- Ma, W.; Li, G.; Wu, J.; Xu, G.; Wu, J. Respiration and CH4 fluxes in Tibetan peatlands are influenced by vegetation degradation. Catena 2020, 195, 104789. [Google Scholar] [CrossRef]
- Ueyama, M.; Yazaki, T.; Hirano, T.; Futakuchi, Y.; Okamura, M. Environmental controls on methane fluxes in a cool temperate bog. Agri. For. Meteorol. 2020, 281, 107852. [Google Scholar] [CrossRef]
- Williamson, J.L.; Mills, G.; Hayes, F.; Jones, T.; Freeman, C. How do increasing background concentrations of tropospheric ozone affect peatland plant growth and carbon gas exchange? Atmos. Environ. 2016, 127, 133–138. [Google Scholar] [CrossRef]
- Ishikura, K.; Hirano, T.; Okimoto, Y.; Hirata, R.; Kiew, F.; Melling, L.; Aeries, E.B.; Lo, K.S.; Musin, K.K.; Waili, J.W.; et al. Soil carbon dioxide emissions due to oxidative peat decomposition in an oil palm plantation on tropical peat. Agric. Ecosyst. Environ. 2018, 254, 202–212. [Google Scholar] [CrossRef]
- Sjögersten, S.; Aplin, P.; Gauci, V.; Peacock, M.; Siegenthaler, A.; Turner, B.L. Temperature response of ex-situ greenhouse gas emissions from tropical peatlands: Interactions between forest type and peat moisture conditions. Geoderma 2018, 324, 47–55. [Google Scholar] [CrossRef]
- Lavers, C.P.; Hains-Young, R.H. Displacement of dunlin Calidris alpina schinzii by forestry in the Flow Country and an estimate of the value of moorland adjacent to plantations. Bio. Conserv. 1997, 79, 87–90. [Google Scholar] [CrossRef]
- Oxbrough, A.G.; Gittings, T.; O’Halloran, J.; Giller, P.S.; Kelly, T.C. Biodiversity of the ground-dwelling spider fauna of afforestation habitats. Agric. Ecosyst. Environ. 2007, 120, 433–441. [Google Scholar] [CrossRef]
- Sasidhran, S.; Adila, N.; Hamdan, M.S.; Samantha, L.D.; Aziz, N.; Kamarudin, N.; Puan, C.L.; Turner, E.; Azhar, B. Habitat occupancy patterns and activity rate of native mammals in tropical fragmented peat swamp reserves in Peninsular Malaysia. For. Ecol. Manag. 2016, 363, 140–148. [Google Scholar] [CrossRef]
- Sheridan, K.; Dhubháin, Á.N.; O’Donoghue, B.; Donaghy, A.; Colhoun, K.; Young, J.C.; Mcmahon, B.J. Values and perceptions of landowners within remaining breeding territories of Eurasian Curlew Numenius arquata in Ireland. J. Nat. Converv. 2022, 66, 126141. [Google Scholar] [CrossRef]
- Poor, E.E.; Shao, Y.; Kelly, M.J. Mapping and predicting forest loss in a Sumatran tiger landscape from 2002 to 2050. J. Environ. Manage. 2019, 231, 397–404. [Google Scholar] [CrossRef]
- Rose, R.J.; Webb, N.R.; Clarke, R.T.; Traynor, C.H. Changes on the heathlands in Dorset, England, between 1987 and 1996. Biol. Conserv. 2000, 93, 117–125. [Google Scholar] [CrossRef]
- Fraixedas, S.; Lindén, A.; Meller, K.; Lindström, A.; Keišs, O.; Kålås, J.A.; Husby, M.; Leivits, A.; Lehikoinen, A. Substantial decline of Northern European peatland bird populations: Consequences of drainage. Biol. Conserv. 2017, 214, 223–232. [Google Scholar] [CrossRef]
- Schumacher, H.; Finck, P.; Riecken, U.; Klein, M. More wilderness for Germany: Implementing an important objective of Germany’s National Strategy on Biological Diversity. J. Nat. Conserv. 2018, 42, 45–52. [Google Scholar] [CrossRef]
- Guillaume, T.; Holtkamp, A.M.; Damris, M.; Brümmer, B.; Kuzyakov, Y. Soil degradation in oil palm and rubber plantations under land resource scarcity. Agric. Ecosyst. Environ. 2016, 232, 110–118. [Google Scholar] [CrossRef]
- Tolvanen, A.; Saarimaa, M.; Tuominen, S.; Aapala, K. Is 15% restoration sufficient to safeguard the habitats of boreal red-listed mire plant species? Glob. Ecol. Conserv. 2020, 23, e01160. [Google Scholar] [CrossRef]
- Du, R.; Peng, X.; Frauenfeld, O.W.; Sun, W.; Liang, B.; Chen, C.; Jin, H.; Zhao, Y. The role of peat on permafrost thaw based on field observations. Catena 2022, 208, 105772. [Google Scholar] [CrossRef]
- Wang, Q.; Jin, H.; Zhang, T.; Cao, B.; Peng, X.; Wang, K.; Xiao, X.; Guo, H.; Mu, C.; Li, L. Hydro-thermal processes and thermal offsets of peat soils in the active layer in alpine permafrost region, NE Qinghai-Tibet plateau. Glob. Planet. Chang. 2017, 156, 1–12. [Google Scholar] [CrossRef]
- Wolfe, S.A.; Morse, P.D.; Neudorf, C.M.; Koklj, S.V.; Lian, O.B.; O’Neill, H.B. Contemporary sand wedge development in seasonally frozen ground and paleoenvironmental implications. Geomorphology 2018, 308, 215–229. [Google Scholar] [CrossRef]
- Reeve, A.S.; Evensen, R.; Glaser, P.H.; Siegel, D.I.; Rosenberry, D. Flow path oscillations in transient ground-water simulations of large peatland systems. J. Hydrol. 2006, 316, 313–324. [Google Scholar] [CrossRef]
