Trade-Off between Hydraulic Safety and Efficiency in Plant Xylem and Its Influencing Factors
Abstract
:1. Introduction
2. Inter-Species Trade-Offs
2.1. Angiosperm Species
2.2. Gymnosperm Species
2.3. Ferns
2.4. Life Types of Plants
2.4.1. Trees and Lianas
2.4.2. Shrubs and Herbaceous
2.4.3. Deciduous and Evergreen
3. Intra-Species Trade-Offs
4. Intra-Tree Trade-Off
4.1. Leaf
4.2. Stem
4.3. Root
4.4. Tree Height
5. Influencing Factors
5.1. Plant Habitats (Field and Garden)
5.2. Temperature, Rainfall, and Altitude
5.3. Soil
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Taye, F.A.; Folkersen, M.V.; Fleming, C.M.; Buckwell, A.; Mackey, B.; Diwakar, K.; Le, D.; Hasan, S.; Saint Ange, C. The economic values of global forest ecosystem services: A meta-analysis. Ecol. Econ. 2021, 189, 107145. [Google Scholar] [CrossRef]
- Hartmann, H.; Adams, H.D.; Anderegg, W.R.; Jansen, S.; Zeppel, M.J. Research frontiers in drought-induced tree mortality: Crossing scales and disciplines. New Phytol. 2015, 205, 965–969. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, H.; Moura, C.F.; Anderegg, W.R.; Ruehr, N.K.; Salmon, Y.; Allen, C.D.; Arndt, S.K.; Breshears, D.D.; Davi, H.; Galbraith, D. Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol. 2018, 218, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Cobb, R.C.; Ruthrof, K.X.; Breshears, D.D.; Lloret, F.; Aakala, T.; Adams, H.D.; Anderegg, W.R.; Ewers, B.E.; Galiano, L.; Grünzweig, J.M. Ecosystem dynamics and management after forest die-off: A global synthesis with conceptual state-and-transition models. Ecosphere 2017, 8, e02034. [Google Scholar] [CrossRef]
- Adams, H.D.; Zeppel, M.J.; Anderegg, W.R.; Hartmann, H.; Landhäusser, S.M.; Tissue, D.T.; Huxman, T.E.; Hudson, P.J.; Franz, T.E.; Allen, C.D. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat. Ecol. Evol. 2017, 1, 1285–1291. [Google Scholar] [CrossRef] [PubMed]
- Brodribb, T.J.; Holbrook, N.M. Stomatal protection against hydraulic failure: A comparison of coexisting ferns and angiosperms. New Phytol. 2004, 162, 663–670. [Google Scholar] [CrossRef]
- Liu, J.; Fu, P.; Wang, Y.; Cao, K. Different drought-adaptation strategies as characterized by hydraulic and water-relations traits of evergreen and deciduous figs in a tropical karst forest. Plant Sci. J. 2012, 30, 484–493. [Google Scholar] [CrossRef]
- Jiang, G.-F.; Li, S.-Y.; Li, Y.-C.; Roddy, A.B. Coordination of hydraulic thresholds across roots, stems, and leaves of two co-occurring mangrove species. Plant Physiol. 2022, 189, 2159–2174. [Google Scholar] [CrossRef]
- Andrade, M.T.; Oliveira, L.A.; Pereira, T.S.; Cardoso, A.A.; Batista-Silva, W.; DaMatta, F.M.; Zsögön, A.; Martins, S.C. Impaired auxin signaling increases vein and stomatal density but reduces hydraulic efficiency and ultimately net photosynthesis. J. Exp. Bot. 2022, 73, 4147–4156. [Google Scholar] [CrossRef]
- Li, S.; Hao, G.Y.; Niinemets, Ü.; Harley, P.C.; Wanke, S.; Lens, F.; Zhang, Y.J.; Cao, K.F. The effects of intervessel pit characteristics on xylem hydraulic efficiency and photosynthesis in hemiepiphytic and non-hemiepiphytic Ficus species. Physiol. Plant 2019, 167, 661–675. [Google Scholar] [CrossRef]
- Chave, J.; Coomes, D.; Jansen, S.; Lewis, S.L.; Swenson, N.G.; Zanne, A.E. Towards a worldwide wood economics spectrum. Ecol. Lett. 2009, 12, 351–366. [Google Scholar] [CrossRef] [PubMed]
- Van Ieperen, W.; Van Meeteren, U.; Van Gelder, H. Fluid ionic composition influences hydraulic conductance of xylem conduits. J. Exp. Bot. 2000, 51, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Gleason, S.M.; Westoby, M.; Jansen, S.; Choat, B.; Hacke, U.G.; Pratt, R.B.; Bhaskar, R.; Brodribb, T.J.; Bucci, S.J.; Cao, K.F. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. New Phytol. 2016, 209, 123–136. [Google Scholar] [CrossRef]
