Topographical Influence on Snag Distribution in a Subtropical Forest in South China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Field Surveys
2.3. Topographic Factors
2.4. Analytical Methods
3. Results
3.1. Snag Species Composition and Quantitative Characteristics
3.2. Snag Spatial Distribution Associated with Topographic Factors
3.3. Relationships between Snags and Topographic Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Urban, M.C. Accelerating extinction risk from climate change. Science 2015, 348, 571–573. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Zhong, Y.; Sun, Y.; Su, Z.; Jia, X.; Hu, Y.; Zhou, Q. Topography-associated thermal gradient predicts warming effects on woody plant structural diversity in a subtropical forest. Sci. Rep. 2017, 7, 40387. [Google Scholar] [CrossRef] [PubMed]
- Taccoen, A.; Piedallu, C.; Seynave, I.; Gégout-Petit, A.; Gégout, J. Climate change-induced background tree mortality is exacerbated towards the warm limits of the species ranges. Ann. For. Sci. 2022, 79, 23. [Google Scholar] [CrossRef]
- Stovall, A.; Shugart, H.; Yang, X. Tree height explains mortality risk during an intense drought. Nat. Commun. 2019, 10, 4385. [Google Scholar] [CrossRef]
- Klockow, P.A.; Putman, E.B.; Vogel, J.G.; Moore, G.W.; Edgar, C.B.; Popescu, S.C. Allometry and structural volume change of standing dead southern pine trees using non-destructive terrestrial LiDAR. Remote Sens. Environ. 2020, 241, 111729. [Google Scholar] [CrossRef]
- Bölöni, J.; Ódor, P.; Ádám, R.; Keeton, W.S.; Aszalós, R. Quantity and dynamics of dead wood in managed and unmanaged dry-mesic oak forests in the Hungarian Carpathians. For. Ecol. Manag. 2017, 399, 120–131. [Google Scholar] [CrossRef]
- Ganey, J.L.; Vojta, S.C. Tree mortality in drought-stressed mixed-conifer and ponderosa pine forests, Arizona, USA. For. Ecol. Manag. 2011, 261, 162–168. [Google Scholar] [CrossRef]
- Garber, S.M.; Brown, J.P.; Wilson, D.S.; Maguire, D.A.; Heath, L.S. Snag longevity under alternative silvicultural regimes in mixed-species forests of central Maine. Can. J. For. Res. 2005, 35, 787–796. [Google Scholar] [CrossRef]
- Oberle, B.; Ogle, K.; Zanne, A.E.; Woodall, C.W. When a tree falls: Controls on wood decay predict standing dead tree fall and new risks in changing forests. PLoS ONE 2018, 13, e196712. [Google Scholar] [CrossRef]
- Ohtsuka, T.; Shizu, Y.; Hirota, M.; Yashiro, Y.; Jia, S.G.; Iimura, Y.; Koizumi, H. Role of coarse woody debris in the carbon cycle of Takayama forest. Ecol. Res. 2014, 29, 91–101. [Google Scholar] [CrossRef]
- Romashkin, I.; Shorohova, E.; Kapitsa, E.; Galibina, N.; Nikerova, K. Carbon and nitrogen dynamics along the log bark decomposition continuum in a mesic old-growth boreal forest. Eur. J. For. Res. 2018, 137, 643–657. [Google Scholar] [CrossRef]
- Harmon, M.E.; Fasth, B.; Woodall, C.W.; Sexton, J. Carbon concentration of standing and downed woody detritus: Effects of tree taxa, decay class, position, and tissue type. For. Ecol. Manag. 2013, 291, 259–267. [Google Scholar] [CrossRef]