- Wright, S.N.; Thompson, L.M.; Olefeldt, D.; Connon, R.F.; Carpino, O.A.; Beel, C.R.; Quinton, W.L. Thaw-induced impacts on land and water in discontinuous permafrost: A review of the Taiga Plains and Taiga Shield, northwestern Canada. Earth-Sci. Rev. 2022, 232, 104104. [Google Scholar] [CrossRef]
- Elmes, M.C.; Price, J.S. Hydrologic function of a moderate-rich fen watershed in the Athabasca Oil Sands Region of the Western Boreal Plain, northern Alberta. J. Hydrol. 2019, 570, 692–704. [Google Scholar] [CrossRef]
- Fraser, C.J.D.; Roulet, N.T.; Lafleur, M. Groundwater flow patterns in a large peatland. J. Hydrol. 2001, 246, 142–154. [Google Scholar] [CrossRef]
- Rossi, P.M.; Ala-aho, P.; Ronkanen, A.K.; Kløve, B. Groundwater-surface water interaction between an esker aquifer and a drained fen. J. Hydrol. 2012, 432–433, 52–60. [Google Scholar] [CrossRef]
- Raudina, T.V.; Loiko, S.V.; Lim, A.; Manasypov, R.M.; Shriokova, L.S.; Istigechev, G.I.; Kuzmina, D.M.; Kulizhsky, S.P.; Vorobyev, S.N.; Pokrovsky, O.S. Permafrost thaw and climate warming may decrease the CO2, carbon, and metal concentration in peat soil waters of the Western Siberia Lowland. Sci. Total Environ. 2018, 634, 1004–1023. [Google Scholar] [CrossRef]
- Mckenzie, J.M.; Voss, C.I.; Siegel, D.I. Groundwater flow with energy transport and water-ice phase change: Numerical simulations, benchmarks, and application to freezing in peat bogs. Adv. Water Resour. 2007, 30, 966–983. [Google Scholar] [CrossRef]
- Boer, H.J. Deliberative engagement and REDD+ In Indonesia. Geoforum 2019, 104, 170–180. [Google Scholar] [CrossRef]
- Kärkkäinen, L.; Lehtonen, H.; Helin, J.; Lintunen, J.; Peltonen-Sainio, P.; Regina, K.; Uusivuori, J.; Packalen, T. Evaluation of policy instruments for supporting greenhouse gas mitigation efforts in agricultural and urban land use. Land Use Policy 2020, 99, 104991. [Google Scholar] [CrossRef]
- Rowan, N.J.; Casey, O. Empower Eco multiactor HUB: A triple helix ‘academia-industry-authority’ approach to creating and sharing potentially disruptive tools for addressing novel and emerging new Green Deal opportunities under a United Nations Sustainable Development Goals framework. Curr. Opin. Environ. Sci. Health. 2021, 21, 100254. [Google Scholar] [CrossRef]
- Wüstemann, H.; Bonn, A.; Albert, C.; Bertram, C.; Biber-Freudenberger, L.; Dehnhardt, A.; Döring, R.; Elsasser, P.; Hartje, V.; Mehl, D.; et al. Synergies and trade-offs between nature conservation and climate policy: Insights from the “Natural Capital Germany—TEEB DE” study. Ecosyst. Serv. 2017, 24, 187–199. [Google Scholar] [CrossRef]
- Collier, M.J.; Scott, M. Conflicting rationalities, knowledge and values in scarred landscapes. J. Rural Stud. 2009, 25, 267–277. [Google Scholar] [CrossRef]
- Primmer, E.; Saarikoski, H.; Vatn, A. An Empirical Analysis of Institutional Demand for Valuation Knowledge. Ecol. Econ. 2018, 152, 152–160. [Google Scholar] [CrossRef]
- Saarikoski, H.; Aapala, K.; Artell, J.; Grammatikopoulou, I.; Hjerppe, T.; Lehtoranta, V.; Mustajoki, J.; Pouta, E.; Primmer, E.; Vatn, A. Multimethod valuation of peatland ecosystem services: Combining choice experiment, multicriteria decision analysis and deliberative valuation. Ecosyst. Serv. 2022, 57, 101471. [Google Scholar] [CrossRef]
- Goldstein, J.E. More data, more problems? Incompatible uncertainty in Indonesia’s climate change mitigation projects. Geoforum 2022, 132, 195–204. [Google Scholar] [CrossRef]
- Van Hardeveld, H.A.; Driessen, P.P.J.; Schot, P.P.; Wassen, M.J. Supporting collaborative policy processes with a multi-criteria discussion of costs and benefits: The case of soil subsidence in Dutch peatlands. Land Use Policy 2018, 77, 425–436. [Google Scholar] [CrossRef]
- Kalaitzidis, S.; Bouzinos, A.; Papazisimou, S.; Christanis, K. A short-term establishment of forest fen habitat during Pliocene lignite formation in the Ptolemais Basin, NW Macedonia, Greece. Int. J. Coal Geol. 2004, 57, 243–263. [Google Scholar] [CrossRef]
- Eble, C.F.; Greb, S.F. Geochemical, petrographic and palynologic characteristics of two late middle Pennsylvanian (Asturian) Coal-to-shale sequences in the eastern Interior Basin, USA. Int. J. Coal Geol. 2018, 190, 99–125. [Google Scholar] [CrossRef]
- Amijaya, H.; Littke, R. Microfacies and depositional environment of Tertiary Tanjung Enim low rank coal, South Sumatra Basin, Indonesia. Int. J. Coal Geol. 2005, 61, 197–221. [Google Scholar] [CrossRef]
