Detection of Pine Wilt Disease Using Time Series UAV Imagery and Deep Learning Semantic Segmentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. DLSS Data Construction
2.2.1. TSUI Acquisition
2.2.2. GPS Point Acquisition for PWDT
2.2.3. U-Net, SegNet, DeepLabv3+ Algorithms
2.2.4. DLSS Data Construction Based on TSUI
2.2.5. Evaluation Indicators
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Korea Forest Service. Forest Disease and Insect Prevention and Prevention Plan for 2021. Available online: https://url.kr/s4qvdw (accessed on 5 June 2023).
- NIFOS. Comparison of Biological Characteristics of Pine Wilt Nematode Vectors, the Northern Bearded Lark and the Pine Bearded Lark; NIFOS: Seoul, Republic of Korea, 2009; p. 18.
- Han, J.H. Biology and Chemical Control of the Pine Sawyer, Monochamus Saltuarius Gebler (Coleoptera: Cerambycidae). Ph.D. Thesis, Chungbuk National University, Cheongju, Republic of Korea, 2009. [Google Scholar]
- Lee, S.M.; Ha, H.B. An Easy-to-Understand Pine Worm; Korea Forest Research Institute: Seoul, Republic of Korea, 2004; p. 104.
- Mota, M.; Vieira, P. Pine Wilt Disease: A Worldwide Threat to Forest Ecosystems; Springer: Lisboa, Portugal, 2008; pp. 33–38. [Google Scholar]
- Ichihara, Y.; Fukuda, K.; Suzuki, K. Early symptom development and histological changes associated with migration of bursaphelenchus xylophilus in seedling tissues of pinus thunbergii. Plant Dis. 2000, 84, 675–680. [Google Scholar] [CrossRef] [Green Version]
- Ye, J. Epidemic status of pine wilt disease in china and Its prevention and control techniques and counter measures. Sci. Silvae Sin. 2019, 55, 1–10. (In Chinese) [Google Scholar]
- Kim, M.J.; Bang, H.S.; Lee, J.W. Use of unmanned aerial vehicle for forecasting pine wood nematode in boundary area: A case study of sejong metropolitan autonomous city. J. Korean For. Soc. 2017, 106, 100–109. [Google Scholar]
- Kim, J.B.; Kim, D.Y.; Park, N.C. Development of an aerial precision forecasting techniques for the pine wilt disease damaged area based on GIS and GPS. J. Korean Assoc. Geogr. Inf. Stud. 2010, 13, 28–34. [Google Scholar]
- National Institute of Environmental Research. Korea Climate Change Evaluation Report 2010—Climate Change Impact and Adaptation 2010; 11-1480523-000707-01; National Institute of Environmental Research: Incheon, Republic of Korea, 2010; p. 463.
- Kim, E.N.; Kim, D.Y. An investigation of pine wilt damage by using ground remote sensing technique. J. Korean Assoc. Reg. Geogr. 2008, 14, 84–92. [Google Scholar] [CrossRef] [Green Version]
- Jung, Y.Y.; Kim, S.W. A Study on the UAV-based vegetable index comparison for detection of pine wilt disease trees. J. Cadastre Land InformatiX 2020, 50, 201–214. [Google Scholar]
- Lee, C.M.; Lim, T.H.; Lee, S.M.; Mun, I.S.; Han, S.S.; Lee, D.W. Nematicidal and reproduction supression activity of actinomyces isolates against pine wood nematode, Bursaphelenchus xylophilus. Korean J. Pestic. Sci. 2015, 19, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; YOU, J.; Kim, D.H.; Lee, S.A.; Lee, J.W. Searching damaged pine trees by wilt disease based on deep learning using multispectral image. J. Korean Inst. Commun. Inf. Sci. 2020, 45, 1823–1830. [Google Scholar]
- Park, J.M.; Choi, I.G.; Lee, J.S. Detection of pine wilt disease tree using high resolution aerial photographs—A case study of gangwon national university research forest. J. Korean Assoc. Geogr. Inf. Stud. 2019, 22, 36–49. [Google Scholar]
- Kim, S.R.; Kim, E.S.; Nam, Y.W.; Choi, W.I.; Kim, C.M. Distribution characteristics analysis of pine wilt disease using time series hyperspectral aerial imagery. Korean J. Remote Sens. 2015, 31, 385–394. [Google Scholar] [CrossRef] [Green Version]
