Vertical Patterns of Soil Bacterial and Fungal Communities along a Soil Depth Gradient in a Natural Picea crassifolia Forest in Qinghai Province, China
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Experimental Design, Plant and Soil Sampling
2.3. Soil Bacteria and Fungi Analysis
2.4. Data Analyses
3. Results
3.1. Soil Microbial Composition
3.2. Soil Microbial Community Diversity
3.3. Functional Potentials of Soil Microbial Communities
3.4. Factors Related to Soil Microbial Communities
3.5. The Pathways Determining Soil Microbial Diversity and Functions
4. Discussion
4.1. Soil Bacterial Community with Soil Depths
4.2. Soil Fungal Characteristics with Soil Depths
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cai, Y.F.; Barber, P.; Dell, B.; O’Brien, P.; Williams, N.; Bowen, B.; Hardy, G. Soil bacterial functional diversity is associated with the decline of Eucalyptus gomphocephala. For. Ecol. Manag. 2010, 260, 1047–1057. [Google Scholar] [CrossRef]
- Wang Miao Qu, L.; Ma, K.M.; Yuan, X. Soil microbial properties under different vegetation types on Mountain Han. Sci. China Life Sci. 2013, 56, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Xiang, Z.Y.; Wang, G.X.; Rashad, R.; Liu, W.; Wang, C.T. Changes in soil physicochemical and microbial properties along elevation gradients in two forest soils. Scand. J. For. Res. 2016, 31, 242–253. [Google Scholar] [CrossRef]
- Chen, K.Y.; Hu, L.; Wang, C.T.; Yang, W.G.; Zi, H.B.; Manuel, L. Herbaceous plants influence bacterial communities, while shrubs influence fungal communities in subalpine coniferous forests. For. Ecol. Manag. 2021, 500, 119656. [Google Scholar] [CrossRef]
- Lorenz, M.; Diana, H.; Bernhard, S.; Klaus, F.; Sören, T. The molecular composition of extractable soil microbial compounds and their contribution to soil organic matter vary with soil depth and tree species. Sci. Total Environ. 2021, 78, 146732. [Google Scholar] [CrossRef]
- Chen, D.; Saleem, M.; Cheng, J.; Jia, M.; Chu, P.F.; Tuvshintogtokn, I.; Hu, S.J.; Bai, Y.F. Effects of aridity on soil microbial communities and functions across soil depths on the Mongolian plateau. Funct. Ecol. 2019, 33, 1561–1571. [Google Scholar] [CrossRef]
- Zhao, H.B.; Zheng, W.L.; Zhang, S.W.; Gao, W.L.; Fan, Y.Y. Soil microbial community variation with time and soil depth in Eurasian Steppe (Inner Mongolia, China). Ann. Microbiol. 2021, 71, 1. [Google Scholar] [CrossRef]
- Eilers, K.G.; Debenport, S.; Anderson, S.; Fierer, N. Digging deeper to find unique microbial communities: The strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biol. Biochem. 2012, 50, 58–65. [Google Scholar] [CrossRef]
- Kim, M.; Kim, W.; Binu, M.; Adams, J. Distinct Bacterial Communities Dominate Tropical and Temperate Zone Leaf Litter. Microb. Ecol. 2014, 67, 837–848. [Google Scholar] [CrossRef]
- Hao, J.; Chai, Y.; Dantas, L.; Ordóñez, R.A.; Archontoulis, S.; Schachtman, D. The effects of soil depth on the structure of microbial communities in agricultural soils in Iowa, USA. Appl. Environ. Microbiol. 2020, 87, e02673-20. [Google Scholar] [CrossRef]
- Seuradge, B.J.; Oelbermann, M.; Neufeld, J.D. Depth-dependent influence of different land-use systems on bacterial biogeography. Microbiol. Ecol. 2017, 93, fiw239. [Google Scholar] [CrossRef]
- Zhang, B.; Penton, C.R.; Xue, C.; Quensen, J.F.; Roley, S.S.; Guo, J.; Garoutte, A.; Zheng, T.; Tiedje, J.M. Soil depth and crop determinants of bacterial communities under ten biofuel cropping systems. Soil Biol. Biochem. 2017, 112, 140–152. [Google Scholar] [CrossRef]
- Jumpponen, A.; Jones, K.L.; Blair, J. Vertical distribution of fungal communities in tallgrass prairie soil. Mycologia 2010, 102, 1027–1041. [Google Scholar] [CrossRef]
- Shigyo, N.; Umeki, K.; Hirao, T. Seasonal dynamics of soil fungal and bacterial communities in cool-temperate montane forests. Front. Microbiol. 2019, 10, 1944. [Google Scholar] [CrossRef] [PubMed]