- Iordanidis, A.; Georgakopoulos, A. Pliocene lignites from Apofysis mine, Amynteo basin, Northwestern Greece: Petrographical characteristics and depositional environment. Int. J. Coal Geol. 2003, 54, 57–68. [Google Scholar] [CrossRef]
- Fikri, H.N.; Sachsenhofer, R.F.; Bechtel, A.; Gross, D. Coal deposition in the Barito Basin (Southeast Borneo): The Eocene Tanjung Formation compared to the Miocene Warukin Formation. Int. J. Coal Geol. 2022, 263, 104117. [Google Scholar] [CrossRef]
- Liu, B.; Zhao, C.; Ma, J.; Sun, Y.; Püttmann, W. The origin of pale and dark layers in Pliocene lignite deposits from Yunnan Province, Southwest China, based on coal petrological and organic geochemical analyses. Int. J. Coal Geol. 2018, 195, 172–188. [Google Scholar] [CrossRef]
- Wüst, R.A.J.; Hawke, M.I.; Bustin, R.M. Comparing maceral ratios from tropical peatlands with assumptions from coal studies: Do classic coal petrographic interpretation methods have to be discarded? Int. J. Coal Geol. 2001, 48, 115–132. [Google Scholar] [CrossRef]
- Bechtel, A.; Widera, M.; Woszczyk, M. Composition of lipids from the First Lusatian lignite seam of the Konin Basin (Poland): Relationships with vegetation, climate and carbon cycling during the mid-Miocene Climatic Optimum. Org. Geochem. 2019, 138, 103908. [Google Scholar] [CrossRef]
- Arbuzov, S.I.; Volostnov, A.V.; Mashen’kin, V.S.; Mezhibor, A.M. Scandium in the coals of Northern Asia (Siberia, the Russian Far East, Mongolia, and Kazakhstan). Russ. Geol. Geophys. 2014, 55, 1306–1315. [Google Scholar] [CrossRef]
- Huang, X.; Meyers, P.A.; Xue, J.; Wang, X.; Zheng, L. Cryptic abundance of long-chain iso and anteiso alkanes in the Dajiuhu peat deposit, central China. Org. Geochem. 2014, 66, 137–139. [Google Scholar] [CrossRef]
- Weiss, D.; Shotyk, W.; Boyle, E.A.; Kramers, J.D.; Appleby, P.G.; Cheburkin, A.K. Comparative study of the temporal evolution of atmospheric lead deposition in Scotland and eastern Canada using blanket peat bogs. Sci. Total. Environ. 2002, 292, 7–18. [Google Scholar] [CrossRef]
- Samsuddin, N.A.C.; Khan, M.F.; Maulud, K.N.A.; Hamid, A.H.; Munna, F.T.; Rahim, M.A.A.; Latif, M.T.; Akhtaruzzanman, M. Local and transboundary factors’ impacts on trace gases and aerosol during haze episode in 2015 El Niño in Malaysia. Sci. Total. Environ. 2018, 630, 1502–1514. [Google Scholar] [CrossRef] [PubMed]
- Fujii, Y.; Tohno, S.; Amil, N.; Latif, M.T. Quantitative assessment of source contributions to PM2.5 on the west coast of Peninsular Malaysia to determine the burden of Indonesian peatland fire. Atmos. Environ. 2017, 171, 111–117. [Google Scholar] [CrossRef]
- Fujii, Y.; Iriana, W.; Oda, M.; Puriwigati, A.; Tohno, S.; Lestari, P.; Mizohata, A.; Huboyo, H.S. Characteristics of carbonaceous aerosols emitted from peatland fire in Riau, Sumatra, Indonesia. Atmos. Environ. 2014, 87, 164–169. [Google Scholar] [CrossRef]
- Hayasaka, H.; Noguchi, I.; Putra, E.I.; Yulianti, N.; Vadrevu, K. Peat-fire-related air pollution in Central Kalimantan, Indonesia. Environ. Pollut. 2014, 195, 257–266. [Google Scholar] [CrossRef]
- Shi, Y.; Zang, S.; Matsunaga, T.; Yamaguchi, Y. A multi-year and high-resolution inventory of biomass burning emissions in tropical continents from 2001-2017 based on satellite observations. J. Clean. Prod. 2020, 270, 122511. [Google Scholar] [CrossRef]
- Atwood, S.A.; Reid, J.S.; Kreidenweis, S.M.; Yu, L.E.; Salinas, S.V.; Chew, B.N.; Balasubramanian, R. Analysis of source regions for smoke events in Singapore for the 2009 El Nino burning season. Atmos. Environ. 2013, 78, 219–230. [Google Scholar] [CrossRef]
- Tham, J.; Sarkar, S.; Jia, S.; Reid, J.S.; Mishra, S.; Sudiana, I.M.; Swarup, S.; Ong, C.N.; Yu, L.E. Impacts of peat-forest smoke on urban P.M2.5 in the Maritime Continent during 2012-2015: Carbonaceous profiles and indicators. Environ. Pollut. 2019, 248, 496–505. [Google Scholar] [CrossRef]
- Lestari, P.; Muthmainnah, F.; Permadi, D.A. Characterization of carbonaceous compounds emitted from Indonesian surface and sub surface peat burning. Atmos. Pollut. Res. 2020, 11, 1465–1472. [Google Scholar] [CrossRef]
- Lan, Y.; Tham, J.; Jia, S.; Sarkar, S.; Fan, W.H.; Reid, J.S.; Ong, C.N.; Yu, L.E. Peat-forest burning smoke in Maritime Continent: Impacts on receptor PM2.5 and implications at emission sources. Environ. Pollut. 2021, 275, 116626. [Google Scholar] [CrossRef]
- Savin, M.C.; Amador, J.A. Biodegradation of norflurazon in a bog soil. Soil Biol. Biochem. 1998, 30, 275–284. [Google Scholar] [CrossRef]
