Soil Respiration and Related Abiotic and Remotely Sensed Variables in Different Overstories and Understories in a High-Elevation Southern Appalachian Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Site Characterization and Rs Measurement
2.3. Remote-Sensing Calculations
2.4. Statistical Analyses
3. Results
3.1. Soil Temperature, Soil Moisture, Vegetation Type, and Rs
3.2. General Rs Patterns
3.3. Remotely Sensed Variables and Rs
3.3.1. Vegetation Indices
3.3.2. Mean Canopy Height
4. Discussion
4.1. Soil Temperature, Moisture and Rs
4.2. The Use of Remotely Sensed VIs to Predict Rs
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gough, C.M.; Vogel, C.S.; Schmid, H.P.; Curtis, P.S. Controls on Annual Forest Carbon Storage: Lessons from the Past and Predictions for the Future. BioScience 2008, 58, 609–622. [Google Scholar] [CrossRef]
- Schlesinger, W.H.; Andrews, J.A. Soil respiration and the global carbon cycle. Biogeochemistry 2000, 48, 7–20. [Google Scholar] [CrossRef]
- Murray, B.; Sohngen, B.; Sommer, A.J.; Depro, B.; Jones, K.; McCarl, B.; Gillig, D.; DeAngelo, B.; Andrasko, P. Greenhouse Gas mitigation Potential in US Forestry and Agriculture; Environmental Protection Agency: Washington, DC, USA, 2005.
- Bastin, J.-F. The global tree restoration potential. Science 2009, 79, 76–79. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, J.; Qibo, C. Controlling factors of soil CO2 efflux in Pinus yunnanensis across different stand ages. PLoS ONE 2015, 10, e0127274. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Zhu, J.W.X.; Zhang, Y.; Liu, X. Variation in soil respiration under the tree canopy in a temperate mixed forest, Central China, under different soil water conditions. Ecol. Res. 2014, 29, 133–142. [Google Scholar] [CrossRef]
- Adachi, M.; Ito, A.; Yonemura, S.; Takeuchi, W. Estimation of global soil respiration by accounting for land-use changes derived from remote sensing data. J. Environ. Manag. 2017, 200, 97–104. [Google Scholar] [CrossRef]
- Yu, X.; Zha, T.; Pang, Z.; Wu, B.; Wang, X.; Chen, G.; Lin, C.; Cao, J.; Jia, G.; Li, X.; et al. Response of soil respiration to soil temperature and moisture in a 50-year-old oriental arborvitae plantation in China. PLoS ONE 2011, 6, e28397. [Google Scholar] [CrossRef]
- Akburak, S.; Makineci, E. Temporal Changes of Soil Respiration under Different Tree Species. Environ. Monit. Assess. 2013, 185, 3349–3358. [Google Scholar] [CrossRef]
- Bergen, K.; Colwell, J.; Sapio, F. Remote Sensing and Forestry. J. For. 2000, 98, 4–9. [Google Scholar]
- Lees, K.J.; Quaife, T.; Artz, R.R.E.; Khomik, M.; Clark, J.M. Potential for using remote sensing to estimate carbon fluxes across northern peatlands—A review. Sci. Total Environ. 2018, 615, 857–874. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.L.; Gu, L.; Black, T.A.; Wang, L.; Niu, Z. Remote sensing-based estimation of annual soil respiration at two contrasting forest sites. J. Geophys. Res. Biogeosci. 2015, 120, 2306–2325. [Google Scholar] [CrossRef]
- Crabbe, R.A.; Janouš, D.; Dařenová, E.; Pavelka, M. Exploring the potential of LANDSAT-8 for estimation of forest soil CO2 efflux. Int. J. Appl. Earth Obs. Geoinf. 2019, 77, 42–52. [Google Scholar] [CrossRef]
- Huang, N.; Niu, Z. Estimating soil respiration using spectral vegetation indices and abiotic factors in irrigated and rainfed agroecosystems. Plant Soil 2013, 367, 535–550. [Google Scholar] [CrossRef]
- Huang, N.; Niu, Z.; Zhan, Y.; Xu, S.; Tappert, M.C.; Wu, C.; Huang, W.; Gao, S.; Hou, X.; Cai, D. Relationships between soil respiration and photosynthesis-related spectral vegetation indices in two cropland ecosystems. Agric. For. Meteorol. 2012, 160, 80–89. [Google Scholar] [CrossRef]
- US Department of Commerce, and National Oceanic and Atmospheric Administration. What Is LIDAR. NOAA’s National Ocean Service. Available online: https://www.oceanservice.noaa.gov/facts/lidar.html (accessed on 18 February 2018).
- Fleming, G.P.; Patterson, K.D. Natural Communities of Virginia: Ecological Groups and Community Types: A Listing with Conservation Status Ranks; Natural Heritage Technical Report 21-15; Virginia Department of Conservation and Recreation, Division of Natural Heritage: Richmond, VA, USA; 31p.