- Ibarra, J.T.; Novoa, F.J.; Jaillard, H.; Altamirano, T.A. Large trees and decay: Suppliers of a keystone resource for cavity-using wildlife in old-growth and secondary Andean temperate forests. Austral. Ecol. 2020, 45, 1135–1144. [Google Scholar] [CrossRef]
- Kilgo, J.C.; Vukovich, M.A. Can snag creation benefit a primary cavity nester: Response to an experimental pulse in snag abundance. Biol. Conserv. 2014, 171, 21–28. [Google Scholar] [CrossRef]
- Lešo, P.; Kropil, R.; Kajtoch, Ł. Effects of forest management on bird assemblages in oak-dominated stands of the Western Carpathians—Refuges for rare species. For. Ecol. Manag. 2019, 453, 117620. [Google Scholar] [CrossRef]
- Parisi, F.; Frate, L.; Lombardi, F.; Tognetti, R.; Campanaro, A.; Biscaccianti, A.B.; Marchetti, M. Diversity patterns of Coleoptera and saproxylic communities in unmanaged forests of Mediterranean mountains. Ecol. Indic. 2020, 110, 105873. [Google Scholar] [CrossRef]
- Nascimbene, J.; Dainese, M.; Sitzia, T. Contrasting responses of epiphytic and dead wood-dwelling lichen diversity to forest management abandonment in silver fir mature woodlands. For. Ecol. Manag. 2013, 289, 325–332. [Google Scholar] [CrossRef]
- Chmura, D.; Żarnowiec, J.; Staniaszek-Kik, M. Altitude is a better predictor of the habitat requirements of epixylic bryophytes and lichens than the presence of coarse woody debris in mountain forests: A study in Poland. Ann. For. Sci. 2022, 79, 7. [Google Scholar] [CrossRef]
- Sylvain, J.; Drolet, G.; Brown, N. Mapping dead forest cover using a deep convolutional neural network and digital aerial photography. ISPRS J. Photogramm. 2019, 156, 14–26. [Google Scholar] [CrossRef]
- Wu, H.; Franklin, S.B.; Liu, J.; Lu, Z. Relative importance of density dependence and topography on tree mortality in a subtropical mountain forest. For. Ecol. Manag. 2017, 384, 169–179. [Google Scholar] [CrossRef]
- Bujoczek, L.; Bujoczek, M.; Zięba, S. How much, why and where? Deadwood in forest ecosystems: The case of Poland. Ecol. Indic. 2021, 121, 107027. [Google Scholar] [CrossRef]
- Berry, Z.C.; Gotsch, S.G.; Holwerda, F.; Muñoz-Villers, L.E.; Asbjornsen, H. Slope position influences vegetation-atmosphere interactions in a tropical montane cloud forest. Agric. For. Meteorol. 2016, 221, 207–218. [Google Scholar] [CrossRef]
- Suleymanov, A.; Abakumov, E.; Suleymanov, R.; Gabbasova, I.; Komissarov, M. The Soil Nutrient Digital Mapping for Precision Agriculture Cases in the Trans-Ural Steppe Zone of Russia Using Topographic Attributes. ISPRS Int. J. Geo-Inf. 2021, 10, 243. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, W.; Yang, F.; Zhou, X.; Liu, Z.; Qu, F.; Lian, S.; Wang, C.; Tang, X. Changes in vegetation-environment relationships over long-term natural restoration process in Middle Taihang Mountain of North China. Ecol. Eng. 2012, 49, 193–200. [Google Scholar] [CrossRef]
- Lippok, D.; Beck, S.G.; Renison, D.; Hensen, I.; Apaza, A.E.; Schleuning, M. Topography and edge effects are more important than elevation as drivers of vegetation patterns in a neotropical montane forest. J. Veg. Sci. 2014, 25, 724–733. [Google Scholar] [CrossRef]
- Muller, R.N. Landscape patterns of change in coarse woody debris accumulation in an old-growth deciduous forest on the Cumberland Plateau, southeastern Kentucky. Can. J. For. Res. 2003, 33, 763–769. [Google Scholar] [CrossRef]