- Mundra, S.; Kjønaas, O.; Morgado, L.; Krabberød, A.; Ransedokken, Y.; Kauserud, H. Soil depth matters: Shift in composition and inter-kingdom co-occurrence patterns of microorganisms in forest soils. FEMS Microbiol. Ecol. 2021, 97, fiab022. [Google Scholar] [CrossRef] [PubMed]
- Piotrowska-Długosz, A.; Dlugosz, J.; Frac, M.; Gryta, A.; Breza-Boruta, B. Enzymatic activity and functional diversity of soil microorganisms along the soil profile—A matter of soil depth and soil-forming processes. Geoderma 2022, 416, 115779. [Google Scholar] [CrossRef]
- Xu, X.; Thornton, P.E.; Post, W.M. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Glob. Ecol. Biogeo. 2013, 22, 737–749. [Google Scholar] [CrossRef]
- Kramer, S.; Marhan, S.; Haslwimmer, H.; Ellen, K. Temporal variation in surface and subsoil abundance and function of the soil microbial community in an arable soil. Soil Biol. Biochem. 2013, 61, 76–85. [Google Scholar] [CrossRef]
- Bååth, E.; Anderson, T.H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol. Biochem. 2003, 35, 955–963. [Google Scholar] [CrossRef]
- Rousk, J.; Bååth, E.; Brookes, P.; Lauber, C.; Lozupone, C.; Caporaso, J.; Knight, R.; Fierer, N. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010, 4, 1340–1351. [Google Scholar] [CrossRef]
- Beales, N. Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: A review. Compr. Rev. Food. Sci. Food. Saf. 2004, 3, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Strickland, M.S.; Rousk, J. Considering fungal: Bacterial dominance in soils—Methods, controls, and ecosystem implications. Soil Biol. Biochem. 2010, 42, 1385–1395. [Google Scholar] [CrossRef]
- Ingwersen, J.; Poll, C.; Streck, T.; Kandeler, E. Micro-scale modelling of carbon turnover driven by microbial succession at a biogeochemical interface. Soil Biol. Biochem. 2008, 40, 864–878. [Google Scholar] [CrossRef]
- Miller, K.; Lai, C.; Dahlgren, R.; Lipson, D. Anaerobic Methane Oxidation in High-Arctic Alaskan Peatlands as a Significant Control on Net CH4 Fluxes. Soil Syst. 2019, 3, 7. [Google Scholar] [CrossRef]
- Ganzert, L.; Jurgens, G.; Münster, U.; Wagner, D. Methanogenic communities in permafrost-affected soils of the Laptev Sea coast, Siberian Arctic, characterized by 16S rRNA gene fingerprints. FEMS Microbiol. Ecol. 2007, 59, 476–488. [Google Scholar] [CrossRef]
- Knudsen, G. Bacteria, fungi and soil health. In Idaho Potato Conference; University of Idaho: Moscow, ID, USA, 2006. [Google Scholar]
- Fierer, N.; Lauber, C.L.; Ramirez, K.S.; Zaneveld, J.; Bradford, M.A.; Knight, R. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 2012, 6, 1007–1017. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, N.; Zeng, H.; Wang, W. Effects of soil depth and plant-soil interaction on microbial community in temperate grasslands of northern China. Sci. Total Environ. 2018, 630, 96–102. [Google Scholar] [CrossRef]
- Hu, L.; Ade, L.J.; Wu, X.W.; Zi, H.B.; Luo, X.P. Changes in soil C:N:P stoichiometry and microbial structure along soil depth in two forest soils. Forest 2019, 10, 113. [Google Scholar] [CrossRef]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, 60. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg, D.L.; Huntley, J.; Fierer, N.; Owens, S.M.; Betley, J.; Fraser, L.; Bauer, M. Ultra-high-throughput microbial community analysis on the illumina hiseq and miseq platforms. ISME J. 2011, 6, 1621–1624. [Google Scholar] [CrossRef]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. Uchime improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Zhang, D.; Jiang, Z.; Sun, P.; Xiao, H.; Wu, Y.; Chen, J. Changes in the soil microbial communities of alpine steppe at Qinghai-Tibetan plateau under different degradation levels. Sci. Total Environ. 2019, 651, 2281–2291. [Google Scholar] [CrossRef] [PubMed]
- Asshauer, K.P.; Wemheuer, B.; Daniel, R.; Meinicke, P. Tax4fun: Predicting functional profiles from metagenomic 16s rRNA data. Bioinformatics 2015, 31, 2882–2884. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.H.; Song, Z.; Bates, S.T.; Branco, S.; Tedersoo, L.; Menke, J.; Schilling, J.S.; Kennedy, P.G. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016, 20, 241–248. [Google Scholar] [CrossRef]
