A Comprehensive Model Assessment of China’s Forestry and Climate Change
Abstract
:1. Introduction
2. Literature Review on Forest Economics Models and Climate Change
2.1. Climate Change and China’s Forestry
2.2. Overview of Forest Economics Models
2.3. The Faustmann Model (Basic Economic Model)
2.4. Literature Summary and Study Contributions
3. Data and Methodology
3.1. Data Collection and Variables Used
3.2. Quantitative Data Collection and Variables
3.3. Empirical Model
3.4. Unit Root Test
3.5. Correlation Test
3.6. Collinearity Test
4. Results and Discussion
4.1. Trends of the Variables
4.2. Descriptive Statistics
4.3. Unit Root Test Results
4.4. Correlation Test Results
4.5. Colinearity Test Results
4.6. Regression Results
5. Conclusions and Implications
5.1. Conclusions
5.2. Implications
5.2.1. Theoretical Implications Based on the Faustmann Basic Economics Model
5.2.2. Practical Implications
5.3. Limitations and Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hanewinkel, M. The Role of Economic Models in Forest Management. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2009, 4, 1–10. [Google Scholar] [CrossRef]
- Noon, M.L.; Goldstein, A.; Ledezma, J.C.; Roehrdanz, P.R.; Cook-Patton, S.C.; Spawn-Lee, S.A.; Wright, T.M.; Gonzalez-Roglich, M.; Hole, D.G.; Rockström, J.; et al. Mapping the Irrecoverable Carbon in Earth’s Ecosystems. Nat. Sustain. 2022, 5, 37–46. [Google Scholar] [CrossRef]
- Liu, J.; Coomes, D.A.; Gibson, L.; Hu, G.; Liu, J.; Luo, Y.; Wu, C.; Yu, M. Forest Fragmentation in China and Its Effect on Biodiversity. Biol. Rev. 2019, 94, 1636–1657. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Wang, H.; Wang, X.; Lü, Z. Accuracy Assessment of the Global Forest Watch Tree Cover 2000 in China. Int. J. Appl. Earth Obs. Geoinf. 2020, 87, 102033. [Google Scholar] [CrossRef]
- Wu, R.; Possingham, H.P.; Yu, G.; Jin, T.; Wang, J.; Yang, F.; Liu, S.; Ma, J.; Liu, X.; Zhao, H. Strengthening China’s National Biodiversity Strategy to Attain an Ecological Civilization. Conserv. Lett. 2019, 12, 12660. [Google Scholar] [CrossRef] [Green Version]
- Yihui, D. National Assessment Report of Climate Change (I): Climate Change in China and Its Future Trend. Adv. Clim. Chang. Res. 2006, 2, 3. [Google Scholar]
- Ren, G.; Ding, Y.; Zhao, Z.; Zheng, J.; Wu, T.; Tang, G.; Xu, Y. Recent Progress in Studies of Climate Change in China. Adv. Atmos. Sci. 2012, 29, 958–977. [Google Scholar] [CrossRef]
- Zeng, N.; Ding, Y.; Pan, J.; Wang, H.; Gregg, J. Climate Change--the Chinese Challenge. Science 2008, 319, 730–731. [Google Scholar] [CrossRef]
- Duku-Kaakyire, A.; Nanang, D.M. Application of Real Options Theory to Forestry Investment Analysis. For. Policy Econ. 2004, 6, 539–552. [Google Scholar] [CrossRef]
- Kant, S. Extending the Boundaries of Forest Economics. For. Policy Econ. 2003, 5, 39–56. [Google Scholar] [CrossRef]
- Kant, S.; Wang, S.; Deegen, P.; Hostettler, M.; von Detten, R.; Howard, T.; Laband, D.; Montgomery, C.; Robert, N.; Sekot, W.; et al. New Frontiers of Forest Economics. For. Policy Econ. 2013, 35, 1–8. [Google Scholar] [CrossRef]
- Kweku, D.; Bismark, O.; Maxwell, A.; Desmond, K.; Danso, K.; Oti-Mensah, E.; Quachie, A.; Adormaa, B. Greenhouse Effect: Greenhouse Gases and Their Impact on Global Warming. J. Sci. Res. Rep. 2018, 17, 1–9. [Google Scholar] [CrossRef]
- Prakash, S. Impact of Climate Change on Aquatic Ecosystem and Its Biodiversity: An Overview. Int. J. Biol. Innov. 2021, 3, 312–317. [Google Scholar] [CrossRef]
- Cao, Y.; Feng, J.; Hwarari, D.; Ahmad, B.; Wu, H.; Chen, J.; Yang, L. Alterations in Population Distribution of Liriodendron chinense (Hemsl.) Sarg. and Liriodendron tulipifera Linn. Caused by Climate Change. Forests 2022, 13, 488. [Google Scholar] [CrossRef]
- Qian, W.; Zhu, Y. Climate Change in China from 1880 to 1998 and Its Impact on the Environmental Condition. Clim. Chang. 2001, 50, 419–444. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, X.; Ding, Y.; Chen, D.; Qin, D.; Zhai, P. Understanding Human Influence on Climate Change in China. Natl. Sci. Rev. 2022, 9, nwab113. [Google Scholar] [CrossRef]
- Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.; Myneni, R.B.; Running, S.W. Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999. Science 2003, 300, 1560–1563. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.; Ma, D.; Wu, S. Climate Change Risk to Forests in China Associated with Warming. Sci. Rep. 2018, 8, 493. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Birdsey, R.A.; Phillips, O.L.; Jackson, R.B. The Structure, Distribution, and Biomass of the World’s Forests. Annu. Rev. Ecol. Evol. Syst. 2013, 44, 593–622. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [Green Version]
- Harrabin, R. China and India Help Make Planet Leafier. Available online: https://www.bbc.com/news/science-environment-47210849# (accessed on 2 January 2023).