- Tyree, M.T.; Zimmermann, M.H. Xylem Structure and The Ascent of Sap; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Blackman, C.J.; Brodribb, T.J.; Jordan, G.J. Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms. New Phytol. 2010, 188, 1113–1123. [Google Scholar] [CrossRef] [PubMed]
- Pivovaroff, A.L.; Pasquini, S.C.; De Guzman, M.E.; Alstad, K.P.; Stemke, J.S.; Santiago, L.S. Multiple strategies for drought survival among woody plant species. Funct. Ecol. 2016, 30, 517–526. [Google Scholar] [CrossRef]
- Carlquist, S. Wood anatomy of Onagraceae: Further species; root anatomy; significance of vestured pits and allied structures in dicotyledons. Ann. Mo. Bot. Gard. 1982, 69, 755–769. [Google Scholar] [CrossRef]
- Tyree, M.T.; Davis, S.D.; Cochard, H. Biophysical perspectives of xylem evolution: Is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? IAWA J. 1994, 15, 335–360. [Google Scholar] [CrossRef]
- Yao, G.Q.; Nie, Z.F.; Zeng, Y.Y.; Waseem, M.; Hasan, M.M.; Tian, X.Q.; Liao, Z.Q.; Siddique, K.H.; Fang, X.W. A clear trade-off between leaf hydraulic efficiency and safety in an aridland shrub during regrowth. Plant Cell Environ. 2021, 44, 3347–3357. [Google Scholar] [CrossRef]
- Jordan, G.J.; Brodribb, T.J.; Blackman, C.J.; Weston, P.H. Climate drives vein anatomy in Proteaceae. Am. J. Bot. 2013, 100, 1483–1493. [Google Scholar] [CrossRef]
- Hacke, U.G.; Sperry, J.S.; Pockman, W.T.; Davis, S.D.; McCulloh, K.A. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 2001, 126, 457–461. [Google Scholar] [CrossRef]
- Froux, F.; Ducrey, M.; Dreyer, E.; Huc, R. Vulnerability to embolism differs in roots and shoots and among three Mediterranean conifers: Consequences for stomatal regulation of water loss? Trees 2005, 19, 137–144. [Google Scholar] [CrossRef]
- Sen, C.; Shitong, L.; Yan, L.; Jiangbo, X.; Linfeng, Y.; Zhongyuan, W. Relationships among water transport, mechanical strength and anatomical structure in branch and root xylem of Taxodiaceae species. J. Zhejiang AF Univ. 2022, 39, 233–243. [Google Scholar]
- Wheeler, J.K.; Sperry, J.S.; Hacke, U.G.; Hoang, N. Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: A basis for a safety versus efficiency trade-off in xylem transport. Plant Cell Environ. 2005, 28, 800–812. [Google Scholar] [CrossRef]
- Li, S.; Wang, J.; Yin, Y.; Li, X.; Deng, L.; Jiang, X.; Chen, Z.; Li, Y. Investigating effects of bordered pit membrane morphology and properties on plant xylem hydraulic functions—A case study from 3D reconstruction and microflow modelling of pit membranes in angiosperm xylem. Plants 2020, 9, 231. [Google Scholar] [CrossRef] [PubMed]
- Hargrave, K.; Kolb, K.; Ewers, F.; Davis, S. Conduit diameter and drought-induced embolism in Salvia mellifera Greene (Labiatae). New Phytol. 1994, 126, 695–705. [Google Scholar]
- Johnson, D.M.; Domec, J.C.; Carter Berry, Z.; Schwantes, A.M.; McCulloh, K.A.; Woodruff, D.R.; Wayne Polley, H.; Wortemann, R.; Swenson, J.J.; Scott Mackay, D. Co-occurring woody species have diverse hydraulic strategies and mortality rates during an extreme drought. Plant Cell Environ. 2018, 41, 576–588. [Google Scholar] [CrossRef]
- Aritsara, A.N.A.; Razakandraibe, V.M.; Ramananantoandro, T.; Gleason, S.M.; Cao, K.F. Increasing axial parenchyma fraction in the Malagasy Magnoliids facilitated the co-optimisation of hydraulic efficiency and safety. New Phytol. 2021, 229, 1467–1480. [Google Scholar] [CrossRef]
- Losso, A.; Nardini, A.; Nolf, M.; Mayr, S. Elevational trends in hydraulic efficiency and safety of Pinus cembra roots. Oecologia 2016, 180, 1091–1102. [Google Scholar] [CrossRef]
- Olano, J.M.; González-Muñoz, N.; Arzac, A.; Rozas, V.; von Arx, G.; Delzon, S.; García-Cervigón, A.I. Sex determines xylem anatomy in a dioecious conifer: Hydraulic consequences in a drier world. Tree Physiol. 2017, 37, 1493–1502. [Google Scholar]