- Rovira, P.; Vallejo, V.R. Physical protection and biochemical quality of organic matter in mediterranean calcareous forest soils: A density fractionation approach. Soil Biol. Biochem. 2003, 35, 245–261. [Google Scholar] [CrossRef]
- Kalbitz, K.; Geyer, S. Different effects of peat degradation on dissolved organic carbon and nitrogen. Org. Geochem. 2002, 33, 319–326. [Google Scholar] [CrossRef]
- Gogo, S.; Shreeve, T.G.; Pearce, D.M.E. Geochemistry of three contrasting British peatlands: Complex patterns of cation availability and implications for microbial metabolism. Geoderma 2010, 158, 207–215. [Google Scholar] [CrossRef]
- Mason, S.L.; Filley, T.R.; Abbott, G.D. The effect of afforestation on the soil organic carbon (SOC) of a peaty gley soil using on-line thermally assisted hydrolysis and methylation (THM) in the presence of 13C-labelled tetramethylammonium hydroxide (TMAH). J. Anal. Appl. Pyrolysis. 2009, 85, 417–425. [Google Scholar] [CrossRef]
- Hong, H.; Chen, S.; Fang, Q.; Algeo, T.J.; Zhao, L. Adsorption of organic matter on clay minerals in the Dajiuhu peat soil chronosequence, South China. Appl. Clay. Sci. 2019, 178, 105125. [Google Scholar] [CrossRef]
- Kalisz, B.; Urbanowicz, P.; Smóczyński, S.; Orzechowski, M. Impact of siltation on the stability of organic matter in drained peatlands. Ecol. Indic. 2021, 130, 108149. [Google Scholar] [CrossRef]
- Schellekens, J.; Buurman, P.; Kuyper, T.W.; Abbott, G.D.; Pontevedra-Pombal, X.; Martínez-Cortizas, A. Influence of source vegetation and redox conditions on lignin-based decomposition proxies in graminoid-dominated ombrotrophic peat (Penido Vello, NW Spain). Geoderma 2015, 237–238, 270–282. [Google Scholar] [CrossRef]
- Cayci, G.; Baran, A.; Ozaytekin, H.; Kutuk, C.; Karaca, S.; Cicek, N. Morphology, chemical properties, and radiocarbon dating of eutrophic peat in Turkey. Catena 2011, 85, 215–220. [Google Scholar] [CrossRef]
- Opfergelt, S.; Williams, H.M.; Cornelis, J.T.; Guicharnaud, R.A.; Georg, R.B.; Siebert, C.; Gislason, S.R.; Halliday, A.N.; Burton, K.W. Iron and silicon isotope behavior accompanying weathering in Icelandic soils, and the implications for iron export from peatlands. Geochim. Cosmochim. Acta. 2017, 217, 273–291. [Google Scholar] [CrossRef]
- Gao, C.; Sander, M.; Agethen, S.; Knorr, K.H. Electron accepting capacity of dissolved and particulate organic matter control CO2 and CH4 formation in peat soils. Geochim. Cosmochim. Acta. 2019, 245, 266–277. [Google Scholar] [CrossRef]
- Gauthier, T.L.J.; Elliott, J.B.; McCarter, C.P.R.; Price, J.S. Field-scale compression of Sphagnum moss to improve water retention in a restored bog. J. Hydrol. 2022, 612, 128160. [Google Scholar] [CrossRef]
- Holden, J.; Wallage, Z.E.; Lane, S.N.; McDonald, A.T. Water table dynamics in undisturbed, drained and restored blanket peat. J. Hydrol. 2011, 402, 103–114. [Google Scholar] [CrossRef]
- Price, J. Soil moisture, water tension, and water table relationships in a managed cutover bog. J. Hydrolo. 1997, 202, 21–32. [Google Scholar] [CrossRef]
- Moore, P.A.; Lukenbach, M.C.; Kettridge, N.; Petrone, R.M.; Devito, K.J.; Waddington, J.M. Peatland water repellency: Importance of soil water content, moss species, and burn severity. J. Hydrolo. 2017, 554, 656–665. [Google Scholar] [CrossRef]
- McCarter, C.P.R.; Price, J.S. The hydrology of the Bois-des-Bel bog peatland restoration: 10 years post-restoration. Ecol. Eng. 2013, 55, 73–81. [Google Scholar] [CrossRef]
- Haapalehto, T.; Kotiaho, J.S.; Matilainen, R.; Tahvanainen, T. The effects of long-term drainage and subsequent restoration on water table level and pore water chemistry in boreal peatland. J. Hydrolo. 2014, 519, 1493–1505. [Google Scholar] [CrossRef]
- Lehan, K.; McCarter, C.P.R.; Moore, P.A.; Waddington, J.M. Effect of stockpiling time on donor-peat hydrophysical properties: Implications for peatland restoration. Ecol. Eng. 2022, 182, 106701. [Google Scholar] [CrossRef]
- Williamson, J.; Rowe, E.; Reed, D.; Ruffino, L.; Jones, P.; Dolan, R.; Buckingham, H.; Norris, D.; Astbury, S.; Evans, C.D. Historical peat loss explains limited short-term response of drained blanket bogs to rewetting. J. Environ. Manage. 2017, 188, 278–286. [Google Scholar] [CrossRef]
- Kettridge, N.; Humphrey, R.E.; Smith, J.E.; Lukenbach, M.C.; Devito, K.J.; Petrone, R.M.; Waddington, J.M. Burned and unburned peat water repellency: Implications for peatland evaporation following wildfire. J. Hydrolo. 2014, 513, 335–341. [Google Scholar] [CrossRef]
- Breeuwer, A.; Robroek, B.J.M.; Limpens, J.; Heijmans, M.M.P.D.; Schouten, M.G.C.; Berendse, F. Decreased summer water table depth affects peatland vegetation. Basic Appl. Ecol. 2009, 10, 330–339. [Google Scholar] [CrossRef]
