Identification and Expression Pattern of the Carotenoid Cleavage Oxygenase Gene Family in Lycium Suggest CCOs Respond to Abiotic Stress and Promote Carotenoids Degradation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Identification of LbCCO Family Genes
2.3. Classification and Protein Characterization of LbCCOs
2.4. Analysis of Gene Structure and Cis-Acting Elements of Identified LbCCOs
2.5. Chromosome Localization, Gene Density, and Collinearity Analysis of LbCCOs
2.6. Expression Patterns of LbCCOs
2.7. Gene and Promoter Isolation
2.8. Subcellular Localization
3. Results
3.1. Identification and Classification of LbCCOs
3.2. Physicochemical Properties, Subcellular Localization Prediction, and Function Prediction of LbCCOs
3.3. Analysis of Gene Structure and Cis-Acting Elements of the LbCCOs
3.4. Chromosome Localization and Collinearity of LbCCOs
3.5. Expression Patterns of CCOs
3.6. CCD4-1s Localization and Promoter Analysis of Two Goji Species
4. Discussion
4.1. Different Functions Classification Prediction Based on the Identification of LbCCOs
4.2. Gene Conservation and Pseudogene LbCCOs
4.3. CCD4-1 May Be a Key Gene Dominating the Degradation of Goji Carotenoids
4.4. Abiotic Stress May Regulate the Expressions of CCD1, NCED1, or Other CCOs Directly or through Hormones in at Least One Species of Lycium
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hitchcock, C.L. A Monographic Study of the Genus Lycium of the Western Hemisphere. Ann. Mo. Bot. Gard. 1932, 19, 179. [Google Scholar] [CrossRef]
- Nee, M. Flora of China, Vol. 17, Verbenaceae Through Solanaceae. Brittonia 1996, 48, 611. [Google Scholar] [CrossRef]
- Yu, Z.; Xia, M.; Lan, J.; Yang, L.; Wang, Z.; Wang, R.; Tao, H.; Shi, Y. A Comprehensive Review on the Ethnobotany, Phytochemistry, Pharmacology and Quality Control of the Genus Lycium in China. Food Funct. 2023, 14, 2998–3025. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Chen, W.; Zhao, J.; Xi, W. Functional Constituents and Antioxidant Activities of Eight Chinese Native Goji Genotypes. Food Chem. 2016, 200, 230–236. [Google Scholar] [CrossRef]
- Avalos, J.; Carmen Limón, M. Biological Roles of Fungal Carotenoids. Curr. Genet. 2015, 61, 309–324. [Google Scholar] [CrossRef]
- Sun, T.; Rao, S.; Zhou, X.; Li, L. Plant Carotenoids: Recent Advances and Future Perspectives. Mol. Hortic. 2022, 2, 3. [Google Scholar] [CrossRef]
- Maoka, T. Carotenoids as Natural Functional Pigments. J. Nat. Med. 2020, 74, 1–16. [Google Scholar] [CrossRef]
- Kim, Y.; Hwang, I.; Jung, H.-J.; Park, J.-I.; Kang, J.-G.; Nou, I.-S. Genome-Wide Classification and Abiotic Stress-Responsive Expression Profiling of Carotenoid Oxygenase Genes in Brassica Rapa and Brassica Oleracea. J. Plant Growth Regul. 2016, 35, 202–214. [Google Scholar] [CrossRef]
- Lin, J.; Massonnet, M.; Cantu, D. The Genetic Basis of Grape and Wine Aroma. Hortic. Res. 2019, 6, 81. [Google Scholar] [CrossRef]
