Effects of High and Low Aerotechnogenic Emissions of Heavy Metals on Wild Plants
Abstract
:1. Introduction
- (i)
- Determine the current level of contamination by some heavy metals of the upper organogenic horizon of Al-Fe-humus soils, and compare it with the content of Ni, Cu, and Co in the forest litter during the period of high anthropogenic emissions into the atmosphere in order to assess the degree of phytotoxicity of soils;
- (ii)
- Carry out a comparative analysis of Ni, Cu, and, Co content in indicator plant species during periods of high (1980–1999) and low (2000–2019) aerotechnogenic emissions in the context of assessing the potential threat to human health;
- (iii)
- Evaluate the response of the radial increment of Scots pine trees in reducing airborne emissions, to assess the possibility of restoring the productivity of Scots pine trunks.
2. Material and Methods
2.1. Collection of Material
2.2. Laboratory Analysis
2.3. Statistical Data Processing
3. Results
3.1. Soil Properties
3.2. Heavy Metal Contents in Forest Plants
3.3. Growth-Ring Width of Pinus sylvestris Trees
4. Discussion
4.1. Soil Phytotoxicity
4.2. Plants as bioindicators of Heavy Metal Pollution—Assessment of Potential Risks to Human Health
4.3. Assessing the Potential for Regeneration of Pine Trunk-Wood Productivity
5. Conclusions
- (1)
- The weak pollution zone continues to increase due to the long-range transport of polymetallic dust;
- (2)
- Phytotoxicity of the upper organogenic horizon (forest litter) of Al-Fe-humus soil increases, which reduces the quality of habitat for wild plants;
- (3)
- The content of Ni and Cu in the assimilative organs of plants decreased but their increased concentrations are a threat to human health;
- (4)
- The width of the annual rings of pine wood has stopped differing from its background value, which indicates the beginning of restoring the productivity of pine forest stands.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barcan, V. Leaching of nickel and copper from a soil contaminated by metallurgical dust. Environ. Int. 2002, 28, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Lyanguzova, I.; Yarmishko, V.; Gorshkov, V.; Stavrova, N.; Bakkal, I. Impact of heavy metals on forest ecosystems of the European North of Russia. In Heavy Metals; IntechOpen: London, UK, 2018; pp. 91–114. [Google Scholar]
- Jones, C.G.; Lawton, J.H.; Shachak, M. Organisms as ecosystem engineers. Oikos 1994, 69, 373–386. [Google Scholar] [CrossRef]
- Bialkowski, R.; Buttle, J.M. Stemflow and throughfall contributions to soil water recharge under trees with differing branch architectures. Hydrol. Process 2015, 29, 4068–4082. [Google Scholar] [CrossRef]
- Frischbier, N.; Wagner, S. Detection, quantification and modelling of small-scale lateral translocation of throughfall in tree crowns of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst). J. Hydrol. 2015, 522, 228–238. [Google Scholar] [CrossRef]