- Cai, G.; Carminati, A.; Gleason, S.M.; Javaux, M.; Ahmed, M.A. Soil-plant hydraulics explain stomatal efficiency-safety tradeoff. Plant Cell Environ. 2023, 46, 3120–3127. [Google Scholar] [CrossRef]
- McCulloh, K.; Sperry, J.; Adler, F. Murray’s law and the hydraulic vs mechanical functioning of wood. Funct. Ecol. 2004, 18, 931–938. [Google Scholar] [CrossRef]
- Choat, B.; Cobb, A.R.; Jansen, S. Structure and function of bordered pits: New discoveries and impacts on whole-plant hydraulic function. New Phytol. 2008, 177, 608–626. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Yu, C.; Qian, H.; Shangguan, F.; Tang, L.; Zhang, B.; Xie, J. Relationship between xylem structure and function of diffuse-porous and ring-porous wood species in Jigongshan Nature Reserve. J. Zhejiang AF Univ. 2022, 39, 244–251. [Google Scholar]
- Hacke, U.; Sperry, J.; Pitterman, J. Efficiency versus safety trade offs for water conduction in angiosperm vessels versus gymnosperm tracheids. In Vascular Transport in Plants; Holbrook, N.M., Zwieniecki, M.A., Eds.; Academic Press: Cambridge, MA, USA, 2005; pp. 333–353. [Google Scholar]
- Anderegg, W.R.; Klein, T.; Bartlett, M.; Sack, L.; Pellegrini, A.F.; Choat, B.; Jansen, S. Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proc. Natl. Acad. Sci. USA 2016, 113, 5024–5029. [Google Scholar] [CrossRef]
- Hacke, U.G.; Sperry, J.S.; Wheeler, J.K.; Castro, L. Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol. 2006, 26, 689–701. [Google Scholar] [CrossRef]
- Jacobsen, A.L. Diversity in conduit and pit structure among extant gymnosperm taxa. Am. J. Bot. 2021, 108, 559–570. [Google Scholar] [CrossRef]
- Zwieniecki, M.A.; Holbrook, N.M. Confronting Maxwell’s demon: Biophysics of xylem embolism repair. Trends Plant Sci. 2009, 14, 530–534. [Google Scholar] [CrossRef]
- Martínez-Vilalta, J.; Mencuccini, M.; Álvarez, X.; Camacho, J.; Loepfe, L.; Piñol, J. Spatial distribution and packing of xylem conduits. Am. J. Bot. 2012, 99, 1189–1196. [Google Scholar] [CrossRef]
- Carlquist, S. Living cells in wood 3. Overview; functional anatomy of the parenchyma network. Bot. Rev. 2018, 84, 242–294. [Google Scholar] [CrossRef]
- Jiang, X.; Choat, B.; Zhang, Y.-J.; Guan, X.-Y.; Shi, W.; Cao, K.-F. Variation in xylem hydraulic structure and function of two Mangrove species across a latitudinal gradient in Eastern Australia. Water 2021, 13, 850. [Google Scholar] [CrossRef]
- Tissier, J.; Lambs, L.; Peltier, J.-P.; Marigo, G. Relationships between hydraulic traits and habitat preference for six Acer species occurring in the French Alps. Ann. For. Sci. 2004, 61, 81–86. [Google Scholar] [CrossRef]
- Lens, F.; Sperry, J.S.; Christman, M.A.; Choat, B.; Rabaey, D.; Jansen, S. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytol. 2011, 190, 709–723. [Google Scholar] [CrossRef] [PubMed]
- Scholz, A.; Rabaey, D.; Stein, A.; Cochard, H.; Smets, E.; Jansen, S. The evolution and function of vessel and pit characters with respect to cavitation resistance across 10 Prunus species. Tree Physiol. 2013, 33, 684–694. [Google Scholar] [CrossRef] [PubMed]
- Cochard, H.; Barigah, S.T.; Kleinhentz, M.; Eshel, A. Is xylem cavitation resistance a relevant criterion for screening drought resistance among Prunus species? J. Plant Phys. 2008, 165, 976–982. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Gleason, S.M.; Hao, G.; Hua, L.; He, P.; Goldstein, G.; Ye, Q. Hydraulic traits are coordinated with maximum plant height at the global scale. Sci. Adv. 2019, 5, eaav1332. [Google Scholar] [CrossRef]
- Wang, Z.; Ding, X.; Li, Y.; Xie, J. The compensation effect between safety and efficiency in xylem and role in photosynthesis of gymnosperms. Physiol. Plant 2022, 174, e13617. [Google Scholar] [CrossRef]
- LI, Z.-M.; WANG, C.-K.; LUO, D.-D. Variations and interrelationships of foliar hydraulic and photosynthetic traits for Larix gmelinii. Chin. J. Plant Ecol. 2017, 41, 1140. [Google Scholar]