- Yuan, H.; Zhang, J.; Nageswaran, D.; Li, L. Carotenoid Metabolism and Regulation in Horticultural Crops. Hortic. Res. 2015, 2, 15036. [Google Scholar] [CrossRef]
- Lim, J.; Lim, C.W.; Lee, S.C. Core Components of Abscisic Acid Signaling and Their Post-Translational Modification. Front. Plant Sci. 2022, 13, 895698. [Google Scholar] [CrossRef]
- Waadt, R.; Seller, C.A.; Hsu, P.-K.; Takahashi, Y.; Munemasa, S.; Schroeder, J.I. Plant Hormone Regulation of Abiotic Stress Responses. Nat. Rev. Mol. Cell Biol. 2022, 23, 680–694. [Google Scholar] [CrossRef] [PubMed]
- Rehman, N.U.; Li, X.; Zeng, P.; Guo, S.; Jan, S.; Liu, Y.; Huang, Y.; Xie, Q. Harmony but Not Uniformity: Role of Strigolactone in Plants. Biomolecules 2021, 11, 1616. [Google Scholar] [CrossRef] [PubMed]
- Yoneyama, K.; Brewer, P.B. Strigolactones, How Are They Synthesized to Regulate Plant Growth and Development? Curr. Opin. Plant Biol. 2021, 63, 102072. [Google Scholar] [CrossRef] [PubMed]
- Liang, N.; Yao, M.-D.; Wang, Y.; Liu, J.; Feng, L.; Wang, Z.-M.; Li, X.-Y.; Xiao, W.-H.; Yuan, Y.-J. Cs CCD2 Access Tunnel Design for a Broader Substrate Profile in Crocetin Production. J. Agric. Food Chem. 2021, 69, 11626–11636. [Google Scholar] [CrossRef]
- Ilg, A.; Yu, Q.; Schaub, P.; Beyer, P.; Al-Babili, S. Overexpression of the Rice Carotenoid Cleavage Dioxygenase 1 Gene in Golden Rice Endosperm Suggests Apocarotenoids as Substrates in Planta. Planta 2010, 232, 691–699. [Google Scholar] [CrossRef]
- Auldridge, M.E.; Block, A.; Vogel, J.T.; Dabney-Smith, C.; Mila, I.; Bouzayen, M.; Magallanes-Lundback, M.; DellaPenna, D.; McCarty, D.R.; Klee, H.J. Characterization of Three Members of the Arabidopsis Carotenoid Cleavage Dioxygenase Family Demonstrates the Divergent Roles of This Multifunctional Enzyme Family. Plant J. 2006, 45, 982–993. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Huang, N.; Jiang, S.; Li, K.; Zhuang, Z.; Wang, Q.; Lu, S. Cloning and Functional Characterization of Two Carotenoid Cleavage Dioxygenases for Ionone Biosynthesis in Chili Pepper (Capsicum annuum L.) Fruits. Sci. Hortic. 2021, 288, 110368. [Google Scholar] [CrossRef]
- Mathieu, S.; Terrier, N.; Procureur, J.; Bigey, F.; Günata, Z. A Carotenoid Cleavage Dioxygenase from Vitis vinifera L.: Functional Characterization and Expression during Grape Berry Development in Relation to C13-Norisoprenoid Accumulation. J. Exp. Bot. 2005, 56, 2721–2731. [Google Scholar] [CrossRef]
- Meng, N.; Yan, G.-L.; Zhang, D.; Li, X.-Y.; Duan, C.-Q.; Pan, Q.-H. Characterization of Two Vitis Vinifera Carotenoid Cleavage Dioxygenases by Heterologous Expression in Saccharomyces Cerevisiae. Mol. Biol. Rep. 2019, 46, 6311–6323. [Google Scholar] [CrossRef]