- Hytönen, J.; Kaunisto, S. Effect of fertilization on the biomass production of coppiced mixed birch and willow stands on a cut-away peatland. Biomass Bioenergy 1999, 17, 455–469. [Google Scholar] [CrossRef]
- Holgén, P.; Hånell, B. Performance of planted and naturally regenerated seedlings in Picea abies-dominated shelterwood stands and clearcuts in Sweden. For. Ecol. Manag. 2000, 127, 129–138. [Google Scholar] [CrossRef]
- Kikamägi, K.; Ots, K.; Kuznetsova, T. Effect of wood ash on the biomass production and nutrient status of young silver birch (Betula pendula Roth) trees on cutaway peatlands in Estonia. Ecol. Eng. 2013, 58, 17–25. [Google Scholar] [CrossRef]
- Hytönen, J.; Saarsalmi, A. Long-term biomass production and nutrient uptake of birch, alder and willow plantations on cut-away peatland. Biomass Bioenergy 2009, 33, 1197–1211. [Google Scholar] [CrossRef]
- Moilanen, M.; Saarsalmi, A.; Kukkola, M.; Issakainen, J. Effects of stabilized wood ash on nutrient status and growth of Scots pine—Comparison between uplands and peatlands. For. Ecol. Manag. 2013, 295, 136–144. [Google Scholar] [CrossRef]
- Huotari, N.; Tillman-Sutela, E.; Pasanen, J.; Kubin, E. Ash-fertilization improves germination and early establishment of birch (Betula pubescens Ehrh.) seedlings on a cut-away peatland. For. Ecol. Manag. 2008, 255, 2870–2875. [Google Scholar] [CrossRef]
- Mugasha, A.G.; Macdonald, S.E.; Pluth, D.J. Needle litter response of peatland tamarack and black spruce to fertilization of minerotrophic peatland sites. For. Ecol. Manag. 1996, 87, 257–264. [Google Scholar] [CrossRef]
- Hamberg, L.; Hotanen, J.P.; Nousiainen, H.; Nieminen, T.M.; Ukonmaanaho, L. Recovery of understory vegetation after stem-only and whole-tree harvesting in drained peatland forests. For. Ecol. Manag. 2019, 442, 124–134. [Google Scholar] [CrossRef]
- Mugasha, A.G.; Pluth, D.J.; Macdonald, S.E. Effects of fertilization on seasonal patterns of foliar mass and nutrients of tamarack and black spruce on undrained and drained minerotrophic peatland sites. For. Ecol. Manag. 1999, 116, 13–31. [Google Scholar] [CrossRef]
- Kandel, T.P.; Elsgaard, L.; Andersen, M.N.; Lærke, P.E. Influence of harvest time and frequency on light interception and biomass yield of festulolium and tall fescue cultivated on a peatland. Eur. J. Agron. 2016, 81, 150–160. [Google Scholar] [CrossRef]
- Xue, J.; Zhong, W.; Xie, L.; Unkel, I. Vegetation responses to the last glacial and early Holocene environmental changes in the northern Leizhou Peninsula, south China. Quat. Res. 2015, 84, 223–231. [Google Scholar] [CrossRef]
- Duprat-Qualid, F.; Bégeot, C.; Peyron, O.; Rius, D.; Millet, L.; Magny, M. High-frequency vegetation and climatic changes during the Lateglacial inferred from the Lapsou pollen record (Cantal, southern Massif Central, France). Quat. int. 2022, 636, 69–80. [Google Scholar] [CrossRef]
- Yue, Y.; Zheng, Z.; Huang, K.; Chevalier, M.; Chase, B.M.; Carré, M.; Ledru, M.P.; Cheddadi, R. A continuous record of vegetation and climate change over the past 50,000 years in the Fujian Province of eastern subtropical China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 365–366, 115–123. [Google Scholar] [CrossRef]
- Jones, M.C.; Peteet, D.M.; Kurdyla, D.; Guilderson, T. Climate and vegetation history from a 14,000-year peatland record, Kenai Peninsula, Alaska. Quat. Res. 2009, 72, 207–217. [Google Scholar] [CrossRef]
- Ma, C.; Wu, L.; Zhao, L.; Zhang, Y.; Deng, Y.; Xu, Z. Holocene climate changes inferred from peat humification: A case study from the Daiyun Mountains, Southeast China. Quat. Int. 2021, 599–600, 15–23. [Google Scholar] [CrossRef]
- Shuchun, Y.; Chunhai, L.; Yangsheng, C.; Yongfei, L.; Lingyu, T.; Ji, S.; Bin, X. Moisture conditions during the Younger Dryas and 4.2 ka event as revealed from a subalpine peat record in the Luoxiao Mountains, southern China. Rev. Palaeobot. Palynol. 2022, 305, 104747. [Google Scholar] [CrossRef]
- Björck, S.; Rundgren, M.; Ljung, K.; Unkel, I.; Wallin, Å. Multi-proxy analyses of a peat bog on Isla de los Estados, easternmost Tierra del Fuego: A unique record of the variable Southern Hemisphere Westerlies since the last deglaciation. Quat. Sci. Rev. 2012, 42, 1–14. [Google Scholar] [CrossRef]
- Novenko, E.Y.; Tsyganov, A.N.; Volkova, E.M.; Babeshko, K.V.; Lavrentiev, N.V.; Payne, R.J.; Mazei, Y.A. The Holocene paleoenvironmental history of central European Russia reconstructed from pollen, plant macrofossil, and testate amoeba analyses of the Klukva peatland, Tula region. Quat. Res. 2015, 83, 459–468. [Google Scholar] [CrossRef]