- Climate Overview. Giles County, Virginia. Available online: https://www.bestplaces.net/climate/county/virginia/giles (accessed on 18 February 2018).
- Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. Available online: https://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx (accessed on 18 February 2018).
- Clark, A.I.; Phillips, D.R.; Frederick, D.J. Weight, Volume, and Physical Properties of Major Hardwood Species in the Gulf and Atlantic Coastal Plains; US Department of Agriculture, Forest Service, Southeastern Forest Experiment Station: Asheville, NC, USA, 1985; Volume SE-250, p. 72.
- Hahn, J.T. Tree Volumes and Biomass Equations for the Lake States; U.S. Department of Agriculture, Forest Service, North Central Forest Experiment Station: Madison, WI, USA, 1984. [CrossRef]
- Inclán, R.; De la Torre, D.; Benito, M.; Rubio, A. Soil CO2 Efflux in a Mixed Pine-Oak Forest in Valsaín (Central Spain). Sci. World J. 2007, 7, 166–174. [Google Scholar] [CrossRef]
- Lai, L.; Zhao, X.; Jiang, L.; Wang, Y.; Luo, L.; Zheng, Y.; Chen, X.; Rimmington, G.M. Soil respiration in different agricultural and natural ecosystems in an arid region. PLoS ONE 2012, 7, 2–10. [Google Scholar] [CrossRef]
- Burkle, L.A.; Logan, B.A. Seasonal acclimation of photosynthesis in eastern hemlock and partridgeberry in different light environments. Northeast. Nat. 2007, 10, 1–16. [Google Scholar] [CrossRef]
- Ryan, M.G.; Law, B.E. Interpreting, measuring, and modeling soil respiration. Biogeochemistry 2005, 73, 3–27. [Google Scholar] [CrossRef]
- Qi, Y.; Xu, M. Separating the effects of moisture and temperature on soil CO2 efflux in a coniferous forest in the Sierra Nevada mountains. Plant Soil 2001, 237, 15–23. [Google Scholar] [CrossRef]
- Martin, J.G.; Bolstad, P.V. Annual soil respiration in broadleaf forests of northern Wisconsin: Influence of moisture and site biological, chemical, and physical characteristics. Biogeochemistry 2005, 73, 149–182. [Google Scholar] [CrossRef]
- Bilal, R.C. Soil Carbon and Nutrient Cycling across cover Types in Southern Appalachian Hardwood Forests. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2017. [Google Scholar]
- Martin, J.G.; Bolstad, P.V.; Ryu, S.R.; Chen, J. Modeling soil respiration based on carbon, nitrogen, and root mass across diverse Great Lake forests. Agric. For. Meteorol. 2009, 149, 1722–1729. [Google Scholar] [CrossRef]
- Raich, J.W.; Tufekcioglu, A. Vegetation and soil respiration: Correlations and controls. Biogeochemistry 2000, 48, 71–90. [Google Scholar] [CrossRef]
- Raich, J.W.; Schlesinger, W.H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 1992, 44, 81–99. [Google Scholar] [CrossRef]
- Irvine, J.; Law, B.E. Contrasting soil respiration in young and old-growth ponderosa pine forests. Glob. Chang. Biol. 2002, 8, 1183–1194. [Google Scholar] [CrossRef]
- Chapin, F.S., III; McKendrick, J.D.; Johnson, D.A. Seasonal Changes in Carbon Fractions in Alaskan Tundra Plants of Differing Growth Form: Implications for Herbivory. Br. Ecol. Soc. 2017, 74, 707–731. [Google Scholar] [CrossRef]
- Hao, L.; Guo, H.; Bing, W.; Sheng, C.; Yan, Z.; Yang, J.; Dan, Y.; Li, X.; Bai, W.; Song, S. Correlations between plant biomass and soil respiration in a Leymus chinensis community in the Xilin River Basin of inner Mongolia. J. Integr. Plant Biol. 2002, 44, 593–597. Available online: https://www.jipb.net/EN/Y2002/V44/I5/593 (accessed on 18 February 2018).