- Levia, D.F.; Germer, S. A review of stemflow generation dynamics and stemflow–environment interactions in forests and shrublands. Rev. Geophys. 2015, 53, 673–714. [Google Scholar] [CrossRef]
- Kozłowski, R.; Jóźwiak, M. The transformation of precipitation in the tree canopy in selected forest ecosystems of Poland’s Świętokrzyskie Mountains. Pol. Geograph. Rev. 2017, 89, 133–153. [Google Scholar]
- Nilsson, U.; Gemmel, P. Changes in growth and allocation of growth in young Pinus sylvestris and Picea abies due to competition. Scand. J. For. Res. 1993, 8, 213–222. [Google Scholar] [CrossRef]
- Das, A. The effect of size and competition on tree growth rate in old-growth coniferous forests. Can. J. For. Res. 2012, 42, 1983–1995. [Google Scholar] [CrossRef]
- Demidko, D.A.; Krivets, C.A.; Bisirova, E.M. Connection between radial increment and tree vitality of Siberian stone pine. Tomsk. State Univ. J. Biol. 2010, 4, 68–80. [Google Scholar]
- Dobbertin, M. Forest growth as indicator of tree vitality and tree reaction to environmental stress: A review. Eur. J. For. Res. 2005, 124, 319–333. [Google Scholar] [CrossRef]
- Hereş, A.M.; Kaye, M.W.; Granda, E.; Benavides, R.; Lázaro-Nogal, A.; Rubio-Casal, A.E.; Valladares, F.; Curiel Yuste, J. Tree vigour influences secondary growth but not responsiveness to climatic variability in Holm oak. Dendrochronologia 2018, 49, 68–76. [Google Scholar] [CrossRef]
- Stavrova, N.I.; Gorshkov, V.V.; Katjutin, P.N. Structure formation of forest tree species coenopopulations during post-fire recovery of northern taiga forest. Trans. Karelian Res. Cent. Russ. Acad. Sci. Biogeogr. Ser. 2016, 3, 10–28. [Google Scholar]
- Katjutin, P.N.; Stavrova, N.I.; Gorshkov, V.V.; Lyanguzov, A.Y.; Bakkal, I.J.; Mikhailov, S.A. Radial growth of trees differing in their vitality in the middle-aged Scots pine forests in the Kola peninsula. Silva Fenn. 2020, 54, 10263. [Google Scholar] [CrossRef]
- Katyutin, P.N.; Gorshkov, V.V. Vitality, Growth Speed and Aboveground Biomass of Pinus sylvestris (Pinaceae) in Middle-Aged North Taiga Forests. Rastit. Resur. 2020, 56, 99–111. [Google Scholar]
- Gorshkov, V.V.; Stavrova, N.I.; Katjutin, P.N.; Lyanguzov, A.Y. Radial Increment of Scots Pine Pinus sylvestris L. in the Northern Taiga Lichen Pine Forests and Woodlands. Biol. Bull. 2021, 2, 200–210. [Google Scholar]
- Turtiainen, M.; Salo, K.; Saastomoinen, O. Variation of yield and utilisation of bilberries (Vaccinium myrtillus L.) and cowberries (Vaccinium vitis-idaea L.) in Finland. Silva Fenn. 2011, 45, 237–251. [Google Scholar] [CrossRef] [Green Version]
- Turtiainen, M.; Miina, J.; Salo, K.; Hotanen, J.-P. Empirical prediction models for the coverage and yields of cowberry in Finland. Silva Fenn. 2013, 47, 1005–1019. [Google Scholar] [CrossRef]
