Effects of Intergeneric Grafting of Schisandraceae on Root Morphology, Anatomy and Physiology of Rootstocks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Experimental Site
2.2. Experimental Design
2.3. Root Morphology and Biomass
2.4. Root Anatomical Structure
2.5. Root Endogenous Hormone Content
2.6. Root Activity
2.7. Root Soluble Sugar and Malondialdehyde Content
2.8. Root Soluble Protein Content
2.9. Statistical Analysis
3. Results
3.1. Root Morphology and Biomass of Different Grafted Combinations
3.2. Root Anatomy of Different Grafted Combinations
3.3. Root Endogenous Hormone Contents of Different Grafted Combinations
3.4. Root Activity and MDA Content of Different Grafted Combinations
3.5. Root Soluble Sugar and Soluble Protein Content of Different Grafted Combinations
4. Discussion
4.1. Effects of Intergeneric Grafting on Morphological Characteristics of Rootstocks
4.2. Effect of Intergeneric Grafting on Anatomical Structure of Rootstock
4.3. Effect of Intergeneric Grafting on Physiological Characteristics of Rootstock
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, L.J.; Liu, H.T.; Peng, Y.; Xiao, P.G. A preliminary pharmacophylogenetic investigation in Schisandraceae. J. Syst. Evol. 2008, 46, 692–723. [Google Scholar]
- Guo, H.J.; Qi, Y.D.; Li, X.W.; Zhang, B.G.; Liu, H.T.; Xiao, P.G. Progress of traditional application of Schisandraceae plants and the systematic research on them. World Chin. Med. 2015, 10, 1133–1138. [Google Scholar] [CrossRef]
- Yang, H.Y. Phenotypic plasticity of Schisandra Sphenanthera. Master’s Thesis, Shaanxi Normal University, Xi’an, China, 2016. [Google Scholar]
- Lu, J.; Liu, R.R.; Zhao, X.M.; Zhang, X.Y.; Qiu, J.C.; Gong, S.N. Research progress of active constituents and physiological activity of Kadsura coccinea. Food Res. Dev. 2018, 39, 219–224. [Google Scholar] [CrossRef]
- Liang, Z.H.; Fan, S.; Song, G.T.; Li, Y.Q. Advances in Kadsura coccinea. J. Hunan Ecol. Sci. 2017, 4, 52–56. [Google Scholar] [CrossRef]
- Xie, W.; Zhang, X.X.; Ping, Y.L. The research advance of chemical composition and physiological activity of Kadsura coccinea fruit. Farm Prod. Process. 2017, 1, 71–72+74. [Google Scholar] [CrossRef]
- Cui, Q.; Yao, W.; Zhang, C. Advances on pharmacology effect of schisandra chinensis and its active composition. J. Esophageal Dis. 2010, 28, 318–320. [Google Scholar] [CrossRef]
- Han, H.X. Studies on Distant Grafting of Schisandra Chinensis and Its Extracts Urinary Metabolomics Analysis on Diabetes rats. Ph.D. Thesis, Jilin Agricultural University, Changchun, China, 2017. [Google Scholar]
- Goldschmidt, E.E. Plant grafting: New mechanisms, evolutionary implications. Front. Plant Sci. 2014, 5, 727. [Google Scholar] [CrossRef] [Green Version]
- Warschefsky, E.J.; Klein, L.L.; Frank, M.H.; Chitwood, D.H.; Londo, J.P.; von Wettberg, E.J.B.; Miller, A.J. Rootstocks: Diversity, Domestication, and Impacts on Shoot Phenotypes. Trends Plant Sci. 2016, 21, 418–437. [Google Scholar] [CrossRef]