- Rodrigo, M.J.; Alquézar, B.; Alós, E.; Medina, V.; Carmona, L.; Bruno, M.; Al-Babili, S.; Zacarías, L. A Novel Carotenoid Cleavage Activity Involved in the Biosynthesis of Citrus Fruit-Specific Apocarotenoid Pigments. J. Exp. Bot. 2013, 64, 4461–4478. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; Guo, Y.; Kong, J.; Lecourieux, F.; Dai, Z.; Li, S.; Liang, Z. Knockout of VvCCD8 Gene in Grapevine Affects Shoot Branching. BMC Plant Biol. 2020, 20, 47. [Google Scholar] [CrossRef]
- Cutler, A.J.; Krochko, J.E. Formation and Breakdown of ABA. Trends Plant Sci. 1999, 4, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Andújar, C.; Martínez-Pérez, A.; Ferrández-Ayela, A.; Albacete, A.; Martínez-Melgarejo, P.A.; Dodd, I.C.; Thompson, A.J.; Pérez-Pérez, J.M.; Pérez-Alfocea, F. Impact of Overexpression of 9-Cis-Epoxycarotenoid Dioxygenase on Growth and Gene Expression under Salinity Stress. Plant Sci. 2020, 295, 110268. [Google Scholar] [CrossRef] [PubMed]
- González-Villagra, J.; Rodrigues-Salvador, A.; Nunes-Nesi, A.; Cohen, J.D.; Reyes-Díaz, M.M. Age-Related Mechanism and Its Relationship with Secondary Metabolism and Abscisic Acid in Aristotelia Chilensis Plants Subjected to Drought Stress. Plant Physiol. Biochem. 2018, 124, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Wang, X.; Zhou, Y.; Su, W.; Jiang, L.; Deng, H.; Li, M.; Zhuang, Q.; Xie, Y.; Liang, D. Biochemical and Molecular Factors Governing Flesh-Color Development in Two Yellow-Fleshed Kiwifruit Cultivars. Sci. Hortic. 2021, 280, 109929. [Google Scholar] [CrossRef]
- Noronha, H.; Silva, A.; Silva, T.; Frusciante, S.; Diretto, G.; Gerós, H. VviRafS5 Is a Raffinose Synthase Involved in Cold Acclimation in Grapevine Woody Tissues. Front. Plant Sci. 2022, 12, 754537. [Google Scholar] [CrossRef]
- Cai, X.; Jiang, Z.; Tang, L.; Zhang, S.; Li, X.; Wang, H.; Liu, C.; Chi, J.; Zhang, X.; Zhang, J. Genome-Wide Characterization of Carotenoid Oxygenase Gene Family in Three Cotton Species and Functional Identification of GaNCED3 in Drought and Salt Stress. J. Appl. Genet. 2021, 62, 527–543. [Google Scholar] [CrossRef]
- Huang, Y.; Guo, Y.; Liu, Y.; Zhang, F.; Wang, Z.; Wang, H.; Wang, F.; Li, D.; Mao, D.; Luan, S.; et al. 9-Cis-Epoxycarotenoid Dioxygenase 3 Regulates Plant Growth and Enhances Multi-Abiotic Stress Tolerance in Rice. Front. Plant Sci. 2018, 9, 162. [Google Scholar] [CrossRef]
- Toscano, S.; Trivellini, A.; Cocetta, G.; Bulgari, R.; Francini, A.; Romano, D.; Ferrante, A. Effect of Preharvest Abiotic Stresses on the Accumulation of Bioactive Compounds in Horticultural Produce. Front. Plant Sci. 2019, 10, 1212. [Google Scholar] [CrossRef]
- da Silva Oliveira, C.E.; Zoz, T.; de Castro Seron, C.; Boleta, E.H.M.; de Lima, B.H.; Souza, L.R.R.; Pedrinho, D.R.; Matias, R.; dos Santos Lopes, C.; de Oliveira Neto, S.S.; et al. Can Saline Irrigation Improve the Quality of Tomato Fruits? Agron. J. 2022, 114, 900–914. [Google Scholar] [CrossRef]