- Lyanguzova, I.V. Airborne Heavy Metal Pollution and its Effects on Biomass of Ground Vegetation, Foliar Elemental Composition and Metabolic Profiling of Forest Plants in the Kola Peninsula (Russia). Russ. J. Plant Physiol. 2021, 68 (Suppl. S1), S140–S149. [Google Scholar] [CrossRef]
- Uhlig, C.; Junttila, J. Airborne heavy metal pollution and its effect on foliar elemental composition of Empetrum hermaphroditum and Vaccinium myrtillus in Sor-Varanger, northern Norway. Environ. Pollut. 2001, 114, 461–469. [Google Scholar] [CrossRef]
- Lakka, J.; Kouki, J. Patterns of field layer invertebrates in successional stages of managed boreal forest: Implications for the declining capercaillie Tetrao urogallus L. population. For. Ecol. Manag. 2009, 257, 600–607. [Google Scholar] [CrossRef]
- Ihalainen, M.; Alho, J.; Kolehmainen, O.; Pukkala, T. Expert models for bilberry and cowberry yields in Finnish forests. For. Ecol. Manag. 2002, 157, 15–22. [Google Scholar] [CrossRef]
- Martz, F.; Jaakola, L.; Julkunen-Tiitto, R.; Stark, S. Phenolic composition and antioxidant capacity of bilberry (Vaccinium myrtillus) leaves in Northern Europe following foliar development and along environmental gradients. J. Chem. Ecol. 2010, 36, 1017–1028. [Google Scholar] [CrossRef] [PubMed]
- Mroz, L.; Demczuk, M. Contents of phenolics and chemical elements in bilberry (Vaccinium myrtillus L.) leaves from copper smelter area (SW Poland). Pol. J. Ecol. 2010, 58, 475–487. [Google Scholar]
- Afanasyeva, L.V.; Kashin, V.K. Accumulation and distribution of microelements in above- and underground parts Vaccinium vitis-idaea (Ericaceae) in the Southern Pre-Baikal region. Plant Res. 2016, 52, 434–446. [Google Scholar]
- Fursa, N.S.; Kruglov, D.S.; Belokurov, M.M. The element composition of the leaves of plants of the Vaccinium genus. Pharmaciya 2017, 66, 33–48. [Google Scholar]
- Kandziora-Ciupa, M.; Ciepał, R.; Nadgórska-Socha, A.; Barczyk, G. A comparative study of heavy metal accumulation and antioxidant responses in Vaccinium myrtillus L. leaves in polluted and non-polluted areas. Environ. Sci. Pollut. Res. 2013, 20, 4920–4932. [Google Scholar] [CrossRef] [Green Version]
- Kandziora-Ciupa, M.; Nadgorska-Socha, A.; Barczyk, G.; Ciepał, R. Bioaccumulation of heavy metals and ecophysiological responses to heavy metal stress in selected populations of Vaccinium myrtillus L.; Vaccinium vitis-idaea L. Ecotoxicology 2017, 26, 966–981. [Google Scholar] [CrossRef] [Green Version]
- Commission Regulation (EC) No 629/2008 of 2 July 2008 Amending Regulation (EC) No 1881/2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. Official Journal of European Union. 3 July 2008. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:173:0006:0009:EN:PDF (accessed on 14 June 2023).
- FAO/WHO Expert Committee on Food Additives. JECFA/73/SC. Joint 2010. In Proceedings of the Seventy-Third Meeting, Geneva, Switzerland, 8–17 June 2010. [Google Scholar]
- Choi, Y.Y. Briefing on National and International Standards for Heavy Metals in Food. 18 October 2012. Available online: https://www.govtlab.gov.hk/doc/our_work/texchange/Stds_for_heavy_metals_2012.pdf (accessed on 14 June 2023).