- Romero, P.; Navarro, J.M.; Perez-Perez, J.; Garcia-Sanchez, F.; Gomez-Gomez, A.; Porras, I.; Martinez, V.; Botia, P. Deficit irrigation and rootstock: Their effects on water relations, vegetative development, yield, fruit quality and mineral nutrition of Clemenules mandarin. Tree Physiol. 2006, 26, 1537–1548. [Google Scholar] [CrossRef]
- Valverdi, N.A. Apple Scion and Rootstock Contribute to Nutrient Uptake and Partitioning Under Different Belowground Environments. Agronomy 2019, 9, 415. [Google Scholar] [CrossRef] [Green Version]
- Fallik, E.; Ziv, C. How rootstock/scion combinations affect watermelon fruit quality after harvest? J. Sci. Food Agric. 2020, 100, 3275–3282. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Pan, H.L.; Pan, T.F.; Tang, H.R.; Wang, X.R.; Pan, D.M. Research progress on the interaction between scion and rootstock in fruit trees. Acta Hortic. Sin. 2017, 44, 1645–1657. [Google Scholar] [CrossRef]
- Zheng, F.Y.; Yang, Z.J.; Chen, H.; Liao, P.H.; Huang, L.M.; Feng, J.L. Effects of scions on the physiological characteristics and anatomical structure of the root tip of Camelliaoleifera rootstock. J. For. Environ. 2020, 40, 636–642. [Google Scholar] [CrossRef]
- Wei, Z.; Ning, T.; Jun, Y.; Lei, P.; Siqi, M.; Yan, X.; Guoliang, L.; Lizhong, X. Feedback Regulation of ABA Signaling and Biosynthesis by a bZIP Transcription Factor Targets Drought-Resistance-Related Genes. Plant Physiol. Biochem. 2016, 171, 2810–2825. [Google Scholar] [CrossRef] [Green Version]
- Li, L.L. Studies on Yield Formation and Physiological Characteristics of Summer Maize Varieties with Different Plant Height and the Regulation of Plant Density. Master’s Thesis, Shandong Agricultural University, Tai’an, China, 2014. [Google Scholar]
- Zhang, B. Effect of Different Rootstock-Scion Combination on Growth Andfruit Quality of Wine Grapes in Desert Area. Master’s Thesis, Gansu Agricultural University, Lanzhou, China, 2014. [Google Scholar]
- Yu, L.; Zhang, W.B.; Yu, B.M.; Zhan, Q.Y.; Wang, J.B.; Feng, W.C.; Xia, G.H. Study on growth performance of different hickory scion/rootctock combinations and its effect on bearing. J. Nanjing For. Univ. 2009, 33, 143–145. [Google Scholar]
- Singh, A.; Agrawal, P.K. Jatropha curcas micrografting modifies plant architecture and increases tolerance to abiotic stress: Grafting modifies the architecture of Jatropha curcas. Plant Cell Tissue Organ Cult. 2017, 128, 243–246. [Google Scholar] [CrossRef]
- Chang, J.; Yao, X.H.; Yang, S.P.; Wang, K.L. Effects of different cions on root growth of pecan (Carya illinoensis). J. Southwest Univ. Nat. Sci. Ed. 2007, 10, 104–108. [Google Scholar]
- Ding, J. The Studies on Root and Leaf Growth Characteristics of Grafted Plants of Peach/Cerasus humilis. Master’s Thesis, Henan University of Science and Technology, Luoyang, China, 2019. [Google Scholar]