- Rubino, D.L.; McCarthy, B.C. Evaluation of coarse woody debris and forest vegetation across topographic gradients in a southern Ohio forest. For. Ecol. Manag. 2003, 183, 221–238. [Google Scholar] [CrossRef]
- Kennedy, R.S.H.; Spies, T.A.; Gregory, M.J. Relationships of dead wood patterns with biophysical characteristics and ownership according to scale in Coastal Oregon, USA. Landsc. Ecol. 2008, 23, 55–68. [Google Scholar] [CrossRef]
- Kapusta, P.; Kurek, P.; Piechnik, Ł.; Szarek-Łukaszewska, G.; Zielonka, T.; Żywiec, M.; Holeksa, J. Natural and human-related determinants of dead wood quantity and quality in a managed European lowland temperate forest. For. Ecol. Manag. 2020, 459, 117845. [Google Scholar] [CrossRef]
- Zhang, L.; Ma, D.; Jing, X.L.; Su, Z.Y. Topographic controls on the distribution of indigenous rhododendrons in the southern slope of the Nanling mountains, South China. Pak. J. Bot. 2016, 48, 2367–2374. [Google Scholar]
- Sweeney, O.F.M.; Martin, R.D.; Irwin, S.; Kelly, T.C.; O’Halloran, J.; Wilson, M.W.; McEvoy, P.M. A lack of large-diameter logs and snags characterises dead wood patterns in Irish forests. For. Ecol. Manag. 2010, 259, 2056–2064. [Google Scholar] [CrossRef]
- Taylor, L.R. Aggregation, Variance and the Mean. Nature 1961, 189, 732–735. [Google Scholar] [CrossRef]
- Limin, A.; Slik, F.; Sukri, R.S.; Chen, S.B.; Ahmad, J.A. Large tree species composition, not growth rates, is affected by topography in a Bornean tropical forest. Biotropica 2021, 53, 1290–1300. [Google Scholar] [CrossRef]
- Coomes, D.A.; Allen, R.B. Mortality and tree-size distributions in natural mixed-age forests. J. Ecol. 2007, 95, 27–40. [Google Scholar] [CrossRef]
- Bennett, A.C.; McDowell, N.G.; Allen, C.D.; Anderson-Teixeira, K.J. Larger trees suffer most during drought in forests worldwide. Nat. Plants 2015, 1, 15139. [Google Scholar] [CrossRef]
- Silveira, A.P.; Martins, F.R.; Menezes, B.S.; Araújo, F.S. Is the spatial pattern of a tree population in a seasonally dry tropical climate explained by density-dependent mortality? Austral. Ecol. 2018, 43, 191–202. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, H.; Zhang, B.; He, Y. Spatial distribution and associations of dead woods in natural spruce-fir secondary forests. J. Appl. Ecol. 2021, 32, 2745–2754. [Google Scholar] [CrossRef]
- Von Oheimb, G.; Westphal, C.; Härdtle, W. Diversity and spatio-temporal dynamics of dead wood in a temperate near-natural beech forest (Fagus sylvatica). Eur. J. For. Res. 2007, 126, 359–370. [Google Scholar] [CrossRef]
- Castagneri, D.; Garbarino, M.; Berretti, R.; Motta, R. Site and stand effects on coarse woody debris in montane mixed forests of Eastern Italian Alps. For. Ecol. Manag. 2010, 260, 1592–1598. [Google Scholar] [CrossRef]
- Sefidi, K.; Esfandiary Darabad, F.; Azaryan, M. Effect of topography on tree species composition and volume of coarse woody debris in an Oriental beech (Fagus orientalis Lipsky) old growth forests, northern Iran. iForest—Biogeosci. For. 2016, 9, 658–665. [Google Scholar] [CrossRef]