- Munn, R.E. Global Environmental Monitoring System (GEMS) SCOPE; Rep. 3; ICSU: Toronto, Canada, 1973. [Google Scholar]
- Rinn, F. TSAP-Win: Time Series Analysis and Presentation for Dendrochronology and Related Applications: User Reference; RINNTECH: Heidelberg, Germany, 2003; 110p. [Google Scholar]
- Guiterman, C.H.; Margolis, E.Q.; Swetnam, T.W. Dendroecological methods for reconstructing high-severity fire in pine-oak forests. Tree-Ring Res. 2015, 71, 67–77. [Google Scholar] [CrossRef]
- World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Report No. 106; Food and Agriculture Organization: Rome, Italy, 2015. [Google Scholar]
- Lyanguzova, I.V.; Goldvirt, D.K.; Fadeeva, I.K. Spatiotemporal Dynamics of the Pollution of Al–Fe-Humus Podzolsin the Impact Zone of a Nonferrous Metallurgical Plant. Eurasian Soil Sci. 2016, 49, 1189–1203. [Google Scholar] [CrossRef]
- Evdokimova, G.A.; Mozgova, N.P.; Korneikova, M.V. The content and toxicity of heavy metals in soils affected by aerial emissions from the Pechenganickel plant. Eurasian Soil Sci. 2015, 5, 504–510. [Google Scholar]
- Vorobeichik, E.L.; Trubina, M.R.; Khantemirova, E.V.; Bergman, I.E. Long-term dynamic of forest vegetation after reduction of copper smelter emissions. Russ. J. Ecol. 2014, 45, 498–507. [Google Scholar] [CrossRef]
- Evdokimova, G.A.; Mozgova, N.P. Soil contamination by heavy metals in surroundings of Monchegorsk and recovering after industrial impact. In Aerial Pollution in Kola Peninsula: International Workshop; University of Turku: Turku, Finland, 1993; pp. 148–152. [Google Scholar]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soil and Plants; CRC Press: London, UK, 2001; 413p. [Google Scholar]
- Salemaa, M.; Derome, J.; Helmisaari, H.-S.; Nieminen, T.; Vanha-Majamaa, I. Element accumulation in boreal bryophytes, lichens and vascular plants exposed to heavy metal and sulfur deposition in Finland. Sci. Total Environ. 2004, 324, 141–160. [Google Scholar] [CrossRef] [PubMed]
- Harmens, H.; Norris, D.A.; Steinnes, E.; Kubin, E.; Piispanen, J.; Alber, R.; Zechmeister, H.G. Mosses as biomonitors of atmospheric heavy metal deposition: Spatial patterns and temporal trends in Europe. Environ. Pollut. 2010, 158, 3144–3158. [Google Scholar] [CrossRef]
- Purvis, O.W.; Williamson, B.J.; Spiro, B.; Dolgopolova, A.; Udachin, V.; Mikhailova, I.N. Lichen monitoring as a potential tool in environmental forensics: Case study of the Cu smelter and former mining town of Karabash, Russia. Geol. Soc. Spec. Publ. 2013, 384, 133–148. [Google Scholar] [CrossRef] [Green Version]
- Conti, M.E.; Cecchetti, G. Biological monitoring: Lichens as bioindicators of air pollution assessment—A review. Environ. Pollut. 2001, 114, 471–487. [Google Scholar] [CrossRef] [PubMed]