- Barns, S.M.; Cain, E.C.; Smomerville, L.; Kuske, C.R. Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum. Appl. Environ. Microbio. 2007, 73, 3113–3116. [Google Scholar] [CrossRef]
- Eichorst, S.A.; Trojan, D.; Roux, S.; Herbold, C.; Rattei, T.; Woebken, D. Genomic insights into the acidobacteria reveal strategies for their success in terrestrial environments. Environ. Microbiol. 2018, 20, 1041–1063. [Google Scholar] [CrossRef]
- Dawkins, K.; Esiobu, N. The invasive Brazilian pepper tree (Schinus terebinthifolius) is colonized by a root microbiome enriched with alphaproteobacteria and unclassified spartobacteria. Front. Microbiol. 2018, 9, 876. [Google Scholar] [CrossRef]
- Feng, H.; Guo, J.; Wang, W.; Song, X.; Yu, S. Soil depth determines the composition and diversity of bacterial and archaeal communities in a poplar plantation. Forests 2019, 10, 550. [Google Scholar] [CrossRef]
- Fierer, N.; Schimel, J.P.; Holden, P.A. Variations in microbial community composition through two soil depth profiles. Soil Biol. Biochem. 2003, 35, 167–176. [Google Scholar] [CrossRef]
- Yuan, C.L.; Zhang, L.M.; Wang, J.T.; Teng, W.K.; Hu, H.W.; Shen, J.P.; He, J.Z. Limited effects of depth (0–80 cm) on communities of archaea, bacteria and fungi in paddy soil profiles. Eur. J. Soil Sci. 2020, 71, 955–966. [Google Scholar] [CrossRef]
- Narrowe, A.B.; Angle, J.C.; Daly, R.A.; Stefanik, K.C.; Wrighton, K.C.; Miller, C.S. High-resolution sequencing reveals unexplored archaeal diversity in freshwater wetland soils. Environ. Microbiol. 2017, 19, 2192–2209. [Google Scholar] [CrossRef] [PubMed]
- Boutard, M.; Cerisy, T.; Nogue, P.Y.; Alberti, A.; Weissenbach, J.; Salanoubat, M.; Tolonen, A.C. Functional diversity of carbohydrate-active enzymes enabling a bacterium to ferment plant biomass. PLoS Genet. 2014, 10, e1004773. [Google Scholar] [CrossRef] [PubMed]
- Brewer, T.E.; Aronson, E.L.; Arogyaswamy, K.; Billings, S.A.; Botthoff, J.K.; Campbell, A.N.; Dove, N.C.; Fairbanks, D.; Gallery, R.E.; Hart, S.C.; et al. Ecological and genomic attributes of novel bacterial taxa that thrive in subsurface soil horizons. MBio 2019, 10, e01318-19. [Google Scholar] [CrossRef]
- Steven, B.; Gallegos-Graves, L.V.; Belnap, J.; Kuske, C.R. Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material. FEMS Microbiol. Ecol. 2013, 86, 101–113. [Google Scholar] [CrossRef]
- Uksa, M.; Buegger, F.; Gschwendtner, S.; Lueders, T.; Kublik, S.; Kautz, T.; Athmann, M.; Köpke, U.; Munch, J.C.; Schloter, M.; et al. Bacteria utilizing plant-derived carbon in the rhizosphere of Triticum aestivum change in different depths of an arable soil. Environ. Microbiol. Rep. 2017, 9, 729–741. [Google Scholar] [CrossRef]
- Hansel, C.M.; Fendorf, S.; Jardine, P.M.; Francis, C.A. Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile. Appl. Environ. Microbiol. 2008, 74, 1620–1633. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, M.; Lee, S.; Hallam, S.J.; Mohn, W.W. Bacterial, archaeal and eukaryal community structures throughout soil horizons of harvested and naturally disturbed forest stands. Environ. Microbiol. 2009, 11, 3045–3062. [Google Scholar] [CrossRef]
- Leininger, S.; Urich, T.; Schloter, M.; Schwark, L.; Qi, J.; Nicol, G.W.; Prosser, J.I.; Schuster, S.C.; Schleper, C. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 2006, 442, 806–809. [Google Scholar] [CrossRef]
- Rchiad, Z.; Dai, M.; Hamel, C.; Bainard, L.; Cade-Menun, B.; Terrat St-Arnaud, M.; Hijri, M. Soil depth significantly shifted microbial community structures and functions in a semiarid prairie agroecosystem. Front. Microbiol. 2022, 13, 815890. [Google Scholar] [CrossRef]
- Frank-Fahle, B.A.; Yergeau, E.; Greer, C.W.; Lantuit, H.; Wagner, D. Microbial functional potential and community composition in permafrost-affected soils of the NW Canadian Arctic. PLoS ONE 2014, 91, e84761. [Google Scholar] [CrossRef]