- Bouche, P.S.; Larter, M.; Domec, J.-C.; Burlett, R.; Gasson, P.; Jansen, S.; Delzon, S. A broad survey of hydraulic and mechanical safety in the xylem of conifers. J. Exp. Bot. 2014, 65, 4419–4431. [Google Scholar] [CrossRef]
- Rowe, N.; Speck, T. Plant growth forms: An ecological and evolutionary perspective. New Phytol. 2005, 166, 61–72. [Google Scholar] [CrossRef]
- Nolan, R.H.; Tarin, T.; Santini, N.S.; McAdam, S.A.; Ruman, R.; Eamus, D. Differences in osmotic adjustment, foliar abscisic acid dynamics, and stomatal regulation between an isohydric and anisohydric woody angiosperm during drought. Plant Cell Environ. 2017, 40, 3122–3134. [Google Scholar] [CrossRef]
- Fu, X.; Meinzer, F.C. Metrics and proxies for stringency of regulation of plant water status (iso/anisohydry): A global data set reveals coordination and trade-offs among water transport traits. Tree Physiol. 2019, 39, 122–134. [Google Scholar] [CrossRef]
- Fu, X.; Meinzer, F.C.; Woodruff, D.R.; Liu, Y.Y.; Smith, D.D.; McCulloh, K.A.; Howard, A.R. Coordination and trade-offs between leaf and stem hydraulic traits and stomatal regulation along a spectrum of isohydry to anisohydry. Plant Cell Environ. 2019, 42, 2245–2258. [Google Scholar] [CrossRef] [PubMed]
- Pittermann, J.; Baer, A.; Sang, Y. Primary tissues may affect estimates of cavitation resistance in ferns. New Phytol. 2021, 231, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Klepsch, M.; Lange, A.; Angeles, G.; Mehltreter, K.; Jansen, S. The hydraulic architecture of petioles and leaves in tropical fern species under different levels of canopy openness. Int. J. Plant Sci. 2016, 177, 209–216. [Google Scholar] [CrossRef]
- Pittermann, J.; Limm, E.; Rico, C.; Christman, M.A. Structure–function constraints of tracheid-based xylem: A comparison of conifers and ferns. New Phytol. 2011, 192, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Fang, W.; Zeren, W.; Ni, Z.; Zhang, X. Fruit types of angiosperm and their 4 life forms in Tibet and its southeastern region. Bull. Bot. Res. 2013, 33, 154–158. [Google Scholar]
- Lens, F.; Picon-Cochard, C.; Delmas, C.E.; Signarbieux, C.; Buttler, A.; Cochard, H.; Jansen, S.; Chauvin, T.; Doria, L.C.; Del Arco, M. Herbaceous angiosperms are not more vulnerable to drought-induced embolism than angiosperm trees. Plant Physiol. 2016, 172, 661–667. [Google Scholar] [CrossRef]
- Song, Y.; Poorter, L.; Horsting, A.; Delzon, S.; Sterck, F. Pit and tracheid anatomy explain hydraulic safety but not hydraulic efficiency of 28 conifer species. J. Exp. Bot. 2022, 73, 1033–1048. [Google Scholar] [CrossRef]
- Pratt, R.B.; Jacobsen, A.L.; Jacobs, S.M.; Esler, K.J. Xylem transport safety and efficiency differ among fynbos shrub life history types and between two sites differing in mean rainfall. Int. J. Plant Sci. 2012, 173, 474–483. [Google Scholar] [CrossRef]
- Jacobsen, A.L.; Pratt, R.B. Geographic and seasonal variation in chaparral vulnerability to cavitation. Madrono 2014, 61, 317–327. [Google Scholar] [CrossRef]
- Dória, L.C.; Meijs, C.; Podadera, D.S.; Del Arco, M.; Smets, E.; Delzon, S.; Lens, F. Embolism resistance in stems of herbaceous Brassicaceae and Asteraceae is linked to differences in woodiness and precipitation. Ann. Bot. 2019, 124, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Evert, R.F. Esau’s Plant Anatomy: Meristems Cells and Tissues of The Plant Body: Their Structure Function and Development; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Ni, M.-Y.; Aritsara, A.N.A.; Wang, Y.-Q.; Huang, D.-L.; Xiang, W.; Wan, C.-Y.; Zhu, S.-D. Analysis of xylem anatomy and function of representative tree species in a mixed evergreen and deciduous broad-leaved forest of mid-subtropical karst region. Chin. J. Plant Ecol. 2021, 45, 394. [Google Scholar]