- Naija, S.; Elloumi, N.; Jbir, N.; Ammar, S.; Kevers, C. Anatomical and biochemical changes during adventitious rooting of apple rootstocks MM 106 cultured in vitro. Comptes Rendus Biol. 2008, 331, 518–525. [Google Scholar] [CrossRef]
- Jiao, Y.Y. Study on the Feedback Regulation Mechanism by Scion on Rootstock Potassium Uptake in Grafted Watermelon. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2017. [Google Scholar]
- Zhou, K.B.; Guo, W.W.; Xia, R.X.; Hu, L.M.; Huang, H.R. Influence of scion on the growth and some physiological and biochemical characters of rootstocks for citrus. Subtrop. Plant Sci. 2005, 3, 11–14. [Google Scholar]
- Wang, J.L.; Wang, X.S.; Guo, Z.L. Effect of grape scion on physiological activity of rootstock. Ningxia Sci. Technol. 2002, 45, 30–31. [Google Scholar]
- Mohamed, F.H.; Abd El-Hamed, K.E.; Elwan, M.W.M.; Hussien, M.N.E. Evaluation of different grafting methods and rootstocks in watermelon grown in Egypt. Sci. Hortic. 2014, 168, 145–150. [Google Scholar] [CrossRef]
- Pregitzer, K.S. Fine roots of trees—A new perspective. New Phytol. 2002, 154, 267–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.S.; Li, Y.X.; Yu, C.L.; Di, X.L.; Chen, P.; Tian, J.Y.; Wang, J.H. Changes in root morphology and anatomical atrecture of Poa pratensis under different simulated precipitation rates. Acta Prataculturae Sin. 2020, 29, 70–80. [Google Scholar] [CrossRef]
- Wang, B.; Wang, J.; Liang, H.; Yi, J.; Zhang, J.; Lin, L.; Wu, Y.; Feng, X.; Cao, J.; Jiang, W. Reduced chilling injury in mango fruit by 2,4-dichlorophenoxyacetic acid and the antioxidant response. Postharvest Biol. Technol. 2007, 48, 172–181. [Google Scholar] [CrossRef]
- Gao, J.F. Experimental Guidance for Plant Physiology, 1st ed.; Higher Education Press: Beijing, China, 2006. [Google Scholar]
- Zhao, J.X.; Zhang, J.Y.; Shang, Q.M.; Xie, L.L.; Dong, C.J. Effect of watermelon scion on sugar metabolism and growth in the roots of grafted seedlings. Acta Bot. Boreali Occident. Sin. 2020, 40, 1171–1179. [Google Scholar]
- Suchoff, D.H.; Gunter, C.C.; Schultheis, J.R.; Kleinhenz, M.D.; Louws, F.J. Rootstock Effect on Grafted Tomato Transplant Shoot and Root Responses to Drying Soils. Hortscience 2018, 53, 1586–1592. [Google Scholar] [CrossRef] [Green Version]
- Kakita, T.; Abe, A.; Ikeda, T. Differences in root growth and permeability in the grafted combinations of Dutch tomato cultivars (Starbuck and Maxifort) and Japanese cultivars (Reiyo, Receive, and Magnet). Am. J. Plant Sci. 2015, 6, 2640. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Zhao, L.; Kong, Q.; Cheng, F.; Niu, M.; Xie, J.; Nawaz, M.A.; Bie, Z. Comprehensive mineral nutrition analysis of watermelon grafted onto two different rootstocks. Hortic. Plant J. 2016, 2, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Bochicchio, R.; Sofo, A.; Terzano, R.; Gattullo, C.E.; Amato, M.; Scopa, A. Root architecture and morphometric analysis of Arabidopsis thaliana grown in Cd/Cu/Zn-gradient agar dishes: A new screening technique for studying plant response to metals. Plant Physiol. Biochem. 2015, 91, 20–27. [Google Scholar] [CrossRef]