- Liu, X.; Frey, J.; Denter, M.; Zielewska-Büttner, K.; Still, N.; Koch, B. Mapping standing dead trees in temperate montane forests using a pixel- and object-based image fusion method and stereo WorldView-3 imagery. Ecol. Indic. 2021, 133, 108438. [Google Scholar] [CrossRef]
- Stadelmann, G.; Bugmann, H.; Wermelinger, B.; Bigler, C. Spatial interactions between storm damage and subsequent infestations by the European spruce bark beetle. For. Ecol. Manag. 2014, 318, 167–174. [Google Scholar] [CrossRef]
- Stritih, A.; Senf, C.; Seidl, R.; Grêt-Regamey, A.; Bebi, P. The impact of land-use legacies and recent management on natural disturbance susceptibility in mountain forests. For. Ecol. Manag. 2021, 484, 118950. [Google Scholar] [CrossRef]
- Allen, A.P.; Brown, J.H.; Gillooly, J.F. Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science 2002, 297, 1545–1548. [Google Scholar] [CrossRef] [PubMed]
- Carlucci, M.B.; Bastazini, V.A.G.; Hofmann, G.S.; de Macedo, J.H.; Iob, G.; Duarte, L.D.S.; Hartz, S.M.; Müller, S.C. Taxonomic and functional diversity of woody plant communities on opposing slopes of inselbergs in southern Brazil. Plant Ecol. Divers. 2015, 8, 187–197. [Google Scholar] [CrossRef]
- Harmon, M.E.; Franklin, J.F.; Swanson, F.J.; Sollins, P.; Gregory, S.V.; Lattin, J.D.; Anderson, N.H.; Cline, S.P.; Aumen, N.G.; Sedell, J.R.; et al. Ecology of Coarse Woody Debris in Temperate Ecosystems; Academic Press: Cambridge, MA, USA, 1986; pp. 59–234. [Google Scholar]
Species | Abundance | Frequency (%) | Average DBH Mean ± SE (cm) | Max DBH (cm) | Average Height Mean ± SE (m) | Max Height (m) |
---|---|---|---|---|---|---|
Castanopsis carlesii | 90 | 13.3 | 11.9 ± 0.8 | 30.3 | 5.1 ± 0.5 | 20.2 |
Schima superba | 30 | 5.3 | 12.0 ± 1.6 | 31.8 | 3.0 ± 0.5 | 13.1 |
Camellia oleifera | 27 | 4.3 | 3.0 ± 0.1 | 4.5 | 3.2 ± 0.2 | 5.7 |
Machilus chinensis | 23 | 3.8 | 7.4 ± 0.9 | 16.5 | 6.0 ± 0.8 | 15.6 |
Cunninghamia lanceolata | 23 | 4 | 8.3 ± 1.1 | 21.5 | 6.1 ± 0.8 | 15.4 |
All snags | 544 | 59 | 7.6 ± 0.3 | 43.5 | 4.8 ± 0.1 | 20.2 |
Attribute | Axes | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
Eigenvalues | 0.397 | 0.110 | 0.090 | 1.000 |
Species–environment correlations | 0.72 | 0.41 | 0.38 | 0.0 |
Cumulative % variance of species data | 1.6 | 2.1 | 2.4 | 6.5 |
Cumulative % variance of species–environment relation | 66.5 | 85.0 | 100.0 | 0.0 |
Slope steepness | 0.30 | −0.70 * | 0.65 * | 0.00 |
Elevation | 0.98 ** | 0.16 | 0.11 | 0.00 |
Slope aspect | 0.45 * | −0.43 * | −0.78 * | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Chen, Z.; Wang, S.; Lin, H.; Kan, L.; Du, W.; Su, Z.; Zhang, L. Topographical Influence on Snag Distribution in a Subtropical Forest in South China. Forests 2023, 14, 997. https://doi.org/10.3390/f14050997
Ma Y, Chen Z, Wang S, Lin H, Kan L, Du W, Su Z, Zhang L. Topographical Influence on Snag Distribution in a Subtropical Forest in South China. Forests. 2023; 14(5):997. https://doi.org/10.3390/f14050997
Chicago/Turabian StyleMa, Yifei, Zhipeng Chen, Shuyu Wang, Haoyou Lin, Lei Kan, Weijing Du, Zhiyao Su, and Lu Zhang. 2023. "Topographical Influence on Snag Distribution in a Subtropical Forest in South China" Forests 14, no. 5: 997. https://doi.org/10.3390/f14050997