- Chen, T.; Xu, Z.; Tang, G.; Chen, X.; Fang, H.; Guo, H.; Yuan, Y.; Zheng, G.; Jiang, L.; Niu, X. Spatiotemporal monitoring of soil CO2 efflux in a subtropical forest during the dry season based on field observations and remote sensing imagery. Remote Sens. 2021, 13, 3481. [Google Scholar] [CrossRef]
- Wu, C.; Gaumont-Guay, D.; Black, T.A.; Jassal, R.S.; Xu, S.; Chen, J.M.; Gonsamo, A. Soil respiration mapped by exclusively use of MODIS data for forest landscapes of Saskatchewan, Canada. ISPRS J. Photogramm. Remote Sens. 2014, 94, 80–90. [Google Scholar] [CrossRef]
- Wylie, B.K.; Johnson, D.A.; Laca, E.; Saliendra, N.Z.; Gilmanov, T.G.; Reed, B.C.; Tieszen, L.L.; Worstell, B.B. Calibration of remotely sensed, coarse resolution NDVI to CO2 fluxes in a sagebrush-steppe ecosystem. Remote Sens. Environ. 2003, 85, 243–255. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Biomass Bioenergy 2002, 407, 3201–3214. [Google Scholar] [CrossRef]
- Hogrefe, K.R.; Patil, V.P.; Ruthrauff, D.R.; Meixell, B.W.; Budde, M.E.; Hupp, J.W.; Ward, D.H. Normalized difference vegetation index as an estimator for abundance and quality of Avian Herbivore Forage in Arctic Alaska. Remote Sens. 2017, 9, 1234. [Google Scholar] [CrossRef]
- Wu, H.; Li, Z.L. Scale issues in remote sensing: A review on analysis, processing and modeling. Sensors 2009, 9, 1768–1793. [Google Scholar] [CrossRef] [PubMed]
Vegetation Type | Rs (µmol CO2 m−2 s−1) | Soil Temperature at 12 cm (°C) | Soil Moisture at 0 to 11 cm |
---|---|---|---|
Hemlock | 2.29 ± 0.28 | 10.5 ± 0.87 | 33.8 ± 0.83 B 1 |
Cinnamon Fern | 3.02 ± 0.34 | 11.0 ± 0.92 | 36.5 ± 0.63 A |
Mountain Laurel | 2.72 ± 0.27 | 11.0 ± 0.95 | 33.3 ± 0.59 B |
Hardwood | 2.63 ± 0.27 | 11.1 ± 0.95 | 33.3 ± 0.58 B |
Model | Intercept | A | B | RMSE | R2 | R2 Adjusted |
---|---|---|---|---|---|---|
General | −0.0741 | 0.8209 | −0.5011 | 0.32 | 0.86 | 0.86 |
Hardwood | 3.2047 | 0.7359 | −1.386 | 0.34 | 0.85 | 0.85 |
Cinnamon Fern | 3.1809 | 0.8637 | −1.437 | 0.31 | 0.90 | 0.89 |
Hemlock | −0.7283 | 0.8221 | −0.2858 | 0.30 | 0.87 | 0.86 |
Mountain Laurel | −3.1951 | 0.8316 | 0.3678 | 0.30 | 0.88 | 0.88 |
Vegetation Type Comparisons | Intercept | A | B |
---|---|---|---|
Hardwood vs. Cinnamon Fern | 0.9933 | 0.1371 | 0.9466 |
Hardwood vs. Hemlock | 0.0993 | 0.3170 | 0.0873 |
Hardwood vs. Mountain Laurel | 0.0173 * | 0.2414 | 0.8176 |
Cinnamon Fern vs. Hemlock | 0.1074 | 0.6394 | 0.0749 |
Cinnamon Fern vs. Mountain Laurel | 0.0201 * | 0.7036 | 0.0149 * |
Hemlock vs. Mountain Laurel | 0.2073 | 0.9108 | 0.2844 |
Sampling Date | Vegetation Index | p-Value | R2 |
---|---|---|---|
August | NDLI | 0.0214 | 0.32 |
September | PRI | 0.0285 | 0.3 |
September | NDVI | 0.02 | 0.33 |
September | NDLI | 0.0462 | 0.25 |
September | NDNI | 0.025 | 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hammer, R.L.; Seiler, J.R.; Peterson, J.A.; Thomas, V.A. Soil Respiration and Related Abiotic and Remotely Sensed Variables in Different Overstories and Understories in a High-Elevation Southern Appalachian Forest. Forests 2023, 14, 1645. https://doi.org/10.3390/f14081645
Hammer RL, Seiler JR, Peterson JA, Thomas VA. Soil Respiration and Related Abiotic and Remotely Sensed Variables in Different Overstories and Understories in a High-Elevation Southern Appalachian Forest. Forests. 2023; 14(8):1645. https://doi.org/10.3390/f14081645
Chicago/Turabian StyleHammer, Rachel L., John R. Seiler, John A. Peterson, and Valerie A. Thomas. 2023. "Soil Respiration and Related Abiotic and Remotely Sensed Variables in Different Overstories and Understories in a High-Elevation Southern Appalachian Forest" Forests 14, no. 8: 1645. https://doi.org/10.3390/f14081645
APA StyleHammer, R. L., Seiler, J. R., Peterson, J. A., & Thomas, V. A. (2023). Soil Respiration and Related Abiotic and Remotely Sensed Variables in Different Overstories and Understories in a High-Elevation Southern Appalachian Forest. Forests, 14(8), 1645. https://doi.org/10.3390/f14081645