- Bezrukova, E.V.; Belov, A.V.; Orlova, L.A. Holocene vegetation and climate variability in North Pre-Baikal region, East Siberia, Russia. Quat. Int. 2011, 237, 74–82. [Google Scholar] [CrossRef]
- Kosakyan, A.; Gomaa, F.; Mitchell, E.A.D.; Heger, T.J.; Lara, E. Using DNA-barcoding for sorting out protist species complexes: A case study of the Nebela tincta-collaris-bohemica group (Amoebozoa; Arcellinida, Hyalospheniidae). Eur. J. Protistol. 2013, 49, 222–237. [Google Scholar] [CrossRef]
- Singer, D.; Lara, E.; Steciow, M.M.; Seppey, C.V.W.; Paredes, N.; Pillonel, A.; Oszako, T.; Belbahri, L. Hight-throughput sequencing reveals diverse oomycete communities in oligotrophic peat bog micro-habitat. Fungal Ecol. 2016, 23, 42–47. [Google Scholar] [CrossRef]
- Mieczan, T.; Niedźwiecki, M.; Tarkowska-Kukuryk, M. Effects of rotifers, copepods and chironomid larvae on microbial communities in peatlands. Eur. J. Protistol. 2015, 51, 386–400. [Google Scholar] [CrossRef]
- Wang, R.; Wang, H.; Xi, Z.; Tuovinen, O.H.; Gong, L.; Huang, X. Hydrology driven vertical distribution of prokaryotes and methane functional groups in a subtropical peatland. J. Hydrol. 2022, 608, 127592. [Google Scholar] [CrossRef]
- Dedysh, S.N.; Dunfield, P.F.; Derakshani, M.; Stubner, S.; Heyer, j.; Liesack, W. Differential detection of type II methanotrophic bacteria in acidic peatlands using newly developed 16S rRNA-targeted fluorescent oligonucleotide probes. FEMS Microbiol. Ecol. 2003, 43, 299–308. [Google Scholar] [CrossRef]
- Reczuga, M.K.; Swindles, G.T.; Grewling, Ł.; Lamentowicz, M. Arecella peruviana sp. nov. (Amoebozoa: Arcellinida, Arcellidae), a new species from a tropical peatland in Amazonia. Eur. J. Protistol. 2015, 51, 437–449. [Google Scholar] [CrossRef]
- Kraigher, B.; Stres, B.; Hacin, J.; Ausec, L.; Mahne, I.; van Elsas, J.D.; Mandic-Mulec, I. Microbial activity and community structure in two drained fen soils in the Ljubljana Marsh. Soil Biol. Biochem. 2006, 38, 2762–2771. [Google Scholar] [CrossRef]
- Yrjälä, K.; Keskinen, A.K.; Åkerman, M.L.; Fortelius, C.; Sipilä, T.P. The rhizosphere and PAH amendment mediate impacts on functional and structural bacterial diversity in sandy peat soil. Environ. Pollut. 2010, 158, 1680–1688. [Google Scholar] [CrossRef] [PubMed]
- Sizova, M.V.; Panikov, N.S.; Tourova, T.P.; Flanagan, P.W. Isolation and characterization of oligotrophic acido-tolerant methanogenic consortia from a Sphagnum peat bog. FEMS Microbiol. Ecol. 2003, 45, 301–315. [Google Scholar] [CrossRef]
- Juottonen, H.; Galand, P.E.; Yrjälä, K. Detection of methanogenic Archaea in peat: Comparison of PCR primers targeting the mcrA gene. Res. Microbiol. 2006, 157, 914–921. [Google Scholar] [CrossRef]
- Catrouillet, C.; Davranche, M.; Dia, A.; Bouhnik-Le-Coz, M.; Marsac, R.; Pourret, O.; Gruau, G. Geochemical modeling of Fe(II) binding to humic and fulvic acids. Chem. Geol. 2014, 372, 109–118. [Google Scholar] [CrossRef]
- Keppler, F.; Biester, H. Peatlands: A major sink of naturally formed organic chlorine. Chemosphere 2003, 52, 451–453. [Google Scholar] [CrossRef]
- Woodruff, N.W.; Durant, J.L.; Donhoffner, L.; Crespi, C.L.; Penman, B.W. Human cell mutagenicity of chlorinated and unchlorinated water and the disinfection byproduct 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX). Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2001, 495, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Skyllberg, U.; Persson, A.; Tjerngren, I.; Kronberg, R.M.; Drott, A.; Meili, M.; Björn, E. Chemical speciation of mercury, sulfur and iron in a dystrophic boreal lake sediment, as controlled by the formation of mackinawite and framboidal pyrite. Goechim. Cosmochim. Acta. 2021, 294, 106–125. [Google Scholar] [CrossRef]
- Drozdova, O.Y.; Aleshina, A.R.; Tikhonov, V.V.; Laptiskiy, S.A.; Pokrovsky, O.S. Coagulation of organo-mineral colloids and formation of low molecular weight organic and metal complexes in boreal humic river water under UV-irradiation. Chemosphere 2020, 250, 126216. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhong, S.; Bishop, K.; Nilsson, M.B.; Hu, H.; Eklöf, K.; Bravo, A.G.; Åkerblom, S.; Bertilsson, S.; Björn, E.; et al. Biogeochemical influences on net methylmercury formation proxies along a peatland chronosequence. Geochim. Cosmochim. Acta. 2021, 308, 188–203. [Google Scholar] [CrossRef]