- Zhou, R.; Yu, X.; Li, X.; Mendanha dos Santos, T.; Rosenqvist, E.; Ottosen, C.-O. Combined High Light and Heat Stress Induced Complex Response in Tomato with Better Leaf Cooling after Heat Priming. Plant Physiol. Biochem. 2020, 151, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.-R.; Wang, Y.-H.; Li, T.; Tan, G.-F.; Tao, J.-P.; Su, X.-J.; Xu, Z.-S.; Tian, Y.-S.; Xiong, A.-S. Effects of Simulated Drought Stress on Carotenoid Contents and Expression of Related Genes in Carrot Taproots. Protoplasma 2021, 258, 379–390. [Google Scholar] [CrossRef]
- Zhao, Y.-H.; Deng, Y.-J.; Wang, Y.-H.; Lou, Y.-R.; He, L.-F.; Liu, H.; Li, T.; Yan, Z.-M.; Zhuang, J.; Xiong, A.-S. Changes in Carotenoid Concentration and Expression of Carotenoid Biosynthesis Genes in Daucus Carota Taproots in Response to Increased Salinity. Horticulturae 2022, 8, 650. [Google Scholar] [CrossRef]
- Islam, T.; Yu, X.; Badwal, T.S.; Xu, B. Comparative Studies on Phenolic Profiles, Antioxidant Capacities and Carotenoid Contents of Red Goji Berry (Lycium barbarum) and Black Goji Berry (Lycium ruthenicum). Chem. Cent. J. 2017, 11, 59. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.-L.; Li, Y.; Fan, Y.-F.; Li, Z.; Yoshida, K.; Wang, J.-Y.; Ma, X.-K.; Wang, N.; Mitsuda, N.; Kotake, T.; et al. Wolfberry Genomes and the Evolution of Lycium (Solanaceae). Commun. Biol. 2021, 4, 671. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zuo, X.; Shao, H.; Fan, S.; Ma, J.; Zhang, D.; Zhao, C.; Yan, X.; Liu, X.; Han, M. Genome-Wide Analysis of Carotenoid Cleavage Oxygenase Genes and Their Responses to Various Phytohormones and Abiotic Stresses in Apple (Malus domestica). Plant Physiol. Biochem. 2018, 123, 81–93. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Letunic, I.; Khedkar, S.; Bork, P. SMART: Recent Updates, New Developments and Status in 2020. Nucleic Acids Res. 2021, 49, D458–D460. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. 20 Years of the SMART Protein Domain Annotation Resource. Nucleic Acids Res. 2018, 46, D493–D496. [Google Scholar] [CrossRef]
- Lu, S.; Wang, J.; Chitsaz, F.; Derbyshire, M.K.; Geer, R.C.; Gonzales, N.R.; Gwadz, M.; Hurwitz, D.I.; Marchler, G.H.; Song, J.S.; et al. CDD/SPARCLE: The Conserved Domain Database in 2020. Nucleic Acids Res. 2020, 48, D265–D268. [Google Scholar] [CrossRef] [PubMed]
- The UniProt Consortium; Bateman, A.; Martin, M.-J.; Orchard, S.; Magrane, M.; Agivetova, R.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; et al. UniProt: The Universal Protein Knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [Google Scholar] [CrossRef]
- Berardini, T.Z.; Reiser, L.; Li, D.; Mezheritsky, Y.; Muller, R.; Strait, E.; Huala, E. The Arabidopsis Information Resource: Making and Mining the “Gold Standard” Annotated Reference Plant Genome: Tair: Making and Mining the “Gold Standard” Plant Genome. Genesis 2015, 53, 474–485. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, M.R.; Gasteiger, E.; Bairoch, A.; Sanchez, J.-C.; Williams, K.L.; Appel, R.D.; Hochstrasser, D.F. Protein Identification and Analysis Tools in the ExPASy Server. In 2-D Proteome Analysis Protocols; Humana Press: Totowa, NJ, USA, 1998; Volume 112, pp. 531–552. ISBN 978-1-59259-584-6. [Google Scholar]