- Maizland, L. China’s Fight Against Climate Change and Environmental Degradation|Council on Foreign Relations. Available online: https://www.cfr.org/backgrounder/china-climate-change-policies-environmental-degradation (accessed on 2 January 2023).
- Global Footprints Network Ecological Footprints. Available online: Footprintnetwork.org (accessed on 1 August 2021).
- Forest Legality Initiative Risk Tool. China. Available online: https://forestlegality.org/risk-tool/country/china (accessed on 2 January 2023).
- Navarro, G.A. On 189 Years of Confusing Debates over the König-Faustmann Formula. Ph.D. Thesis, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany, 2003. [Google Scholar]
- Samuelson, P.A. Economics of Forestry in an Evolving Society. Econ. For. 2018, 14, 103–130. [Google Scholar] [CrossRef]
- Hampicke, U. Remunerating Nature Conservation in Central European Forests: Scope and Limits of the Faustmann-Hartman Approach. For. Policy Econ. 2001, 2, 117–131. [Google Scholar] [CrossRef]
- Huang, C.H.; Kronrad, G.D. The Cost of Sequestering Carbon on Private Forest Lands. For. Policy Econ. 2001, 2, 133–142. [Google Scholar] [CrossRef]
- Manley, B.; Bare, B.B. Computing Maximum Willingness to Pay with Faustmann’s Formula: Some Special Situations from New Zealand. For. Policy Econ. 2001, 2, 179–193. [Google Scholar] [CrossRef]
- Brukas, V.; Jellesmark Thorsen, B.; Helles, F.; Tarp, P. Discount Rate and Harvest Policy: Implications for Baltic Forestry. For. Policy Econ. 2001, 2, 143–156. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D. Faustmann in an Uncertain Policy Environment. For. Policy Econ. 2001, 2, 203–210. [Google Scholar] [CrossRef]
- Serrano-Ramírez, E.; Valdez-Lazalde, J.R.; de los Santos-Posadas, H.M.; Mora-Gutiérrez, R.A.; Ángeles-Pérez, G. A Forest Management Optimization Model Based on Functional Zoning: A Comparative Analysis of Six Heuristic Techniques. Ecol. Inform. 2021, 61, 101234. [Google Scholar] [CrossRef]
- Lantz, V.; McMonagle, G.; Hennigar, C.; Sharma, C.; Withey, P.; Ochuodho, T. Forest Succession, Management and the Economy under a Changing Climate: Coupling Economic and Forest Management Models to Assess Impacts and Adaptation Options. For. Policy Econ. 2022, 142, 102781. [Google Scholar] [CrossRef]
- Rinaldi, F.; Jonsson, R. Accounting for Uncertainty in Forest Management Models. For. Ecol. Manag. 2020, 468, 118186. [Google Scholar] [CrossRef]
- Brenya, R.; Akomea-Frimpong, I.; Ofosu, D.; Adeabah, D. Barriers to Sustainable Agribusiness: A Systematic Review and Conceptual Framework. J. Agribus. Dev. Emerg. Econ. 2022, 13, 570–589. [Google Scholar] [CrossRef]
- Akomea-Frimpong, I.; Adeabah, D.; Ofosu, D.; Tenakwah, E.J. A Review of Studies on Green Finance of Banks, Research Gaps and Future Directions. J. Sustain. Financ. Investig. 2022, 12, 1241–1264. [Google Scholar] [CrossRef]
- Grant, M.K.; Yifeng, Z.; Brenya, R.; Obuobi, B.; Bempah, G.B. Limitations of Sustainable Cocoa Agroforestry: A Literature Review. J. Agrofor. Environ. 2022, 15, 38–51. [Google Scholar] [CrossRef]
- Zdaniuk, B. Ordinary Least-Squares (OLS) Model. In Encyclopedia of Quality of Life and Well-Being Research; Springer: Dordrecht, The Netherlands, 2014; pp. 4515–4517. [Google Scholar]