- Lim, E.T.; Do, M.S. Pine wilt disease detection based on deep learning using an unmanned aerial vehicle. J. Civ. Environ. Eng. Res. 2021, 41, 317–325. [Google Scholar]
- Kim, D.A. Pine Wilt Disease Spreading Prevention System using Semantic Segmentation. Master’s Thesis, Pai Chai University, Daejeon, Republic of Korea, 2019. [Google Scholar]
- Yu, R.; Luo, Y.; Zhou, Q.; Zhang, X.; Wu, D.; Ren, L. Early detection of pine wilt disease using deep learning algorithms and UAV-based multispectral imagery. For. Ecol. Manag. 2021, 497, 119493. [Google Scholar] [CrossRef]
- Hwang, C.H.; Jeong, J.; Jung, H.K. Pine wilt disease spreading prevention system using semantic segmentation. Int. J. Electr. Comput. Eng. 2021, 11, 2667–2674. [Google Scholar] [CrossRef]
- Xia, L.; Zhang, R.; Chen, L.; Li, L.; Yi, T.; Wen, Y.; Ding, C.; Xie, C. Evaluation of deep learning segmentation models for detection of pine wilt disease in unmanned aerial vehicle images. Remote Sens. 2021, 13, 3594. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015; Navab, N., Hornegger, J., Wells, W., Frangi, A., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2015; Volume 9351, pp. 234–241. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- MicaSense. RedEdge-M™ Multispectral Camera User Manual 2017; MicaSense: Seattle, WA, USA, 2017. [Google Scholar]
- PIX4D 2014. Version 4.7.5. Available online: https://www.pix4d.com/product/pix4dmapper-photogrammetry-software (accessed on 2 December 2021).
- Kim, S.H. A Study on the Improvement of Orthoimage Detection by the U-NET Model: Focusing on the Case of Pine Wilt Disease. Ph.D. Thesis, Yeungnam University, Gyeongsan, Republic of Korea, 2022; p. 68. [Google Scholar]
- Sherman, G. Version 3.16.10. 2002. Available online: https://qgis.org/ko/site/index.html (accessed on 20 December 2021).
- Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar]
- Kim, J.; Song, Y.; Lee, W.K. Accuracy analysis of multi-series phenological landcover classification using U-Net-based deep learning model—Focusing on the Seoul, Republic of Korea. Korean J. Remote Sens. 2021, 37, 409–418. [Google Scholar]
- Ulmas, P.; Liiv, I. Segmentation of satellite imagery using u-net models for land cover classification. arXiv 2020, arXiv:2003.02899v1. [Google Scholar]
- Lee, S.H.; Kim, J.S. Land cover classification using sematic image segmentation with deep learning. Korean J. Remote Sens. 2019, 35, 279–288. [Google Scholar]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Mazzetto, M.; Teixeira, M.; Rodrigues, É.O.; Casanova, D. Deep learning models for visual inspection on automotive assembling line. arXiv 2020, arXiv:2007.01857. [Google Scholar] [CrossRef]
- Ranzato, M.; Huang, F.J.; Boureau, Y.; LeCun, Y. Unsupervised learning of invariant feature hierarchies with applications to object recognition. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007. [Google Scholar]
- Kotsiantis, S.; Kanellopoulos, D.; Pintelas, P. Handling imbalanced datasets: A review. GESTS Int. Trans. Comput. Sci. Eng. 2006, 30, 25–36. [Google Scholar]
- Derczynski, L. Complementarity, F-Score, and NLP Evaluation. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16), Portorož, Slovenia, 23–28 May 2016; European Language Resources Association (ELRA): Portorož, Slovenia, 2016; pp. 261–266. [Google Scholar]
- Jaccard, P. Étude Comparative de la Distribution Florale Dans Une Portion des Alpes et des Jura. Bull. Soc. Vaudoise Des Sci. Nat. 1901, 37, 547–579. [Google Scholar]
- Padilla, R.; Passos, W.L.; Dias, T.L.B.; Netto, S.L.; da Silva, E.A.B. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, 10, 279. [Google Scholar] [CrossRef]