- Wang, C.; Dong, Y.; Zhu, L.; Wang, L.; Yan, L.; Wang, M.; Zhu, Q.; Nan, X.; Li, Y.; Li, J. Comparative Transcriptome Analysis of Two Contrasting Wolfberry Genotypes during Fruit Development and Ripening and Characterization of the LrMYB1 Transcription Factor That Regulates Flavonoid Biosynthesis. BMC Genom. 2020, 21, 295. [Google Scholar] [CrossRef]
- Bailey, T.L.; Johnson, J.; Grant, C.E.; Noble, W.S. The MEME Suite. Nucleic Acids Res. 2015, 43, W39–W49. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Rivers, J.; León, P.; McQuinn, R.P.; Pogson, B.J. Synthesis and Function of Apocarotenoid Signals in Plants. Trends Plant Sci. 2016, 21, 792–803. [Google Scholar] [CrossRef]
- Othman, R.; Mohd Zaifuddin, F.A.; Hassan, N.M. Carotenoid Biosynthesis Regulatory Mechanisms in Plants. J. Oleo Sci. 2014, 63, 753–760. [Google Scholar] [CrossRef]
- Floss, D.S.; Walter, M.H. Role of Carotenoid Cleavage Dioxygenase 1 (CCD1) in Apocarotenoid Biogenesis Revisited. Plant Signal. Behav. 2009, 4, 172–175. [Google Scholar] [CrossRef]
- Zhao, J.; Li, J.; Zhang, J.; Chen, D.; Zhang, H.; Liu, C.; Qin, G. Genome-Wide Identification and Expression Analysis of the Carotenoid Cleavage Oxygenase Gene Family in Five Rosaceae Species. Plant Mol. Biol. Rep. 2021, 39, 739–751. [Google Scholar] [CrossRef]
- Frusciante, S.; Diretto, G.; Bruno, M.; Ferrante, P.; Pietrella, M.; Prado-Cabrero, A.; Rubio-Moraga, A.; Beyer, P.; Gomez-Gomez, L.; Al-Babili, S.; et al. Novel Carotenoid Cleavage Dioxygenase Catalyzes the First Dedicated Step in Saffron Crocin Biosynthesis. Proc. Natl. Acad. Sci. USA 2014, 111, 12246–12251. [Google Scholar] [CrossRef]
- Yao, Y.; Jia, L.; Cheng, Y.; Ruan, M.; Ye, Q.; Wang, R.; Yao, Z.; Zhou, G.; Liu, J.; Yu, J.; et al. Evolutionary Origin of the Carotenoid Cleavage Oxygenase Family in Plants and Expression of Pepper Genes in Response to Abiotic Stresses. Front. Plant Sci. 2022, 12, 792832. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.-Q.; Zhang, Y.; Yang, C.-K.; Li, J.-G.; Rui, X.; Ding, F.; Hu, F.-C.; Wang, X.-H.; Ma, W.-Q.; Zhou, K.-B. Genome-Wide Identification and Expression Analysis of Carotenoid Cleavage Oxygenase Genes in Litchi (Litchi Chinensis Sonn.). BMC Plant Biol. 2022, 22, 394. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Li, Q.; Li, P.; Zhang, S.; Liu, C.; Jin, J.; Cao, P.; Yang, Y. Carotenoid Cleavage Dioxygenases: Identification, Expression, and Evolutionary Analysis of This Gene Family in Tobacco. IJMS 2019, 20, 5796. [Google Scholar] [CrossRef]
- Dobeš, C.H.; Mitchell-Olds, T.; Koch, M.A. Extensive Chloroplast Haplotype Variation Indicates Pleistocene Hybridization and Radiation of North American Arabis Drummondii, A. × Divaricarpa, and A. Holboellii (Brassicaceae): Pleistocene HYBRIDIZATION OF ARABIS SPECIES. Mol. Ecol. 2004, 13, 349–370. [Google Scholar] [CrossRef] [PubMed]