- Nathaniel, S.P.; Adeleye, N. Environmental preservation amidst carbon emissions, energy consumption, and urbanization in selected african countries: Implication for sustainability. J. Clean. Prod. 2021, 285, 125409. [Google Scholar] [CrossRef]
- Sharif, A.; Baris-Tuzemen, O.; Uzuner, G.; Ozturk, I.; Sinha, A. Revisiting the role of renewable and non-renewable energy consumption on Turkey’s ecological footprint: Evidence from Quantile ARDL approach. Sustain. Cities Soc. 2020, 57, 102138. [Google Scholar] [CrossRef]
- Obuobi, B.; Zhang, Y.; Nketiah, E.; Adu-Gyamfi, G.; Cudjoe, D. Renewable energy demand, financial reforms, and environmental quality in West Africa. Environ. Sci. Pollut. Res. 2022, 29, 69540–69554. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Strezov, V. Effect of foreign direct investments, economic development and energy consumption on greenhouse gas emissions in developing countries. Sci. Total Environ. 2019, 646, 862–871. [Google Scholar] [CrossRef]
- Jebli, M.B.; Youssef, S.B.; Ozturk, I. Testing environmental Kuznets curve hypothesis: The role of renewable and non-renewable energy consumption and trade in OECD countries. Ecol. Indic. 2016, 60, 824–831. [Google Scholar] [CrossRef]
- Sharif, A.; Raza, S.A.; Ozturk, I.; Afshan, S. The dynamic relationship of renewable and nonrenewable energy consumption with carbon emission: A global study with the application of heterogeneous panel estimations. Renew Energy 2019, 133, 685–691. [Google Scholar] [CrossRef]
- Kupková, L.; Potůčková, M.; Lhotáková, Z.; Albrechtová, J. Forest cover and disturbance changes, and their driving forces: A case study in the Ore Mountains, Czechia, heavily affected by anthropogenic acidic pollution in the second half of the 20th century. Environ. Res. Lett. 2018, 13, 095008. [Google Scholar] [CrossRef]
- Main-Knorn, M.; Hostert, P.; Kozak, J.; Kuemmerle, T. How pollution legacies and land use histories shape post-communist forest cover trends in the Western Carpathians. For. Ecol. Manag. 2009, 258, 60–70. [Google Scholar] [CrossRef]
- Oszlányi, J. Forest Health and Environmental Pollution in Slovakia. Environ. Pollut. 1997, 98, 389–392. [Google Scholar] [CrossRef]
- Wickham, J.D.; Riitters, K.H.; O’Neill, R.V.; Reckhow, K.H.; Wade, T.G.; Jones, K.B. Land cover as a framework for assessing risk of water pollution. J. Am. Water Resour. Assoc. 2000, 36, 1417–1422. [Google Scholar] [CrossRef]
- Stern, D.I. The environmental Kuznets curve after 25 years. J. Bioecon. 2017, 19, 7–28. [Google Scholar] [CrossRef] [Green Version]
Abbreviation | Name of Variable | Unit of Measurement | Data Source |
---|---|---|---|
CO2 | Carbon dioxide emissions | Kilotonnes | FAO, 2022 |
EFF | Ecological footprint of forest products | Ecological footprint (gha) | Global Footprint Network, 2022 |
FFC | Fossil fuel consumption | Fossil fuel consumption (% of total final consumption) | World Bank, 2022 |
LA | Land area | Forest area (% of land area) | World Bank, 2022 |
FDI | Foreign direct investment | Foreign direct investment, net inflows (% of EG) | World Bank, 2022 |
GDP | Economic growth | EG (current US$) | World Bank, 2022 |
POP | Population | Total population | World Bank, 2022 |