- Potters, G.; Pasternak, T.P.; Guisez, Y.; Palme, K.J.; Jansen, M.A.K. Stress-induced morphogenic responses: Growing out of trouble? Trends Plant Sci. 2007, 12, 98–105. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.Z.; Dong, X.Y.; Wang, Z.Q.; Gu, J.C. Hydraulic conductivity of root tips and related anatomical traits in juglans mandshurica and phellodendron amurense. J. Northeast. For. Univ. 2014, 42, 6–22. [Google Scholar] [CrossRef]
- Eissenstat, D.M.; Wells, C.E.; YanaiI, R.D.; Whitbeck, J.L. Building roots in a changing environment: Implications for root longevity. New Phytol. 2000, 147, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Roumet, C.; Birouste, M.; Picon-Cochard, C.; Ghestem, M.; Osman, N.; Vrignon-Brenas, S.; Cao, K.-F.; Stokes, A. Root structure-function relationships in 74 species: Evidence of a root economics spectrum related to carbon economy. New Phytol. 2016, 210, 815–826. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Guo, D.; Wang, X.; Gu, J.; Mei, L. Fine root architecture, morphology, and biomass of different branch orders of two Chinese temperate tree species. Plant Soil 2006, 288, 155–171. [Google Scholar] [CrossRef]
- Guo, D.; Xia, M.; Wei, X.; Chang, W.; Liu, Y.; Wang, Z. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytol. 2008, 180, 673–683. [Google Scholar] [CrossRef]
- Xu, W.H.; Ren, Y.; Liu, X.J.; Wang, Z.B.; Wang, S.Y.; Wang, W.N. Relationship between root tip diameter and anatomical traits among tenspecies of climbing plants in tropical forest. Mol. Plant Breed. 2022, 20, 987–995. [Google Scholar] [CrossRef]
- Huang, B.; Eissenstat, D.M. Linking hydraulic conductivity to anatomy in plants that vary in specific root length. J. Amer. Hort. Sci. 2000, 125, 260–264. [Google Scholar] [CrossRef] [Green Version]
- Deliang, K.; Junjian, W.; Hui, Z.; Mengzhou, L.; Yuan, M.; Huifang, W.; Paul, K. The nutrient absorption-transportation hypothesis: Optimizing structural traits in absorptive roots. New Phytol. 2017, 213, 1569–1572. [Google Scholar] [CrossRef]
- Elliott, G.A.; Robson, A.D.; Abbott, L.K. Effects of phosphate and nitrogen application on death of the root cortex in spring wheat. New Phytol. 1993, 123, 375–382. [Google Scholar] [CrossRef]