- Koch, M.A.; Dobeš, C.; Kiefer, C.; Schmickl, R.; Klimeš, L.; Lysak, M.A. Supernetwork Identifies Multiple Events of Plastid TrnF(GAA) Pseudogene Evolution in the Brassicaceae. Mol. Biol. Evol. 2007, 24, 63–73. [Google Scholar] [CrossRef]
- Koch, M.A.; Dobeš, C.; Matschinger, M.; Bleeker, W.; Vogel, J.; Kiefer, M.; Mitchell-Olds, T. Evolution of the TrnF(GAA) Gene in Arabidopsis Relatives and the Brassicaceae Family: Monophyletic Origin and Subsequent Diversification of a Plastidic Pseudogene. Mol. Biol. Evol. 2005, 22, 1032–1043. [Google Scholar] [CrossRef]
- Harrison, P.M. Digging for Dead Genes: An Analysis of the Characteristics of the Pseudogene Population in the Caenorhabditis Elegans Genome. Nucleic Acids Res. 2001, 29, 818–830. [Google Scholar] [CrossRef]
- Lätari, K.; Wüst, F.; Hübner, M.; Schaub, P.; Beisel, K.G.; Matsubara, S.; Beyer, P.; Welsch, R. Tissue-Specific Apocarotenoid Glycosylation Contributes to Carotenoid Homeostasis in Arabidopsis Leaves. Plant Physiol. 2015, 168, 1550–1562. [Google Scholar] [CrossRef]
- González-Pérez, S.; Gutiérrez, J.; García-García, F.; Osuna, D.; Dopazo, J.; Lorenzo, Ó.; Revuelta, J.L.; Arellano, J.B. Early Transcriptional Defense Responses in Arabidopsis Cell Suspension Culture under High-Light Conditions. Plant Physiol. 2011, 156, 1439–1456. [Google Scholar] [CrossRef]
- Ramel, F.; Mialoundama, A.S.; Havaux, M. Nonenzymic Carotenoid Oxidation and Photooxidative Stress Signalling in Plants. J. Exp. Bot. 2013, 64, 799–805. [Google Scholar] [CrossRef]
- Llewellyn, C.A.; Airs, R.L.; Farnham, G.; Greig, C. Synthesis, Regulation and Degradation of Carotenoids Under Low Level UV-B Radiation in the Filamentous Cyanobacterium Chlorogloeopsis Fritschii PCC 6912. Front. Microbiol. 2020, 11, 163. [Google Scholar] [CrossRef] [PubMed]
- Karppinen, K.; Zoratti, L.; Sarala, M.; Carvalho, E.; Hirsimäki, J.; Mentula, H.; Martens, S.; Häggman, H.; Jaakola, L. Carotenoid Metabolism during Bilberry (Vaccinium myrtillus L.) Fruit Development under Different Light Conditions Is Regulated by Biosynthesis and Degradation. BMC Plant Biol. 2016, 16, 95. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.; He, L.; Jin, L.; Xia, X.; Li, L.; Ahammed, G.J.; Qi, Z.; Yu, J.; Zhou, Y. Light-dependent Activation of HY5 Promotes Mycorrhizal Symbiosis in Tomato by Systemically Regulating Strigolactone Biosynthesis. New Phytol. 2022, 233, 1900–1914. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Qin, B.; He, W.; Chen, Y.; Yin, Y.; Cao, Y.; An, W.; Mu, Z.; Qin, K. Metabolomic and Transcriptomic Analyses of Lycium barbarum L. under Heat Stress. Sustainability 2022, 14, 12617. [Google Scholar] [CrossRef]
Gene Symbol | Gene ID | Protein Length (aa) | MW (kDa) | pI | Instability Index | Aliphatic Index | GRAVY | Subcellular Localization |