- Pescott, O.L.; Simkin, J.M.; August, T.A.; Randle, Z.; Dore, A.J.; Botham, M.S. Air pollution and its effects on lichens, bryophytes, and lichen-feeding lepidoptera: Review and evidence from biological records. Biol. J. Linn. Soc. 2015, 115, 611–635. [Google Scholar] [CrossRef]
- Barkan, V.S.; Lyanguzova, I.V. Concentration of Heavy Metals in Dominant Moss Species as an Indicator of Aerial Technogenic Load. Russ. J. Ecol. 2018, 49, 128. [Google Scholar] [CrossRef]
- Wojtuń, B.; Samecka-Cymerman, A.; Żołnierz, L.; Rajsz, A.; Kempers, A.J. Vascular plants as ecological indicators of metals in alpine vegetation (Karkonosze, SW Poland). Environ. Sci. Pollut. Res. 2017, 24, 20093–20103. [Google Scholar] [CrossRef]
- Rola, K.; Osyczka, P. Cryptogamic communities as a useful bioindication tool for estimating the degree of soil pollution with heavy metals. Ecol. Indic. 2018, 88, 454–464. [Google Scholar] [CrossRef]
- Pająk, M.; Gąsiorek, M.; Jasik, M.; Halecki, W.; Otremba, K.; Pietrzykowski, M. Risk Assessment of Potential Food Chain Threats from Edible Wild Mushrooms Collected in Forest Ecosystems with Heavy Metal Pollution in Upper Silesia, Poland. Forests 2020, 11, 1240–1256. [Google Scholar] [CrossRef]
- Kalač, P.; Svoboda, L. Review of trace element concentrations in edible mushrooms. Food Chem. 2000, 69, 273–281. [Google Scholar] [CrossRef]
- Alonso, J.; Garcia, M.A.; Perez-Lopez, M.; Melgar, M.J. The concentrations and bioconcentration factors of copper and zinc in edible mushrooms. Arch. Environ. Contam. Toxicol. 2003, 44, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.A.; Alonso, J.; Melgar, M.J. Lead in edible mushrooms. Levels and bioconcentration factors. J. Hazard. Mater. 2009, 167, 777–783. [Google Scholar] [CrossRef]
- Brzostowski, A.; Falandysz, J.; Jarzyńska, G.; Zhang, D. Bioconcentration potential of metallic elements by Poison Pax (Paxillus involutus) mushroom. J. Environ. Sci. Health Part A 2011, 46, 378–393. [Google Scholar] [CrossRef]
- Falandysz, J.; Frankowska, A.; Jarzynska, G.; Dryzalowska, A.; Kojta, K.A.; Zhang, D. Survey on composition and bioconcentration potential of 12 metalic elements in King Bolete (Boletus edulis) mushroom that emerged at 11 spatially distant sites. J. Environ. Sci. Health Part B 2011, 46, 231–246. [Google Scholar] [CrossRef]
- Lipka, K.; Falandysz, J. Accumulation of metallic elements by Amanita muscaria from rural lowland and industrial upland regions. J. Environ. Sci. Health Part B 2017, 52, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Vacek, S.; Vacek, Z.; Bilek, L.; Simon, J.; Remeš, J.; Hůnova, I.; Kral, J.; Putalova, T.; Mikeska, M. Structure, regeneration and growth of Scots pine (Pinus sylvestris L.) stands with respect to changing climate and environmental pollution. Silva Fenn. 2016, 50, 1564. [Google Scholar] [CrossRef] [Green Version]
- Urazgildin, R.V.; Kulagin, A.Y. Structural and functional responses of arboreal plants to anthropogenic factors: Damages, adaptations and strategies. Part. III. Impact on the radial increment and on the rootage. Biosfera 2021, 13, 188–205. [Google Scholar]