- Schneider, H.M.; Wojciechowski, T.; Postma, J.A.; Brown, K.M.; Lücke, A.; Zeisler, V.; Viktoria, Z.; Lukas, S.; Lynch, J.P. Root cortical senescence decreases root respiration, nutrient content and radial water and nutrient transport in barley. Plant Cell Environ. 2017, 40, 1392–1408. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, X.; Wang, H.; Wang, Z.; Gu, J. Root tip morphology, anatomy, chemistry and potential hydraulic conductivity vary with soil depth in three temperate hardwood species. Tree Physiol. 2016, 36, 99–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Chen, N.L.; Zou, X.H.; Ma, X.Q.; Wu, P.F. Research progress on adaptive responses of anatomical structure of plant roots to stress. Chin. J. Ecol. 2015, 34, 550–556. [Google Scholar] [CrossRef]
- Wei, X.W.; Lv, J.; Wu, H.; Gou, C.; Xu, H.W.; Zhou, X.F. Research advances on plant roots. North. Hortic. 2012, 18, 206–209. [Google Scholar]
- Ge, L.; Chen, H.; Jiang, J.F.; Zhao, Y.; Xu, M.L.; Xu, Y.Y.; Tan, K.H.; Xu, Z.H.; Chong, K. Overexpression of OsRAA1 causes pleiotropic phenotypes in transgenic rice plants, including altered leaf, flower, and root development and root response to gravity. Plant Physiol. 2004, 135, 1502–1513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, W.H.; Cao, F.; Liu, Z.Z.; Peng, F.R.; Liang, Y.W.; Tan, P.P. Effects of NAA treatment on the endogenous hormone changes in cuttings of Carya illinoinensis during rooting. J. Nanjing For. Univ. Nat. Sci. Ed. 2016, 40, 191–196. [Google Scholar]
- Liu, H.; Song, X.B.; Zhou, N.F.; Ma, Q.G.; Pei, D. Adventitious root formation with lBA and endogenous hormones dynamics in walnut soft-cuttings. J. Zhejiang A F Univ. 2017, 34, 1038–1043. [Google Scholar]
- Guo, S.J.; Ling, H.Q.; Li, F.L. Physiological and biochemical basis of rooting of Pinus bungeana cutings. J. Gf Being For. Unwersity 2004, 2, 43–47. [Google Scholar]
- Guan, J.Y. Effect of Nitrogen and Phosphorus Stress on the Root System of Rosa roxburghii Tratt. Seedlings and Interaction with Endogenous Hormones Contents in Roots. Master’s Thesis, Guizhou University, Guiyang, China, 2018. [Google Scholar]
- Wang, W.J. Effect of Partial Root-Zone Alternate Drip Irrigation on Root Distribution and Physiological Characteristics of Grape vine. Master’s Thesis, Shihezi University, Shihezi, China, 2014. [Google Scholar]
- Liu, X. Comparative Studies on Anatomical Structure of Roots in Twocitrus Somatic Hybrids and Several Primary Rootstocks. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2007. [Google Scholar]
- Yang, S.M. The Effects Ofirrigation Patterns on Root Water Physiological Characteristics of Red Fuji Apple. Ph.D. Thesis, Hebei Agricultural University, Baoding, China, 2011. [Google Scholar]
- Wang, S.J.; Wang, J.M.; Wang, L.J.; Li, Y.D. Effect of grape scion on physiological characteristics of rootstock. Sino-Overseas Grapevine Wine 2001, 4, 30–31. [Google Scholar] [CrossRef]
- Wang, L.; Ruan, Y.L. New insights into roles of cell wall invertase in early seed development revealed by comprehensive spatial and temporal expression patterns of GhCWIN1 in cotton. Plant Physiol. 2012, 160, 777–787. [Google Scholar] [CrossRef] [Green Version]