- Iwasa, Y.; Iwashita, T.; Takeuchi, Y.; Ichikawa, H.; Mita, N.; Uemura, S.; Shimizu, M.; Kuo, Y.-T.; Wang, H.-P.; Hara, T. Automatic Segmentation of Pancreatic Tumors Using Deep Learning on a Video Image of Contrast-Enhanced Endoscopic Ultrasound. J. Clin. Med. 2021, 10, 3589. [Google Scholar] [CrossRef]
Sites | Time Series UAV Imagery | ||||
---|---|---|---|---|---|
May 2017 | September 2017 | May 2018 | September 2018 | ||
Gyeongbuk province | Bonghan-ri, Goa-eup, Gumi city | ○ | ○ | ○ | ○ |
Geoui-dong, Gumi city | ○ | ○ | ○ | ○ | |
Yangwol-ri Angang-eup Gyeongju city | ○ | ○ | ○ | ○ | |
Jungmyeong-ri Yeonil-eup, Nam-gu, Pohang city | ○ | ○ | ○ | ○ | |
Gyeonggi province | Seoha-ri Chowol-eup, Gwangju city | – | ○ | ○ | ○ |
Gyeongnam province | Doyo-ri Sangnim-myeon, Gimhae city | ○ | ○ | ○ | ○ |
Geomam-ri Chodong-myeon, Miryang city | ○ | ○ | ○ | ○ | |
Yongpyeong-dong, Miryang city | ○ | ○ | ○ | ○ | |
Jeju-do | Jeoji-ri Hangyeong-myeon, Jeju-do | ○ | ○ | ○ | ○ |
Total | 8 | 9 | 9 | 9 |
KD-2 Mapper | Mica Sense RedEdge-M | ||
---|---|---|---|
Category | Specifications | Category | Specifications |
Model | Keva Drone KD-2 Mapper | Model | Mica Sense RedEdge-M |
Wingspan | 1.8 m | Weight | 150 g |
Length | 1.1 m | Dimensions | 12.1 cm × 6.6 cm × 4.6 cm |
Weight | 2.6 kg | Power | 5.0 V DC, 4 W nominal |
Battery | Li-ion (11.1 V, 12 Ah) | Spectral Band | Blue, Green, Red, RedEdge, NearIR |
Cruise Speed | 40~50 km/h | Ground Sample Distance | 8.2 cm/Pixel (per band) at 120 m (400 ft.) AGL |
Operation Time | 60 min | Capture Speed | 1 capture per second (all bands), 12-bit RAW |
Operation Range | 5 km | ||
Wind Resistance | Cross wind 10 m/s |
Training Samples | Test Samples | Total | |
---|---|---|---|
Dataset | 795 | 200 | 995 |
PWDT | 2000 | 350 | 2350 |
Algorithm | U-Net | SegNet | DeepLab V3+ (ResNet18) | DeepLab V3+ (ResNet50) |
---|---|---|---|---|
Optimizer | Adam | rmsprop | Adam | Adam |
Learning rate | 0.001 | 0.001 | 0.001 | 0.001 |
Epoch | 100 | 50 | 100 | 50 |
miniBatchSize | 6 | 6 | 6 | 20 |
EncoderDepth | 4 | 4 | - | - |
Algorithm | TP | FP | FN | TN |
---|---|---|---|---|
U-Net | 48,767 | 14,111 | 23,739 | 13,016,160 |
SegNet | 46,213 | 14,568 | 26,293 | 13,017,791 |
DeepLab V3+ (ResNet18) | 48,808 | 18,534 | 23,698 | 13,020,583 |
DeepLab V3+ (ResNet50) | 52,731 | 16,903 | 19,775 | 13,020,126 |
Algorithm | IOU | Accuracy | Precision | Recall | f1-Score |
---|---|---|---|---|---|
U-Net | 0.563 | 0.997 | 0.776 | 0.673 | 0.720 |
SegNet | 0.531 | 0.997 | 0.760 | 0.638 | 0.694 |
DeepLab V3+ (ResNet18) | 0.536 | 0.996 | 0.725 | 0.672 | 0.698 |
DeepLab V3+ (ResNet50) | 0.590 | 0.997 | 0.757 | 0.727 | 0.742 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.-G.; Cho, H.-B.; Youm, S.-K.; Kim, S.-W. Detection of Pine Wilt Disease Using Time Series UAV Imagery and Deep Learning Semantic Segmentation. Forests 2023, 14, 1576. https://doi.org/10.3390/f14081576
Lee M-G, Cho H-B, Youm S-K, Kim S-W. Detection of Pine Wilt Disease Using Time Series UAV Imagery and Deep Learning Semantic Segmentation. Forests. 2023; 14(8):1576. https://doi.org/10.3390/f14081576
Chicago/Turabian StyleLee, Min-Gyu, Hyun-Baum Cho, Sung-Kwan Youm, and Sang-Wook Kim. 2023. "Detection of Pine Wilt Disease Using Time Series UAV Imagery and Deep Learning Semantic Segmentation" Forests 14, no. 8: 1576. https://doi.org/10.3390/f14081576
APA StyleLee, M.-G., Cho, H.-B., Youm, S.-K., & Kim, S.-W. (2023). Detection of Pine Wilt Disease Using Time Series UAV Imagery and Deep Learning Semantic Segmentation. Forests, 14(8), 1576. https://doi.org/10.3390/f14081576