- Aritsara, A.N.A.; Ni, M.-Y.; Wang, Y.-Q.; Yan, C.-L.; Zeng, W.-H.; Song, H.-Q.; Cao, K.-F.; Zhu, S.-D. Tree growth is correlated with hydraulic efficiency and safety across 22 tree species in a subtropical karst forest. Tree Physiol. 2023, 43, 1307–1318. [Google Scholar]
- Hubbard, R.; Ryan, M.; Stiller, V.; Sperry, J. Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in Ponderosa Pine. Plant Cell Environ. 2001, 24, 113–121. [Google Scholar] [CrossRef]
- Alonso-Forn, D.; Peguero-Pina, J.J.; Ferrio, J.P.; Mencuccini, M.; Mendoza-Herrer, Ó.; Sancho-Knapik, D.; Gil-Pelegrín, E. Contrasting functional strategies following severe drought in two Mediterranean oaks with different leaf habit: Quercus faginea and Quercus ilex subsp. rotundifolia. Tree Physiol. 2021, 41, 371–387. [Google Scholar] [CrossRef]
- Fu, P.-L.; Jiang, Y.-J.; Wang, A.-Y.; Brodribb, T.J.; Zhang, J.-L.; Zhu, S.-D.; Cao, K.-F. Stem hydraulic traits and leaf water-stress tolerance are co-ordinated with the leaf phenology of angiosperm trees in an Asian tropical dry karst forest. Ann. Bot. 2012, 110, 189–199. [Google Scholar] [CrossRef]
- Blasini, D.E.; Koepke, D.F.; Bush, S.E.; Allan, G.J.; Gehring, C.A.; Whitham, T.G.; Day, T.A.; Hultine, K.R. Tradeoffs between leaf cooling and hydraulic safety in a dominant arid land riparian tree species. Plant Cell Environ. 2022, 45, 1664–1681. [Google Scholar] [CrossRef] [PubMed]
- Aparecido, L.M.; Woo, S.; Suazo, C.; Hultine, K.R.; Blonder, B. High water use in desert plants exposed to extreme heat. Ecol. Lett. 2020, 23, 1189–1200. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhao, Y.; Wang, Y.; Korpelainen, H.; Li, C. Stem xylem traits and wood formation affect sex-specific responses to drought and rewatering in Populus cathayana. Tree Physiol. 2022, 42, 1350–1363. [Google Scholar] [CrossRef]
- Hultine, K.R.; Grady, K.C.; Wood, T.E.; Shuster, S.M.; Stella, J.C.; Whitham, T.G. Climate change perils for dioecious plant species. Nat. Plants 2016, 2, 16109. [Google Scholar] [CrossRef]
- Choat, B.; Jansen, S.; Brodribb, T.J.; Cochard, H.; Delzon, S.; Bhaskar, R.; Bucci, S.J.; Feild, T.S.; Gleason, S.M.; Hacke, U.G. Global convergence in the vulnerability of forests to drought. Nature 2012, 491, 752–755. [Google Scholar] [CrossRef]
- Wang, A.-Y.; Wang, M.; Yang, D.; Song, J.; Zhang, W.-W.; Han, S.-J.; Hao, G.-Y. Responses of hydraulics at the whole-plant level to simulated nitrogen deposition of different levels in Fraxinus mandshurica. Tree Physiol. 2016, 36, 1045–1055. [Google Scholar] [CrossRef]
- Cruiziat, P.; Cochard, H.; Améglio, T. Hydraulic architecture of trees: Main concepts and results. Ann. For. Sci. 2002, 59, 723–752. [Google Scholar] [CrossRef]
- Zhu, S.D.; Liu, H.; Xu, Q.Y.; Cao, K.F.; Ye, Q. Are leaves more vulnerable to cavitation than branches? Funct. Ecol. 2016, 30, 1740–1744. [Google Scholar] [CrossRef]
- Skelton, R.P.; Brodribb, T.J.; Choat, B. Casting light on xylem vulnerability in an herbaceous species reveals a lack of segmentation. New Phytol. 2017, 214, 561–569. [Google Scholar] [CrossRef]
- Nardini, A.; Pedà, G.; La Rocca, N. Trade-offs between leaf hydraulic capacity and drought vulnerability: Morpho-anatomical bases, carbon costs and ecological consequences. New Phytol. 2012, 196, 788–798. [Google Scholar] [CrossRef] [PubMed]
- Nardini, A.; Luglio, J. Leaf hydraulic capacity and drought vulnerability: Possible trade-offs and correlations with climate across three major biomes. Funct. Ecol. 2014, 28, 810–818. [Google Scholar] [CrossRef]
- Brodribb, T.J.; Feild, T.S.; Jordan, G.J. Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiol. 2007, 144, 1890–1898. [Google Scholar] [CrossRef] [PubMed]
- Zach, A.; Schuldt, B.; Brix, S.; Horna, V.; Culmsee, H.; Leuschner, C. Vessel diameter and xylem hydraulic conductivity increase with tree height in tropical rainforest trees in Sulawesi, Indonesia. Flora 2010, 205, 506–512. [Google Scholar] [CrossRef]