Treatment | Scion | Rootstock | Grafted Combination |
---|---|---|---|
1 | K | S | K/S |
2 | S | S | S/S |
3 | S | K | S/K |
4 | K | K | K/K |
Root Order | DAG (d) | Grafted Combination | Root Cross-Section (mm) | Cortex Thickness (mm) | Stele Diameter (mm) | Xylem Area (mm2) |
---|---|---|---|---|---|---|
First | 10 | S/S | 0.1839 ± 0.0178 a | 0.0780 ± 0.0125 a | 0.0278 ± 0.0071 a | 0.0005 ± 0.0001 a |
K/S | 0.2350 ± 0.0164 b | 0.0834 ± 0.0018 a | 0.0681 ± 0.0128 b | 0.0007 ± 0.0001 a | ||
30 | S/S | 0.2744 ± 0.0184 a | 0.1108 ± 0.0131 b | 0.0528 ± 0.0086 a | 0.0013 ± 0.0002 a | |
K/S | 0.2840 ± 0.0155 a | 0.0933 ± 0.0020 a | 0.0974 ± 0.0116 b | 0.0015 ± 0.0002 a | ||
50 | S/S | 0.3956 ± 0.0228 a | 0.1615 ± 0.0030 a | 0.0725 ± 0.0168 a | 0.0026 ± 0.0001 a | |
K/S | 0.4054 ± 0.0153 a | 0.1446 ± 0.0116 a | 0.1161 ± 0.0078 b | 0.0032 ± 0.0001 b | ||
70 | S/S | 0.4631 ± 0.0164 a | 0.1910 ± 0.0092 a | 0.0811 ± 0.0027 a | 0.0030 ± 0.0001 a | |
K/S | 0.4878 ± 0.0116 a | 0.1811 ± 0.0054 a | 0.1256 ± 0.0223 b | 0.0042 ± 0.0002 b | ||
Second | 10 | S/S | 0.2577 ± 0.0096 a | 0.0808 ± 0.0055 a | 0.0661 ± 0.0094 a | 0.0016 ± 0.0001 a |
K/S | 0.3149 ± 0.0116 b | 0.1094 ± 0.0064 b | 0.0806 ± 0.0029 b | 0.0012 ± 0.0003 a | ||
30 | S/S | 0.2882 ± 0.0054 a | 0.1099 ± 0.0069 a | 0.0984 ± 0.003 a | 0.001 ± 0.0001 a | |
K/S | 0.3387 ± 0.0112 b | 0.1199 ± 0.0042 b | 0.1189 ± 0.0033 b | 0.0032 ± 0.0001 b | ||
50 | S/S | 0.364 ± 0.0051 a | 0.1102 ± 0.0052 a | 0.1436 ± 0.0048 a | 0.0037 ± 0.0001 a | |
K/S | 0.3963 ± 0.0058 b | 0.1263 ± 0.0024 b | 0.187 ± 0.0096 b | 0.0075 ± 0.0004 b | ||
70 | S/S | 0.4449 ± 0.0112 a | 0.112 ± 0.0088 a | 0.2209 ± 0.0072 a | 0.0102 ± 0.0005 a | |
K/S | 0.499 ± 0.0045 b | 0.1287 ± 0.0077 b | 0.2415 ± 0.0179 b | 0.0127 ± 0.0003 b | ||
Third | 10 | S/S | 0.2936 ± 0.0014 a | 0.1068 ± 0.0007 a | 0.0801 ± 0.0003 a | 0.0013 ± 0.0001 a |
K/S | 0.3836 ± 0.0086 b | 0.1402 ± 0.0035 b | 0.1031 ± 0.002 b | 0.0016 ± 0.0001 a | ||
30 | S/S | 0.4994 ± 0.0117 a | 0.1596 ± 0.0048 a | 0.1802 ± 0.0023 a | 0.0056 ± 0.0003 a | |
K/S | 0.6721 ± 0.0056 b | 0.2266 ± 0.0067 b | 0.2189 ± 0.0087 b | 0.0102 ± 0.0002 b | ||
50 | S/S | 0.6696 ± 0.0117 a | 0.1524 ± 0.0107 a | 0.3648 ± 0.0152 a | 0.0475 ± 0.0048 a | |
K/S | 0.7219 ± 0.002 b | 0.1757 ± 0.0007 b | 0.3706 ± 0.0032 a | 0.0535 ± 0.0031 b | ||
70 | S/S | 0.7349 ± 0.0097 a | 0.0934 ± 0.0034 a | 0.548 ± 0.0042 a | 0.1066 ± 0.0048 a | |
K/S | 0.8298 ± 0.0091 b | 0.1172 ± 0.0092 b | 0.5954 ± 0.0253 b | 0.1127 ± 0.0055 b |
Root Order | DAG (d) | Grafted Combination | Root Cross-Section (mm) | Cortex Thickness (mm) | Stele Diameter (mm) | Xylem Area (mm2) |
---|---|---|---|---|---|---|
First | 10 | K/K | 0.2085 ± 0.01894 a | 0.0647 ± 0.0028 a | 0.0790 ± 0.0134 a | 0.0014 ± 0.0001 a |
S/K | 0.2729 ± 0.00539 b | 0.1238 ± 0.0062 b | 0.0253 ± 0.0073 b | 0.0023 ± 0.0002 b | ||
