Detection of Pine Wilt Disease Using Time Series UAV Imagery and Deep Learning Semantic Segmentation
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. DLSS Data Construction
2.2.1. TSUI Acquisition
2.2.2. GPS Point Acquisition for PWDT
2.2.3. U-Net, SegNet, DeepLabv3+ Algorithms
2.2.4. DLSS Data Construction Based on TSUI
2.2.5. Evaluation Indicators
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Korea Forest Service. Forest Disease and Insect Prevention and Prevention Plan for 2021. Available online: https://url.kr/s4qvdw (accessed on 5 June 2023).
- NIFOS. Comparison of Biological Characteristics of Pine Wilt Nematode Vectors, the Northern Bearded Lark and the Pine Bearded Lark; NIFOS: Seoul, Republic of Korea, 2009; p. 18.
- Han, J.H. Biology and Chemical Control of the Pine Sawyer, Monochamus Saltuarius Gebler (Coleoptera: Cerambycidae). Ph.D. Thesis, Chungbuk National University, Cheongju, Republic of Korea, 2009. [Google Scholar]
- Lee, S.M.; Ha, H.B. An Easy-to-Understand Pine Worm; Korea Forest Research Institute: Seoul, Republic of Korea, 2004; p. 104.
- Mota, M.; Vieira, P. Pine Wilt Disease: A Worldwide Threat to Forest Ecosystems; Springer: Lisboa, Portugal, 2008; pp. 33–38. [Google Scholar]
- Ichihara, Y.; Fukuda, K.; Suzuki, K. Early symptom development and histological changes associated with migration of bursaphelenchus xylophilus in seedling tissues of pinus thunbergii. Plant Dis. 2000, 84, 675–680. [Google Scholar] [CrossRef]
- Ye, J. Epidemic status of pine wilt disease in china and Its prevention and control techniques and counter measures. Sci. Silvae Sin. 2019, 55, 1–10. (In Chinese) [Google Scholar]
- Kim, M.J.; Bang, H.S.; Lee, J.W. Use of unmanned aerial vehicle for forecasting pine wood nematode in boundary area: A case study of sejong metropolitan autonomous city. J. Korean For. Soc. 2017, 106, 100–109. [Google Scholar]
- Kim, J.B.; Kim, D.Y.; Park, N.C. Development of an aerial precision forecasting techniques for the pine wilt disease damaged area based on GIS and GPS. J. Korean Assoc. Geogr. Inf. Stud. 2010, 13, 28–34. [Google Scholar]
- National Institute of Environmental Research. Korea Climate Change Evaluation Report 2010—Climate Change Impact and Adaptation 2010; 11-1480523-000707-01; National Institute of Environmental Research: Incheon, Republic of Korea, 2010; p. 463.
- Kim, E.N.; Kim, D.Y. An investigation of pine wilt damage by using ground remote sensing technique. J. Korean Assoc. Reg. Geogr. 2008, 14, 84–92. [Google Scholar] [CrossRef]
- Jung, Y.Y.; Kim, S.W. A Study on the UAV-based vegetable index comparison for detection of pine wilt disease trees. J. Cadastre Land InformatiX 2020, 50, 201–214. [Google Scholar]
- Lee, C.M.; Lim, T.H.; Lee, S.M.; Mun, I.S.; Han, S.S.; Lee, D.W. Nematicidal and reproduction supression activity of actinomyces isolates against pine wood nematode, Bursaphelenchus xylophilus. Korean J. Pestic. Sci. 2015, 19, 141–150. [Google Scholar] [CrossRef]
- Zhang, R.; YOU, J.; Kim, D.H.; Lee, S.A.; Lee, J.W. Searching damaged pine trees by wilt disease based on deep learning using multispectral image. J. Korean Inst. Commun. Inf. Sci. 2020, 45, 1823–1830. [Google Scholar]
- Park, J.M.; Choi, I.G.; Lee, J.S. Detection of pine wilt disease tree using high resolution aerial photographs—A case study of gangwon national university research forest. J. Korean Assoc. Geogr. Inf. Stud. 2019, 22, 36–49. [Google Scholar]
- Kim, S.R.; Kim, E.S.; Nam, Y.W.; Choi, W.I.; Kim, C.M. Distribution characteristics analysis of pine wilt disease using time series hyperspectral aerial imagery. Korean J. Remote Sens. 2015, 31, 385–394. [Google Scholar] [CrossRef]