- Yarmishko, V.T.; Ignateva, O.V. Impact Multi-year Monitoring of Pine Forests in the Central Part of the Kola Peninsula. Proc. Russ. Acad. Sci. Biol. Ser. 2019, 6, 658–668. [Google Scholar]
- Yarmishko, V.T.; Ignat’eva, O.V. Communities of Pinus sylvestris L. in the technogenic environment in the European north of Russia: Structure, features of growth, condition. Sib. J. For. Sci. 2021, 3, 44–55. [Google Scholar] [CrossRef]
Zone | Age (1.3 m), Years | Diameter (1.3 m), cm | Height, m |
---|---|---|---|
Background | 52 ± 4 * (45–59) | 15.3 ± 2.6 (11.0–21.2) | 10.6 ± 1.0 (9.0–12.4) |
Buffer | 59 ± 6 (40–65) | 15.4 ± 4.4 (8.4–24.6) | 11.4 ± 2.5 (6.0–15.5) |
Impact | 63 ± 4 (45–72) | 12.5 ± 2.8 (9.2–19.0) | 8.1 ± 1.3 (6.0–10.5) |
Zone | Period | Metal | Mean | SD | Min. | Max. | CV [%] |
---|---|---|---|---|---|---|---|
Background | 1981–1997 | Ni | 9.1 | 3.8 | 3.4 | 16 | 42 |
Cu | 9.2 | 4.6 | 2.8 | 18 | 49 | ||
Co | 1.0 | 0 | 1.0 | 1.0 | 0 | ||
2002–2018 | Ni | 13.3 | 6.1 | 7.5 | 22 | 45 | |
Cu | 17.9 | 4.8 | 13.1 | 27 | 27 | ||
Co | 1.2 | 0.2 | 1.0 | 1.5 | 18 | ||
Buffer | 1981–1997 | Ni | 49 | 17.3 | 17.8 | 68 | 35 |
Cu | 54 | 31.4 | 13.7 | 110 | 58 | ||
Co | 1.3 | 0.53 | 1.0 | 2.2 | 40 | ||
2002–2018 | Ni | 118 | 51.4 | 68 | 238 | 44 | |
Cu | 264 | 123 | 174 | 547 | 46 | ||
Co | 3.4 | 0.59 | 2.5 | 4.4 | 17 | ||
Impact | 1981–1997 | Ni | 490 | 233 | 127 | 880 | 47 |
Cu | 713 | 392 | 99 | 1200 | 55 | ||
Co | 7.4 | 5.2 | 2.3 | 14.8 | 70 | ||
2002–2018 | Ni | 546 | 146 | 282 | 800 | 27 | |
Cu | 1330 | 439 | 820 | 2180 | 33 | ||
Co | 14.8 | 4.4 | 8.5 | 21.6 | 30 |
Zone | Metal | N | a | b | R2 | p |
---|---|---|---|---|---|---|
Background | Ni | 27 | 0.212 | −412.2 | 0.2586 | 0.0157 |
Cu | 27 | 0.399 | −783.8 | 0.6316 | 0.00001 | |
Co | 15 | 0.007 | −13.7 | 0.3278 | 0.0324 | |
Buffer | Ni | 27 | 2.587 | −5088 | 0.4333 | 0.0002 |
Cu | 27 | 7.878 | −15,589 | 0.5636 | 0.00001 | |
Co | 17 | 0.068 | −134.0 | 0.7545 | 0.00001 | |
Impact | Ni | 27 | 3.732 | −6945 | 0.0716 | 0.1772 |
Cu | 27 | 23.21 | −45364 | 0.3641 | 0.0009 | |
Co | 17 | 0.228 | −443.7 | 0.3344 | 0.0150 |
Specie | Metal | Mean | SD | CV [%] | Min | Max | z (p) |
---|---|---|---|---|---|---|---|
Background | |||||||
Pinus sylvestris | Ni | 5.0 2.3 | 2.5 0.6 | 50 26 | 2.0 | 7.8 | 2.143 (0.085) |
Cu | 4.3 2.3 | 2.2 0.6 | 51 26 | 1.5 | 6.8 | 1.760 (0.139) | |
Vaccinium myrtillus | Ni | 5.0 3.8 | 2.6 0.4 | 52 11 | 3.3 | 8.0 | 1.069 (0.326) |
Cu | 7.3 6.6 | 1.8 3.3 | 25 50 | 2.8 | 11.7 | 0.299 (0.775) | |
Vaccinium vitis-idaea | Ni | 5.0 2.3 | 2.6 0.4 | 52 17 | 2.0 | 7.8 | 2.316 (0.060) |
Cu | 4.8 4.4 | 1.2 2.4 | 25 55 | 2.5 | 8.6 | 0.241 (0.818) | |
Vaccinium uliginosum | Ni | 2.8 3.0 | 0.5 0.9 | 18 30 | 2.0 | 4.2 | –0.276 (0.790) |
Cu | 5.4 3.7 | 0.6 2.3 | 11 62 | 2.2 | 8.8 | 1.222 (0.257) | |