---|---|---|---|---|---|---|---|---|
LbCCD1 | Lba06g01133 | 918 | 73.0 | 8.11 | 31.35 | 79.72 | −0.250 | Cytoplasm |
LbCCD3-1 | Lba04g01414 | 713 | 102.9 | 6.47 | 35.65 | 78.16 | −0.278 | Cytoplasm |
LbCCD3-2 | Lba06g00016 | 640 | 67.5 | 6.19 | 35.18 | 89.67 | −0.189 | Cytoplasm |
LbCCD4-1 | Lba04g00945 | 599 | 73.0 | 6.38 | 39.83 | 79.12 | −0.250 | Chloroplast |
LbCCD4-2 | Lba09g02158 | 1105 | 62.2 | 8.55 | 36.81 | 81.80 | −0.179 | Chloroplast |
LbCCD4-3 | Lba09g02160 | 539 | 123.4 | 6.16 | 36.73 | 79.78 | −0.233 | Chloroplast |
LbCCD7 | Lba06g02264 | 643 | 102.9 | 6.27 | 41.15 | 77.60 | −0.372 | Cytoplasm |
LbCCD8 | Lba04g01421 | 556 | 62.2 | 6.37 | 29.60 | 82.07 | −0.343 | Cytoplasm |
LbNCED1 | Lba11g00562 | 607 | 60.0 | 6.31 | 38.76 | 75.80 | −0.403 | Chloroplast |
LbNCED2 | Lba09g01724 | 557 | 72.6 | 6.20 | 41.94 | 82.03 | −0.364 | Cytoplasm |
LbNCED6-1 | Lba05g00348 | 587 | 123.4 | 6.48 | 43.90 | 84.48 | −0.330 | Chloroplast |
LbNCED6-2 | Lba05g00350 | 506 | 60.0 | 5.54 | 38.83 | 84.33 | −0.303 | Cytoplasm |
TFBS | LbCCD4-1pro | LrCCD4-1pro |
---|---|---|
AP2 | 11 | 12 |
ARF | 1 | 1 |
ARR-B | 5 | 5 |
B3 | 6 | 9 |
BBR-BPC | 12 | 13 |
BES1 | 2 | 2 |
bHLH | 8 | 8 |
bZIP | 7 | 7 |
C2H2 | 14 | 14 |
C3H | 2 | 2 |
CAMTA | 2 | 2 |
CPP | 3 | 3 |
Dof | 42 | 40 |
EIL | 2 | 2 |
ERF | 26 | 26 |
G2-like | 10 | 10 |
GATA | 3 | 3 |
GRAS | 3 | 3 |
HD-ZIP | 4 | 4 |
LBD | 6 | 6 |
MIKC_MADS | 23 | 25 |
MYB | 15 | 15 |
MYB_related | 2 | 2 |
NAC | 35 | 37 |
Nin-like | 2 | 2 |
SBP | 2 | 2 |
TCP | 8 | 8 |
Trihelix | 1 | 1 |
VOZ | 1 | 1 |
WRKY | 6 | 6 |
YABBY | 1 | 1 |
SUM | 265 | 272 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Che, J.; Lian, Q.; Wang, C.; Dai, G.; Chen, J. Identification and Expression Pattern of the Carotenoid Cleavage Oxygenase Gene Family in Lycium Suggest CCOs Respond to Abiotic Stress and Promote Carotenoids Degradation. Forests 2023, 14, 983. https://doi.org/10.3390/f14050983
Li W, Che J, Lian Q, Wang C, Dai G, Chen J. Identification and Expression Pattern of the Carotenoid Cleavage Oxygenase Gene Family in Lycium Suggest CCOs Respond to Abiotic Stress and Promote Carotenoids Degradation. Forests. 2023; 14(5):983. https://doi.org/10.3390/f14050983
Chicago/Turabian StyleLi, Weinan, Jiahang Che, Qile Lian, Cuiping Wang, Guoli Dai, and Jinhuan Chen. 2023. "Identification and Expression Pattern of the Carotenoid Cleavage Oxygenase Gene Family in Lycium Suggest CCOs Respond to Abiotic Stress and Promote Carotenoids Degradation" Forests 14, no. 5: 983. https://doi.org/10.3390/f14050983
APA StyleLi, W., Che, J., Lian, Q., Wang, C., Dai, G., & Chen, J. (2023). Identification and Expression Pattern of the Carotenoid Cleavage Oxygenase Gene Family in Lycium Suggest CCOs Respond to Abiotic Stress and Promote Carotenoids Degradation. Forests, 14(5), 983. https://doi.org/10.3390/f14050983