- Lim, E.T.; Do, M.S. Pine wilt disease detection based on deep learning using an unmanned aerial vehicle. J. Civ. Environ. Eng. Res. 2021, 41, 317–325. [Google Scholar]
- Kim, D.A. Pine Wilt Disease Spreading Prevention System using Semantic Segmentation. Master’s Thesis, Pai Chai University, Daejeon, Republic of Korea, 2019. [Google Scholar]
- Yu, R.; Luo, Y.; Zhou, Q.; Zhang, X.; Wu, D.; Ren, L. Early detection of pine wilt disease using deep learning algorithms and UAV-based multispectral imagery. For. Ecol. Manag. 2021, 497, 119493. [Google Scholar] [CrossRef]
- Hwang, C.H.; Jeong, J.; Jung, H.K. Pine wilt disease spreading prevention system using semantic segmentation. Int. J. Electr. Comput. Eng. 2021, 11, 2667–2674. [Google Scholar] [CrossRef]
- Xia, L.; Zhang, R.; Chen, L.; Li, L.; Yi, T.; Wen, Y.; Ding, C.; Xie, C. Evaluation of deep learning segmentation models for detection of pine wilt disease in unmanned aerial vehicle images. Remote Sens. 2021, 13, 3594. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015; Navab, N., Hornegger, J., Wells, W., Frangi, A., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2015; Volume 9351, pp. 234–241. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- MicaSense. RedEdge-M™ Multispectral Camera User Manual 2017; MicaSense: Seattle, WA, USA, 2017. [Google Scholar]
- PIX4D 2014. Version 4.7.5. Available online: https://www.pix4d.com/product/pix4dmapper-photogrammetry-software (accessed on 2 December 2021).
- Kim, S.H. A Study on the Improvement of Orthoimage Detection by the U-NET Model: Focusing on the Case of Pine Wilt Disease. Ph.D. Thesis, Yeungnam University, Gyeongsan, Republic of Korea, 2022; p. 68. [Google Scholar]
- Sherman, G. Version 3.16.10. 2002. Available online: https://qgis.org/ko/site/index.html (accessed on 20 December 2021).
- Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar]
- Kim, J.; Song, Y.; Lee, W.K. Accuracy analysis of multi-series phenological landcover classification using U-Net-based deep learning model—Focusing on the Seoul, Republic of Korea. Korean J. Remote Sens. 2021, 37, 409–418. [Google Scholar]
- Ulmas, P.; Liiv, I. Segmentation of satellite imagery using u-net models for land cover classification. arXiv 2020, arXiv:2003.02899v1. [Google Scholar]
- Lee, S.H.; Kim, J.S. Land cover classification using sematic image segmentation with deep learning. Korean J. Remote Sens. 2019, 35, 279–288. [Google Scholar]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Mazzetto, M.; Teixeira, M.; Rodrigues, É.O.; Casanova, D. Deep learning models for visual inspection on automotive assembling line. arXiv 2020, arXiv:2007.01857. [Google Scholar] [CrossRef]
- Ranzato, M.; Huang, F.J.; Boureau, Y.; LeCun, Y. Unsupervised learning of invariant feature hierarchies with applications to object recognition. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007. [Google Scholar]
- Kotsiantis, S.; Kanellopoulos, D.; Pintelas, P. Handling imbalanced datasets: A review. GESTS Int. Trans. Comput. Sci. Eng. 2006, 30, 25–36. [Google Scholar]
- Derczynski, L. Complementarity, F-Score, and NLP Evaluation. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16), Portorož, Slovenia, 23–28 May 2016; European Language Resources Association (ELRA): Portorož, Slovenia, 2016; pp. 261–266. [Google Scholar]
- Jaccard, P. Étude Comparative de la Distribution Florale Dans Une Portion des Alpes et des Jura. Bull. Soc. Vaudoise Des Sci. Nat. 1901, 37, 547–579. [Google Scholar]
- Padilla, R.; Passos, W.L.; Dias, T.L.B.; Netto, S.L.; da Silva, E.A.B. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, 10, 279. [Google Scholar] [CrossRef]