- Wang, L.; Dai, Y.; Zhang, J.; Meng, P.; Wan, X. Xylem structure and hydraulic characteristics of deep roots, shallow roots and branches of walnut under seasonal drought. BMC Plant Biol. 2022, 22, 440. [Google Scholar] [CrossRef]
- Scoffoni, C.; Sack, L. The causes and consequences of leaf hydraulic decline with dehydration. J. Exp. Bot. 2017, 68, 4479–4496. [Google Scholar]
- Buckley, T.N.; John, G.P.; Scoffoni, C.; Sack, L. The sites of evaporation within leaves. Plant Physiol. 2017, 173, 1763–1782. [Google Scholar] [CrossRef]
- Gleason, S.M.; Butler, D.W.; Ziemińska, K.; Waryszak, P.; Westoby, M. Stem xylem conductivity is key to plant water balance across Australian angiosperm species. Funct. Ecol. 2012, 26, 343–352. [Google Scholar] [CrossRef]
- Ooeda, H.; Terashima, I.; Taneda, H. Intra-specific trends of lumen and wall resistivities of vessels within the stem xylem vary among three woody plants. Tree Physiol. 2018, 38, 223–231. [Google Scholar] [CrossRef]
- Baer, A.B.; Fickle, J.C.; Medina, J.; Robles, C.; Pratt, R.B.; Jacobsen, A.L. Xylem biomechanics, water storage, and density within roots and shoots of an angiosperm tree species. J. Exp. Bot. 2021, 72, 7984–7997. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Kang, S.; Davies, W.J.; Ding, R. Elevated [CO2] alleviates the impacts of water deficit on xylem anatomy and hydraulic properties of maize stems. Plant Cell Environ. 2020, 43, 563–578. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, Q.; Wang, F.; Sun, X.; Wang, N.; Song, H.; Cui, R.; Wu, P.; Du, N.; Wang, H. Weak tradeoff and strong segmentation among plant hydraulic traits during seasonal variation in four woody species. Front. Plant Sci. 2020, 11, 585674. [Google Scholar] [CrossRef] [PubMed]
- Wason, J.W.; Anstreicher, K.S.; Stephansky, N.; Huggett, B.A.; Brodersen, C.R. Hydraulic safety margins and air-seeding thresholds in roots, trunks, branches and petioles of four northern hardwood trees. New Phytol. 2018, 219, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Nardini, A.; Pitt, F. Drought resistance of Quercus pubescens as a function of root hydraulic conductance, xylem embolism and hydraulic architecture. New Phytol. 1999, 143, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Choat, B. Predicting thresholds of drought-induced mortality in woody plant species. Tree Physiol. 2013, 33, 669–671. [Google Scholar] [CrossRef]
- Ryan, M.G.; Yoder, B.J. Hydraulic limits to tree height and tree growth. BioSic 1997, 47, 235–242. [Google Scholar] [CrossRef]
- Olson, M.E.; Anfodillo, T.; Gleason, S.M.; McCulloh, K.A. Tip-to-base xylem conduit widening as an adaptation: Causes, consequences, and empirical priorities. New Phytol. 2021, 229, 1877–1893. [Google Scholar] [CrossRef]
- Anfodillo, T.; Carraro, V.; Carrer, M.; Fior, C.; Rossi, S. Convergent tapering of xylem conduits in different woody species. New Phytol. 2006, 169, 279–290. [Google Scholar] [CrossRef]
- Pang, Y.K.; Qin, L.L.; Zhang, T.H.; Lei, J.Y.; Zhang, Y.; Roddy, A.B.; Jiang, G.F. Coordination of inter-tracheid pit traits and climate effects among cycads. Physiol. Plant 2023, 175, e13924. [Google Scholar] [CrossRef]
- Prendin, A.L.; Mayr, S.; Beikircher, B.; von Arx, G.; Petit, G. Xylem anatomical adjustments prioritize hydraulic efficiency over safety as Norway spruce trees grow taller. Tree Physiol. 2018, 38, 1088–1097. [Google Scholar] [CrossRef] [PubMed]
- Klepsch, M.; Zhang, Y.; Kotowska, M.M.; Lamarque, L.J.; Nolf, M.; Schuldt, B.; Torres-Ruiz, J.M.; Qin, D.-W.; Choat, B.; Delzon, S. Is xylem of angiosperm leaves less resistant to embolism than branches? Insights from microCT, hydraulics, and anatomy. J. Exp. Bot. 2018, 69, 5611–5623. [Google Scholar] [CrossRef] [PubMed]