30 | K/K | 0.3435 ± 0.02008 a | 0.1320 ± 0.0049 a | 0.0795 ± 0.0038 a | 0.0018 ± 0.0001 a | |
S/K | 0.3581 ± 0.0211 a | 0.1427 ± 0.0121 a | 0.0727 ± 0.0041 a | 0.0028 ± 0.0002 b | ||
50 | K/K | 0.5080 ± 0.0191 a | 0.1767 ± 0.0230 a | 0.1546 ± 0.0275 a | 0.0055 ± 0.0005 a | |
S/K | 0.5501 ± 0.0207 a | 0.2018 ± 0.0172 a | 0.1465 ± 0.0142 a | 0.0041 ± 0.0003 a | ||
70 | K/K | 0.6707 ± 0.0267 a | 0.2204 ± 0.0333 a | 0.2299 ± 0.0402 a | 0.0063 ± 0.0003 a | |
S/K | 0.7717 ± 0.0130 b | 0.2785 ± 0.0193 a | 0.2148 ± 0.0257 a | 0.0159 ± 0.0029 b | ||
Second | 10 | K/K | 0.4591 ± 0.0174 a | 0.126 ± 0.0122 a | 0.1672 ± 0.035 a | 0.0044 ± 0.0019 a |
S/K | 0.4278 ± 0.014 b | 0.1393 ± 0.0098 a | 0.1492 ± 0.0073 a | 0.0026 ± 0.0001 a | ||
30 | K/K | 0.4902 ± 0.0043 a | 0.1378 ± 0.0032 a | 0.2146 ± 0.003 a | 0.0086 ± 0.0003 a | |
S/K | 0.4601 ± 0.0142 b | 0.1635 ± 0.0123 b | 0.1631 ± 0.031 b | 0.0045 ± 0.0044 b | ||
50 | K/K | 0.5521 ± 0.0191 a | 0.1589 ± 0.0093 a | 0.2342 ± 0.0045 a | 0.0105 ± 0.0003 a | |
S/K | 0.5182 ± 0.0091 b | 0.1689 ± 0.0056 a | 0.1805 ± 0.0026 b | 0.0056 ± 0.0002 b | ||
70 | K/K | 0.6002 ± 0.0004 a | 0.1588 ± 0.0052 a | 0.2785 ± 0.002 a | 0.0136 ± 0.0003 a | |
S/K | 0.5502 ± 0.0095 b | 0.1808 ± 0.001 b | 0.2726 ± 0.0102 a | 0.0107 ± 0.0007 b | ||
Third | 10 | K/K | 0.7603 ± 0.0133 a | 0.1556 ± 0.004 a | 0.4491 ± 0.0102 a | 0.0762 ± 0.0006 a |
S/K | 0.757 ± 0.0315 a | 0.209 ± 0.0186 b | 0.339 ± 0.0065 b | 0.0367 ± 0.0014 b | ||
30 | K/K | 0.8577 ± 0.0071 a | 0.082 ± 0.0036 a | 0.6936 ± 0.0113 a | 0.1439 ± 0.0057 a | |
S/K | 0.8885 ± 0.0148 a | 0.1035 ± 0.0107 a | 0.6816 ± 0.0089 a | 0.1222 ± 0.0063 b | ||
50 | K/K | 0.9818 ± 0.0075 a | 0.0632 ± 0.0044 a | 0.8554 ± 0.0078 a | 0.2165 ± 0.0019 a | |
S/K | 0.9662 ± 0.0149 a | 0.067 ± 0.0223 a | 0.8321 ± 0.0319 a | 0.2067 ± 0.0066 b | ||
70 | K/K | 1.2555 ± 0.0137 a | 0.0791 ± 0.0072 a | 1.0973 ± 0.0091 a | 0.4237 ± 0.0066 a | |
S/K | 1.1775 ± 0.0139 b | 0.0625 ± 0.0104 a | 1.0525 ± 0.0154 b | 0.3793 ± 0.0067 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, H.-Y.; Wang, S.; Zhou, C.-Y. Effects of Intergeneric Grafting of Schisandraceae on Root Morphology, Anatomy and Physiology of Rootstocks. Forests 2023, 14, 1183. https://doi.org/10.3390/f14061183
Liao H-Y, Wang S, Zhou C-Y. Effects of Intergeneric Grafting of Schisandraceae on Root Morphology, Anatomy and Physiology of Rootstocks. Forests. 2023; 14(6):1183. https://doi.org/10.3390/f14061183
Chicago/Turabian StyleLiao, Hong-Yi, Sen Wang, and Chun-Yu Zhou. 2023. "Effects of Intergeneric Grafting of Schisandraceae on Root Morphology, Anatomy and Physiology of Rootstocks" Forests 14, no. 6: 1183. https://doi.org/10.3390/f14061183
APA StyleLiao, H.-Y., Wang, S., & Zhou, C.-Y. (2023). Effects of Intergeneric Grafting of Schisandraceae on Root Morphology, Anatomy and Physiology of Rootstocks. Forests, 14(6), 1183. https://doi.org/10.3390/f14061183