- Iwasa, Y.; Iwashita, T.; Takeuchi, Y.; Ichikawa, H.; Mita, N.; Uemura, S.; Shimizu, M.; Kuo, Y.-T.; Wang, H.-P.; Hara, T. Automatic Segmentation of Pancreatic Tumors Using Deep Learning on a Video Image of Contrast-Enhanced Endoscopic Ultrasound. J. Clin. Med. 2021, 10, 3589. [Google Scholar] [CrossRef]
Sites | Time Series UAV Imagery | ||||
---|---|---|---|---|---|
May 2017 | September 2017 | May 2018 | September 2018 | ||
Gyeongbuk province | Bonghan-ri, Goa-eup, Gumi city | ○ | ○ | ○ | ○ |
Geoui-dong, Gumi city | ○ | ○ | ○ | ○ | |
Yangwol-ri Angang-eup Gyeongju city | ○ | ○ | ○ | ○ | |
Jungmyeong-ri Yeonil-eup, Nam-gu, Pohang city | ○ | ○ | ○ | ○ | |
Gyeonggi province | Seoha-ri Chowol-eup, Gwangju city | – | ○ | ○ | ○ |
Gyeongnam province | Doyo-ri Sangnim-myeon, Gimhae city | ○ | ○ | ○ | ○ |
Geomam-ri Chodong-myeon, Miryang city | ○ | ○ | ○ | ○ | |
Yongpyeong-dong, Miryang city | ○ | ○ | ○ | ○ | |
Jeju-do | Jeoji-ri Hangyeong-myeon, Jeju-do | ○ | ○ | ○ | ○ |
Total | 8 | 9 | 9 | 9 |
KD-2 Mapper | Mica Sense RedEdge-M | ||
---|---|---|---|
Category | Specifications | Category | Specifications |
Model | Keva Drone KD-2 Mapper | Model | Mica Sense RedEdge-M |
Wingspan | 1.8 m | Weight | 150 g |
Length | 1.1 m | Dimensions | 12.1 cm × 6.6 cm × 4.6 cm |
Weight | 2.6 kg | Power | 5.0 V DC, 4 W nominal |
Battery | Li-ion (11.1 V, 12 Ah) | Spectral Band | Blue, Green, Red, RedEdge, NearIR |
Cruise Speed | 40~50 km/h | Ground Sample Distance | 8.2 cm/Pixel (per band) at 120 m (400 ft.) AGL |
Operation Time | 60 min | Capture Speed | 1 capture per second (all bands), 12-bit RAW |
Operation Range | 5 km | ||
Wind Resistance | Cross wind 10 m/s |
Training Samples | Test Samples | Total | |
---|---|---|---|
Dataset | 795 | 200 | 995 |
PWDT | 2000 | 350 | 2350 |
Algorithm | U-Net | SegNet | DeepLab V3+ (ResNet18) | DeepLab V3+ (ResNet50) |
---|---|---|---|---|
Optimizer | Adam | rmsprop | Adam | Adam |
Learning rate | 0.001 | 0.001 | 0.001 | 0.001 |
Epoch | 100 | 50 | 100 | 50 |
miniBatchSize | 6 | 6 | 6 | 20 |
EncoderDepth | 4 | 4 | - | - |
Algorithm | TP | FP | FN | TN |
---|---|---|---|---|
U-Net | 48,767 | 14,111 | 23,739 | 13,016,160 |
SegNet | 46,213 | 14,568 | 26,293 | 13,017,791 |
DeepLab V3+ (ResNet18) | 48,808 | 18,534 | 23,698 | 13,020,583 |
DeepLab V3+ (ResNet50) | 52,731 | 16,903 | 19,775 | 13,020,126 |
Algorithm | IOU | Accuracy | Precision | Recall | f1-Score |
---|---|---|---|---|---|
U-Net | 0.563 | 0.997 | 0.776 | 0.673 | 0.720 |
SegNet | 0.531 | 0.997 | 0.760 | 0.638 | 0.694 |
DeepLab V3+ (ResNet18) | 0.536 | 0.996 | 0.725 | 0.672 | 0.698 |
DeepLab V3+ (ResNet50) | 0.590 | 0.997 | 0.757 | 0.727 | 0.742 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.-G.; Cho, H.-B.; Youm, S.-K.; Kim, S.-W. Detection of Pine Wilt Disease Using Time Series UAV Imagery and Deep Learning Semantic Segmentation. Forests 2023, 14, 1576. https://doi.org/10.3390/f14081576
Lee M-G, Cho H-B, Youm S-K, Kim S-W. Detection of Pine Wilt Disease Using Time Series UAV Imagery and Deep Learning Semantic Segmentation. Forests. 2023; 14(8):1576. https://doi.org/10.3390/f14081576
Chicago/Turabian StyleLee, Min-Gyu, Hyun-Baum Cho, Sung-Kwan Youm, and Sang-Wook Kim. 2023. "Detection of Pine Wilt Disease Using Time Series UAV Imagery and Deep Learning Semantic Segmentation" Forests 14, no. 8: 1576. https://doi.org/10.3390/f14081576
APA StyleLee, M.-G., Cho, H.-B., Youm, S.-K., & Kim, S.-W. (2023). Detection of Pine Wilt Disease Using Time Series UAV Imagery and Deep Learning Semantic Segmentation. Forests, 14(8), 1576. https://doi.org/10.3390/f14081576