- Qaderi, M.M.; Martel, A.B.; Dixon, S.L. Environmental factors influence plant vascular system and water regulation. Plants 2019, 8, 65. [Google Scholar] [CrossRef]
- Shangguan, F.; Zhao, M.; Zhang, B.; Tang, L.; Qian, H.; Xie, J.; Wang, Z. Relationship between hydraulic properties and xylem anatomical structure of subtropical plants. J. Zhejiang AF Univ. 2022, 39, 252–261. [Google Scholar]
- Han, X.-L.; Zhao, M.-S.; Wang, Z.-Y.; Ye, L.-F.; Lu, S.-T.; Chen, S.; Li, Y.; Xie, J.-B. Adaptation of xylem structure and function of three gymnosperms to different habitats. Chin. J. Plant Ecol. 2022, 46, 440. [Google Scholar] [CrossRef]
- He, P.; Gleason, S.M.; Wright, I.J.; Weng, E.; Liu, H.; Zhu, S.; Lu, M.; Luo, Q.; Li, R.; Wu, G. Growing-season temperature and precipitation are independent drivers of global variation in xylem hydraulic conductivity. Glob. Chang. Biol. 2020, 26, 1833–1841. [Google Scholar] [CrossRef]
- López, R.; López de Heredia, U.; Collada, C.; Cano, F.J.; Emerson, B.C.; Cochard, H.; Gil, L. Vulnerability to cavitation, hydraulic efficiency, growth and survival in an insular pine (Pinus canariensis). Ann. Bot. 2013, 111, 1167–1179. [Google Scholar] [CrossRef]
- Li, Z.-M.; Wang, C.-K. Research progress on responses of xylem of woody plants to freeze-thaw embolism. Chin. J. Plant Ecol. 2019, 43, 635. [Google Scholar] [CrossRef]
- Fickle, J.C.; Pratt, R.B.; Jacobsen, A.L. Xylem structure and hydraulic function in roots and stems of chaparral shrub species from high and low elevation in the Sierra Nevada, California. Physiol. Plant 2023, 175, e13970. [Google Scholar] [CrossRef]
- Venturas, M.; López, R.; Gascó, A.; Gil, L. Hydraulic properties of European elms: Xylem safety-efficiency tradeoff and species distribution in the Iberian Peninsula. Trees 2013, 27, 1691–1701. [Google Scholar] [CrossRef]
- Hahm, W.; Dralle, D.; Rempe, D.; Bryk, A.; Thompson, S.; Dawson, T.; Dietrich, W. Low subsurface water storage capacity relative to annual rainfall decouples Mediterranean plant productivity and water use from rainfall variability. Geophys. Res. Lett. 2019, 46, 6544–6553. [Google Scholar] [CrossRef]
- Li, X.; Blackman, C.J.; Choat, B.; Duursma, R.A.; Rymer, P.D.; Medlyn, B.E.; Tissue, D.T. Tree hydraulic traits are coordinated and strongly linked to climate-of-origin across a rainfall gradient. Plant Cell Environ. 2018, 41, 646–660. [Google Scholar] [CrossRef] [PubMed]
- Pivovaroff, A.L.; Wolfe, B.T.; McDowell, N.; Christoffersen, B.; Davies, S.; Dickman, L.T.; Grossiord, C.; Leff, R.T.; Rogers, A.; Serbin, S.P. Hydraulic architecture explains species moisture dependency but not mortality rates across a tropical rainfall gradient. Biotropica 2021, 53, 1213–1225. [Google Scholar] [CrossRef]
- Rossi, S.; Deslauriers, A.; Anfodillo, T.; Carraro, V. Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 2007, 152, 1–12. [Google Scholar] [CrossRef]
- Mayr, S.; Hacke, U.; Schmid, P.; Schwienbacher, F.; Gruber, A. Frost drought in conifers at the alpine timberline: Xylem dysfunction and adaptations. Ecology 2006, 87, 3175–3185. [Google Scholar] [CrossRef]
- Meinzer, F.C.; Johnson, D.M.; Lachenbruch, B.; McCulloh, K.A.; Woodruff, D.R. Xylem hydraulic safety margins in woody plants: Coordination of stomatal control of xylem tension with hydraulic capacitance. Funct. Ecol. 2009, 23, 922–930. [Google Scholar] [CrossRef]
- Saiki, S.-T.; Ishida, A.; Yoshimura, K.; Yazaki, K. Physiological mechanisms of drought-induced tree die-off in relation to carbon, hydraulic and respiratory stress in a drought-tolerant woody plant. Sci. Rep. 2017, 7, 2995. [Google Scholar] [CrossRef]
- Gauthey, A.; Peters, J.M.; Lòpez, R.; Carins-Murphy, M.R.; Rodriguez-Dominguez, C.M.; Tissue, D.T.; Medlyn, B.E.; Brodribb, T.J.; Choat, B. Mechanisms of xylem hydraulic recovery after drought in Eucalyptus saligna. Plant Cell Environ. 2022, 45, 1216–1228. [Google Scholar] [CrossRef]