- Gündoğan, R.; Acemioğlu, B.; Alma, M.H. Copper (II) adsorption from aqueous solution by herbaceous peat. J. Colloid Interface Sci. 2004, 269, 303–309. [Google Scholar] [CrossRef]
- Hu, H.; Wang, B.; Bravo, A.G.; Björn, E.; Skyllberg, U.; Amouroux, D.; Tessier, E.; Zopfi, J.; Feng, X.; Bishop, K.; et al. Shifts in mercury methylation across a peatland chronosequence: From sulfate reduction to methanogenesis and syntrophy. J. Hazard. Mater. 2020, 387, 121967. [Google Scholar] [CrossRef]
- Couture, C.; Mavrocordatos, D.; Atteia, O.; Perret, D. The genesis and transformation of organo-mineral colloids in a drained peatland area. Phys. Chem. Earh. 1998, 23, 153–157. [Google Scholar] [CrossRef]
- Wang, B.; Nilsson, M.B.; Eklöf, K.; Hu, H.; Ehnvall, B.; Bravo, A.G.; Zhong, S.; Åkeblom, S.; Björn, E.; Bertilsson, S.; et al. Opposing spatial trends in methylmercury and total mercury along a peatland chronosequence trophic gradient. Sci. Total Environ. 2020, 718, 137306. [Google Scholar] [CrossRef]
- Sarkkola, S.; Koivusalo, H.; Laurén, A.; Kortelainen, P.; Mattsson, T.; Palviainen, M.; Piirainen, S.; Starr, M.; Finér, L. Trends in hydrometeorological conditions and stream water organic carbon in boreal forested catchments. Sci. Total Environ. 2009, 408, 92–101. [Google Scholar] [CrossRef]
- Omarjee, A.; Taljaard, S.; Ramjukadh, C.L.; van Niekerk, L. pH variability in catchment flows to estuaries—A south African perspective. Estur. Coast. Shelf Sci. 2021, 262, 107605. [Google Scholar] [CrossRef]
- Edokpa, D.; Milledge, D.; Allott, T.; Holden, J.; Shuttleworth, E.; Kay, M.; Johnston, A.; Milin-Chalabi, G.; Scott-Campbell, M.; Chandler, D.; et al. Rainfall intensity and catchment size control storm runoff in a gullied blanket peatland. J. Hydrol. 2022, 609, 127688. [Google Scholar] [CrossRef]
- Górniak, A. Ecohydrological determinants of seasonality and export of total organic carbon in Narew River with high peatland contribution (north-eastern Poland). Ecohydrol. Hydrobiol. 2019, 19, 1–13. [Google Scholar] [CrossRef]
- Lepistö, A.; Granlund, K.; Kortelainen, P.; Räike, A. Nitrogen in river basins: Sources, retention in the surface waters and peatlands, and fluxes to estuaries in Finland. Sci. Total Environ. 2006, 365, 238–259. [Google Scholar] [CrossRef]
- Gao, J.; Kirkby, M.; Holden, J. The effect of interactions between rainfall patterns and land-cover change on flood peaks in upland peatlands. J. Hydrol. 2018, 567, 546–559. [Google Scholar] [CrossRef]
- Spencer, R.G.M.; Ahad, J.M.E.; Baker, A.; Cowie, G.L.; Ganeshram, R.; Upstill-Goddard, R.C.; Uher, G. The estuarine mixing behaviour of peatland derived dissolved organic carbon and its relationship to chromophoric dissolved organic matter in two North Sea estuaries (U.K.). Estuar. Coast. Shelf Sci. 2007, 74, 131–144. [Google Scholar] [CrossRef]
- O’Driscoll, C.; O’Connor, M.; Asam, Z.U.Z.; Eyto, E.D.; Rodgers, M.; Xiao, L. Creation and functioning of a buffer zone in a blanket peat forested catchment. Ecol. Eng. 2014, 62, 83–92. [Google Scholar] [CrossRef]
- Kvæner, J.; Kløve, B. Generation and regulation of summer runoff in a boreal flat fen. J. Hydrol. 2008, 360, 15–30. [Google Scholar] [CrossRef]
- Marttila, H.; Karjalainen, S.M.; Kuoppala, M.; Nieminen, M.L.; Ronkanen, A.K.; Kløve, B.; Hellsten, S. Elevated nutrient concentrations in headwaters affected by drained peatland. Sci. Total Environ. 2018, 643, 1304–1313. [Google Scholar] [CrossRef]
No. | Topic 1 | Topic 2 | Topic 3 | Topic 4 | Topic 5 | Topic 6 | Topic 7 | Topic 8 |
Geomorphology | Land Use and Land Cover | Production | Greenhouse Gas | Habitat | Permafrost | Management | Deposit | |
1 | sediment | use | energy | soil | restor(ation) | surfac(e) | ecosystem | coal |
2 | deposit | base | product | carbon | agricultur(e) | water | servic(e) | deposit |
3 | glaci(er) | model | use | emiss(ion) | conserv(ation) | groundwat(er) | base | alkan |
4 | marin(e) | area | fuel | flux | habitat | thaw | sustain(ability) | basin |
5 | eros(ion) | variabl(e) | wast(e) | ecosystem | land | climat(e) | global | plant |
6 | coastal | veget(ation) | treatment | warm | area | region | manag(ement) | format(ion) |
7 | river | spatial | biomass | global | farm | temperatur(e) | polic(y) | isotop(e) |
8 | environ(ment) | map | remov(e) | nitrogen | palm | layer | review | peat |
9 | channel | result | biofuel | greenhous(e) | speci(es) | hydrolog(y) | environ(ment) | valu(e) |
10 | system | resolut(ion) | materi(al) | increas(ing) | landscap(e) | arctic | land | lignit(e) |