Empetrum hermaphroditum | Ni | 12.9 5.7 | 2.9 2.7 | 22 47 | 3.2 | 16.1 | 3.439 (0.018) |
Cu | 9.3 3.1 | 1.6 0.5 | 17 16 | 2.7 | 10.5 | 7.532 (0.001) | |
Buffer zone | |||||||
Pinus sylvestris | Ni | 39.0 12.0 | 10.6 2.6 | 27 22 | 8.4 | 49 | 5.037 (0.004) |
Cu | 18.1 4.9 | 10.4 1.5 | 57 31 | 3.4 | 30 | 2.603 (0.048) | |
Vaccinium myrtillus | Ni | 24.1 18.9 | 6.8 5.6 | 28 30 | 8.0 | 31.8 | 1.221 (0.262) |
Cu | 10.7 8.7 | 4.5 3.9 | 42 45 | 3.4 | 15.8 | 0.718 (0.496) | |
Vaccinium vitis-idaea | Ni | 24.2 11.0 | 4.2 4.1 | 17 37 | 7.5 | 28.3 | 4.550 (0.003) |
Cu | 7.8 5.9 | 2.1 2.2 | 27 37 | 3.5 | 10.0 | 1.283 (0.240) | |
Vaccinium uliginosum | Ni | 11.7 8.2 | 2.0 3.2 | 17 39 | 2.8 | 11.8 | 1.462 (0.204) |
Cu | 9.3 5.2 | 2.0 2.3 | 22 44 | 2.1 | 10.7 | 2.163 (0.083) | |
Empetrum hermaphroditum | Ni | 32.7 24.5 | 12.0 10.3 | 37 42 | 13.2 | 45.0 | 0.845 (0.446) |
Cu | 11.7 7.5 | 3.6 1.6 | 31 21 | 6.0 | 15.5 | 1.816 (0.143) | |
Impact zone | |||||||
Pinus sylvestris | Ni | 147 37.5 | 39.7 18.5 | 27 49 | 20.6 | 190 | 5.480 (0.002) |
Cu | 65.5 12.3 | 32.7 5.7 | 50 46 | 4.8 | 103 | 3.755 (0.009) | |
Vaccinium myrtillus | Ni | 119 41.1 | 23.2 11.6 | 19 28 | 24.9 | 136 | 7.350 (0.001) |
Cu | 31.2 13.2 | 8.1 5.6 | 26 42 | 6.3 | 40 | 4.123 (0.003) | |
Vaccinium vitis-idaea | Ni | 91 30 | 33.1 12.7 | 36 42 | 14.4 | 117 | 4.470 (0.002) |
Cu | 23.5 10.7 | 5.7 6.2 | 24 58 | 4.2 | 25.1 | 3.416 (0.009) | |
Vaccinium uliginosum | Ni | 114 23.6 | 39.6 4.3 | 35 18 | 21.5 | 30.2 | 5.960 (0.002) |
Cu | 33.2 9.2 | 6.3 4.7 | 19 51 | 5.9 | 34.8 | 6.650 (0.001) | |
Empetrum hermaphroditum | Ni | 576 72 | 220 38.5 | 38 53 | 36.5 | 1060 | 12.072 (0.000) |
Cu | 169 30 | 74 9.4 | 44 31 | 12.4 | 315 | 5.866 (0.001) |
Zone | Period | Mean | SD | Min. | Max. | CV [%] | z (p) |
---|---|---|---|---|---|---|---|
Background | 1980–1999 | 1.462 | 0.414 | 0.758 | 2.125 | 28 | 4.842 (<0.001) |
2000–2019 | 0.685 | 0.160 | 0.402 | 1.008 | 23 | ||
Buffer zone | 1980–1999 | 0.755 | 0.166 | 0.530 | 1.069 | 22 | –0.555 (0.58) |
2000–2019 | 0.758 | 0.124 | 0.549 | 0.993 | 16 | ||
Impact zone | 1980–1999 | 0.401 | 0.133 | 0.271 | 0.703 | 33 | –4.071 (<0.001) |
2000–2019 | 0.611 | 0.094 | 0.391 | 0.736 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyanguzova, I.; Katjutin, P. Effects of High and Low Aerotechnogenic Emissions of Heavy Metals on Wild Plants. Forests 2023, 14, 1650. https://doi.org/10.3390/f14081650
Lyanguzova I, Katjutin P. Effects of High and Low Aerotechnogenic Emissions of Heavy Metals on Wild Plants. Forests. 2023; 14(8):1650. https://doi.org/10.3390/f14081650
Chicago/Turabian StyleLyanguzova, Irina, and Paul Katjutin. 2023. "Effects of High and Low Aerotechnogenic Emissions of Heavy Metals on Wild Plants" Forests 14, no. 8: 1650. https://doi.org/10.3390/f14081650
APA StyleLyanguzova, I., & Katjutin, P. (2023). Effects of High and Low Aerotechnogenic Emissions of Heavy Metals on Wild Plants. Forests, 14(8), 1650. https://doi.org/10.3390/f14081650