- Hacke, U.G.; Plavcová, L.; Almeida-Rodriguez, A.; King-Jones, S.; Zhou, W.; Cooke, J.E. Influence of nitrogen fertilization on xylem traits and aquaporin expression in stems of hybrid poplar. Tree Physiol. 2010, 30, 1016–1025. [Google Scholar] [CrossRef]
- Rucińska-Sobkowiak, R. Water relations in plants subjected to heavy metal stresses. Acta Physiol. Plant. 2016, 38, 257. [Google Scholar] [CrossRef]
- Pollacco, J.; Fernández-Gálvez, J.; Carrick, S. Improved prediction of water retention curves for fine texture soils using an intergranular mixing particle size distribution model. J. Hydrol. 2020, 584, 124597. [Google Scholar] [CrossRef]
- Bittencourt, P.R.d.L.; Bartholomew, D.C.; Banin, L.F.; Bin Suis, M.A.F.; Nilus, R.; Burslem, D.F.; Rowland, L. Divergence of hydraulic traits among tropical forest trees across topographic and vertical environment gradients in Borneo. New Phytol. 2022, 235, 2183–2198. [Google Scholar] [CrossRef]
- Poeplau, C.; Kätterer, T. Is soil texture a major controlling factor of root: Shoot ratio in cereals? Eur. J. Soil. Sci. 2017, 68, 964–970. [Google Scholar] [CrossRef]
- Roig-Puscama, F.; Berli, F.; Roig, F.A.; Tomazello-Filho, M.; Mastrantonio, L.; Piccoli, P. Wood hydrosystem of three cultivars of Vitis vinifera L. is modified in response to contrasting soils. Plant Soil. 2021, 463, 573–588. [Google Scholar] [CrossRef]
- Tataranni, G.; Dichio, B.; Xiloyannis, C. Soil fungi-plant interaction. In Advances in Selected Plant Physiology Aspects; Intech Open: London, UK, 2012; pp. 161–188. [Google Scholar]
- Xu, S.; Zhang, E.; Ma, R.; Wang, Q.; Liu, Q.; Huang, Y. Effects of mulching on soil environment and water utilization by roots of Lycium barbarum. Acta Prataculturae Sin. 2019, 28, 12–22. [Google Scholar]
- Romero-Trigueros, C.; Díaz-López, M.; Vivaldi, G.A.; Camposeo, S.; Nicolás, E.; Bastida, F. Plant and soil microbial community responses to different water management strategies in an almond crop. Sci. Total Environ. 2021, 778, 146148. [Google Scholar] [CrossRef]
- Becerra-Castro, C.; Lopes, A.R.; Vaz-Moreira, I.; Silva, E.F.; Manaia, C.M.; Nunes, O.C. Wastewater reuse in irrigation: A microbiological perspective on implications in soil fertility and human and environmental health. Environ. Int. 2015, 75, 117–135. [Google Scholar] [CrossRef]
Types | R2 | Slope | Data Source |
---|---|---|---|
Inter-species | Table S1 | ||
ferns | 0.006 * | 0.403 | |
gymnosperms | 0.393 * | 0.341 | |
angiosperms | 0.011 * | −0.448 | |
Wood types | Table S2 | ||
ring-porous | 0.077 * | −0.926 | |
diffuse-porous | 0.006 * | 0.279 | |
Life types | Table S3 | ||
trees | 0.047 * | 0.294 | |
lianas | 0.001 * | 0.069 | |
shrubs | 0.001 | 0.104 | |
herbaceous | 0.517 * | 2.031 | |
evergreen | 0.004 * | 0.226 | |
deciduous | 0.001 * | 0.071 | |
Intra-tree | Table S4 | ||
leaf | 0.029 * | 0.803 | |
stem | 0.093 * | 0.624 | |
root | 0.038 * | 2.207 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Wang, J.; Lu, S.; Salmon, Y.; Liu, P.; Guo, J. Trade-Off between Hydraulic Safety and Efficiency in Plant Xylem and Its Influencing Factors. Forests 2023, 14, 1817. https://doi.org/10.3390/f14091817
Li S, Wang J, Lu S, Salmon Y, Liu P, Guo J. Trade-Off between Hydraulic Safety and Efficiency in Plant Xylem and Its Influencing Factors. Forests. 2023; 14(9):1817. https://doi.org/10.3390/f14091817
Chicago/Turabian StyleLi, Shan, Jing Wang, Sen Lu, Yann Salmon, Peng Liu, and Junkang Guo. 2023. "Trade-Off between Hydraulic Safety and Efficiency in Plant Xylem and Its Influencing Factors" Forests 14, no. 9: 1817. https://doi.org/10.3390/f14091817
APA StyleLi, S., Wang, J., Lu, S., Salmon, Y., Liu, P., & Guo, J. (2023). Trade-Off between Hydraulic Safety and Efficiency in Plant Xylem and Its Influencing Factors. Forests, 14(9), 1817. https://doi.org/10.3390/f14091817