11 | fluvial | time | system | temperatur(e) | natur(e) | flow | econom(y) | seam |
12 | form | classif(ication) | industri(al) | cycl(e) | biodivers(sity) | soil | resourc(e) | condit(ion) |
13 | area | monitor(ing) | base | rate | cover | condit(ion) | develop(ment) | environ(ment) |
14 | valley | scale | biochar | product | plant | snow | mitig(ation) | composit(ion) |
15 | lake | approach | peat | effect | increase(ing) | zone | climat(e) | domin(ate) |
No. | Topic 9 | Topic 10 | Topic 11 | Topic 12 | Topic 13 | Topic 14 | Topic 15 | Topic 16 |
Fire | Soil organic matter | Peatland formation | Forest | Past environmental change | Microbe | Metal | Hydrology | |
1 | fire | soil | peat | forest | climat(e) | commun(ity) | metal | wetland |
2 | atmospher(e) | organ(ic) | peatland | boreal | region | speci(es) | concentr(ation) | water |
3 | burn | matter | water | plant | record | microbi(al) | mercuri(al) | river |
4 | pollut(ion) | concentr(ation) | depth | stand | holocen(e) | divers(ity) | element | lake |
5 | sourc(e) | miner(al) | restor(ation) | increas(ing) | lake | abund(ance) | organ(ic) | stream |
6 | deposit | properti(es) | carbon | tree | reconstruct(ion) | plant | MeHg | hydrolog(y) |
7 | wildfir(e) | content | tabl(e) | speci(es) | increas(ing) | soil | contamin(ation) | flow |
8 | region | condit(ion) | moss | disturb(ance) | temperatur(e) | composit(ion) | iron | area |
9 | concentr(ation) | activ(e) | drain | site | chang(e) | bacteri(a) | trace | flood |
10 | emiss(ion) | composit(ion) | accumul(ation) | nutrient | china | structur(e) | humic | coastal |
11 | anthropogen(ic) | sampl(e) | drainag(e) | harvest | mountain | ecolog(y) | water | aquat(ic) |
12 | activ(e) | decomposit(ion) | surfac(e) | pine | veget(ation) | group | natur(e) | catchment |
13 | area | chemic(al) | condit(ion) | litter | past | testat(e) | compound | load |
14 | mine | carbon | increas(ing) | root | core | function | dissolv(e) | qualit(y) |
15 | aerosol | acid | site | effect | pollen | environ(ment) | sediment | concentr(ation) |
Frequency | Proportion | |||||
---|---|---|---|---|---|---|
Topic | Coefficient | p-Value | Hot/Cold | Coefficient | p-Value | Hot/Cold |
Topic 1 | 0.715 | 1.35 | Hot | −0.0005 | 0.097 | Normal |
Topic 2 | 2.576 | Hot | 0.0005 | 0.236 | Normal | |
Topic 3 | 1.387 | Hot | 0.0009 | 0.013 | Hot | |
Topic 4 | 3.936 | Hot | 0.0005 | 0.558 | Normal | |
Topic 5 | 1.401 | Hot | −0.0011 | 0.039 | Cold | |
Topic 6 | 0.762 | Hot | 0.0002 | 0.928 | Normal | |
Topic 7 | 6.416 | Hot | 0.0064 | 3.12 × 10−9 | Hot | |
Topic 8 | 0.556 | Hot | −0.0014 | 0.006 | Cold | |
Topic 9 | 0.829 | Hot | 0.0004 | 0.106 | Normal | |
Topic 10 | 2.144 | Hot | −0.005 | 1.41 × 10−6 | Cold | |
Topic 11 | 0.850 | Hot | −0.0005 | 0.149 | Normal | |
Topic 12 | 0.938 | Hot | −0.0028 | 8.86 × 10−5 | Cold | |
Topic 13 | 4.241 | Hot | 0.0023 | 0.003 | Hot | |
Topic 14 | 1.913 | Hot | 0.00052 | 0.307 | Normal | |
Topic 15 | 0.589 | Hot | −0.0001 | 0.586 | Normal | |
Topic 16 | 1.761 | 2.8 | Hot | −0.0009 | 0.125 | Normal |
Topic | Degree Centrality | Closeness Centrality | Eigenvector Centrality |
---|---|---|---|
4 | 0.467 | 0.625 | 0.362 |
9 | 0.467 | 0.556 | 0.324 |
13 | 0.333 | 0.575 | 0.289 |
12 | 0.333 | 0.556 | 0.288 |
5 | 0.453 | 0.577 | 0.287 |
16 | 0.400 | 0.575 | 0.283 |
11 | 0.333 | 0.556 | 0.277 |
14 | 0.333 | 0.556 | 0.275 |
8 | 0.333 | 0.536 | 0.267 |
6 | 0.267 | 0.517 | 0.228 |
1 | 0.267 | 0.556 | 0.208 |
10 | 0.267 | 0.500 | 0.207 |
7 | 0.267 | 0.536 | 0.197 |
2 | 0.267 | 0.484 | 0.155 |
15 | 0.134 | 0.395 | 0.103 |
3 | 0.067 | 0.333 | 0.030 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Chae, J.; Yang, A.-R.; Suwignyo, R.A.; Choi, E. Trends of Peatland Research Based on Topic Modeling: Toward Sustainable Management under Climate Change. Forests 2023, 14, 1818. https://doi.org/10.3390/f14091818
Yang H, Chae J, Yang A-R, Suwignyo RA, Choi E. Trends of Peatland Research Based on Topic Modeling: Toward Sustainable Management under Climate Change. Forests. 2023; 14(9):1818. https://doi.org/10.3390/f14091818
Chicago/Turabian StyleYang, Hyunyoung, Jeongyeon Chae, A-Ram Yang, Rujito Agus Suwignyo, and Eunho Choi. 2023. "Trends of Peatland Research Based on Topic Modeling: Toward Sustainable Management under Climate Change" Forests 14, no. 9: 1818. https://doi.org/10.3390/f14091818
APA StyleYang, H., Chae, J., Yang, A.-R., Suwignyo, R. A., & Choi, E. (2023). Trends of Peatland Research Based on Topic Modeling: Toward Sustainable Management under Climate Change. Forests, 14(9), 1818. https://doi.org/10.3390/f14091818