CO2 | EFF | FFC | LA | FDI | GDP | POP | |
---|---|---|---|---|---|---|---|
Mean | 15.4400 | 19.2401 | 4.4250 | 2.9811 | 1.1395 | 28.4677 | 20.9730 |
Median | 15.4490 | 19.1618 | 4.4403 | 2.9848 | 1.2565 | 28.3016 | 20.9826 |
Maximum | 16.1490 | 19.6051 | 4.5301 | 3.1330 | 1.8224 | 30.2625 | 21.0617 |
Minimum | 14.5918 | 19.0590 | 4.3152 | 2.8138 | −0.0343 | 26.6118 | 20.8501 |
Std. Dev. | 0.5509 | 0.1612 | 0.0674 | 0.0994 | 0.4769 | 1.1980 | 0.0612 |
Skewness | −0.0244 | 0.7543 | −0.1072 | −0.0927 | −0.9491 | 0.0306 | −0.4081 |
Kurtosis | 1.4157 | 2.2079 | 1.6264 | 1.7311 | 3.1431 | 1.6565 | 2.1152 |
Obs. | 29 | 29 | 29 | 29 | 29 | 29 | 29 |
Jarque-Bera | 3.0359 | 3.5084 | 2.3353 | 1.9872 | 4.3785 | 2.1857 | 1.7511 |
Variables | Level | 1st Difference | 2nd Difference | |||
---|---|---|---|---|---|---|
C | T&C | C | T&C | C | T&C | |
CO2 | 0.7526 | 0.7095 | 0.9880 | 0.2529 | 0.0000 *** | 0.0000 *** |
EFF | 0.9983 | 0.8430 | 0.0331 ** | 0.0656 * | 0.0000 *** | 0.0000 *** |
FDI | 0.1100 | 0.0578 | 0.0189 ** | 0.0381 | 0.0015 *** | 0.0065 *** |
FFC | 0.9344 | 0.5169 | 0.0007 *** | 0.0046 *** | 0.0000 *** | 0.0000 *** |
GDP | 0.7927 | 0.4243 | 0.0514 ** | 0.1627 | 0.0008 *** | 0.0033 *** |
LA | 0.4223 | 0.9926 | 0.8482 | 0.7531 | 0.0001 *** | 0.0005 *** |
POP | 0.5080 | 0.6579 | 0.0487 ** | 0.6323 | 0.0001 *** | 0.0022 *** |
Variables | CO2 | EFF | FFC | LA | FDI | GDP | POP |
---|---|---|---|---|---|---|---|
CO2 | 1.0000 | ||||||
EFF | 0.5821 *** | 1.0000 | |||||
FFC | 0.6827 *** | 0.6634 *** | 1.0000 | ||||
LA | 0.4857 *** | 0.1058 *** | 0.3857 *** | 1.0000 | |||
FDI | −0.1878 | −0.3981 ** | −0.1965 | −0.2112 | 1.0000 | ||
GDP | 0.6886 *** | 0.4234 *** | 0.5769 *** | 0.4948 *** | −0.2313 | 1.0000 | |
POP | 0.3625 *** | 0.4717 *** | 0.2730 *** | 0.4907 *** | −0.1290 | 0.1783 *** | 1.0000 |
Variable | VIF |
---|---|
EFF | 4.7686 |
FFC | 6.0905 |
FDI | 2.7431 |
GDP | 8.3735 |
LA | 4.3313 |
POP | 8.2659 |
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
---|---|---|---|---|
EFF | −0.5809 | 0.1339 | −4.3390 | 0.0003 *** |
FFC | 0.9235 | 0.6833 | 1.3517 | 0.0190 ** |
LA | −8.9217 | 1.6274 | 5.4821 | 0.0000 *** |
FDI | 0.1060 | 0.0189 | 5.5946 | 0.0000 *** |
GDP | 0.2637 | 0.0708 | 3.7260 | 0.0012 *** |
POP | −10.2885 | 1.2183 | −8.4446 | 0.0000 *** |
C | 204.0864 | 24.2000 | 8.4333 | 0.0000 *** |
Obs. | 29 | |||
R-squared | 0.9971 | |||
Adjusted R-squared | 0.9963 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Obuobi, B.; Hwarari, D.; Zhang, Z. A Comprehensive Model Assessment of China’s Forestry and Climate Change. Forests 2023, 14, 1454. https://doi.org/10.3390/f14071454
Zhang Y, Obuobi B, Hwarari D, Zhang Z. A Comprehensive Model Assessment of China’s Forestry and Climate Change. Forests. 2023; 14(7):1454. https://doi.org/10.3390/f14071454
Chicago/Turabian StyleZhang, Ying, Bright Obuobi, Delight Hwarari, and Zhiguang Zhang. 2023. "A Comprehensive Model Assessment of China’s Forestry and Climate Change" Forests 14, no. 7: 1454. https://doi.org/10.3390/f14071454
APA StyleZhang, Y., Obuobi, B., Hwarari, D., & Zhang, Z. (2023). A Comprehensive Model Assessment of China’s Forestry and Climate Change. Forests, 14(7), 1454. https://doi.org/10.3390/f14071454