- Delmont, T.O.; Prestat, E.; Keegan, K.; Faubladier, M.; Robe, P.; Clark, I.M.; Pelletier, E.; Hirsch, P.R.; Meyer, F.; Gilbert, J.A.; et al. Structure, fluctuation and magnitude of a natural grassland soil metagenome. ISME J. 2012, 6, 1677–1687. [Google Scholar] [CrossRef] [PubMed]
- SalomÉ, C.; Nunan, N.; Pouteau, V.; Lerch, T.Z.; Chenu, C. Carbon dynamics in topsoil and in subsoil may be controlled by different regulatory mechanisms. Glob. Chang. Biol. 2010, 16, 416–426. [Google Scholar] [CrossRef]
- Mohammed, H.; Treydte, A.C.; Sauerborn, J. Managing semi-arid rangelands for carbon storage: Grazing and woody encroachment effects on soil carbon and nitrogen. PLoS ONE 2015, 10, e0109063. [Google Scholar] [CrossRef]
- Stone MMStone Jinjun Kan Alain, F. Plante, parent material and vegetation influence bacterial community structure and nitrogen functional genes along deep tropical soil profiles at the Luquillo Critical Zone Observatory. Soil Biol. Biochem. 2015, 80, 273–282. [Google Scholar] [CrossRef]
- Tang, Y.; Yu, G.; Zhang, X.; Wang, Q.; Ge, J.; Liu, S. Changes in nitrogen-cycling microbial communities with depth in temperate and subtropical forest soils. Appl. Soil. Ecol. 2017, 124, 218–228. [Google Scholar] [CrossRef]
- Wu, Z.; Hao, Z.; Sun, Y.; Guo, L.; Huang, L.; Zeng, Y.; Wang, Y.; Yang, L.; Chen, B. Comparison on the structure and function of the rhizosphere microbial community between healthy and root-rot Panax not ginseng. Appl. Soil. Ecol. 2016, 107, 99–107. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Li, X.; Li, X.Y.; Wang, J.; Zhang, H. Changes of microbial population and N-cycling function genes with depth in three Chinese paddy soils. PLoS ONE 2017, 12, e0189506. [Google Scholar] [CrossRef]
- Zi, H.; Hu, L.; Wang, C. Differentiate responses of soil microbial community and enzyme activities to nitrogen and phosphorus addition rates in an alpine meadow. Front. Plant Sci. 2022, 13, 141. [Google Scholar] [CrossRef]
- Fernández-Calviño, D.; Bååth, E. Growth response of the bacterial community to pH in soils differing in pH. FEMS Microbiol. Ecol. 2010, 73, 149–156. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, Y.M.; Zeng, Q.C. Soil bacterial communities under different vegetation types in the Loess Plateau. Environ. Sci. 2016, 37, 3931–3938. [Google Scholar] [CrossRef]
- Anderson, C.; Beare, M.; Buckley, H.L.; Lear, G. Bacterial and fungal communities respond differently to varying tillage depth in agricultural soils. Peer J. 2017, 5, e3930. [Google Scholar] [CrossRef] [PubMed]
- Naylor, D.; McClure, R.; Jansson, J. Trends in microbial community composition and function by soil depth. Microorganisms 2022, 10, 540. [Google Scholar] [CrossRef]
- Santalahti, M.; Sun, H.; Jumpponen, A.; Pennanen, T.; Heinonsalo, J. Vertical and seasonal dynamics of fungal communities in boreal Scots pine forest soil. FEMS Microbiol. Ecol. 2016, 92, fiw170. [Google Scholar] [CrossRef] [PubMed]
- Kyaschenko, J.; Clemmensen, K.; Karltun, E.; Lindahl, B. Below-ground organic matter accumulation along a boreal forest fertility gradient relates to guild interaction within fungal communities. Ecol. Lett. 2017, 20, 1546–1555. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, H.; Li, X.; Li, X.; Zhang, H. Distribution characteristics of fungal communities with depth in paddy fields of three soil types in China. J. Microbial. 2020, 58, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Strong, D.T.; Wever, H.D.; Merckx, R.; Recous, S. Spatial location of carbon decomposition in the soil pore system. Eur. J. Soil. Sci. 2004, 55, 739–750. [Google Scholar] [CrossRef]
- Chapin, F.S.; Matson, P.A.; Vitousek, P.M. Plant Nutrient Use. In Principles of Terrestrial Ecosystem Ecology; Springer: New York, NY, USA, 2011; pp. 229–258. [Google Scholar] [CrossRef]
- Christian, L.; Lauber, M.S.; Strickland Mark, A.; Bradford, N.F. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol. Biochem. 2008, 40, 2407–2415. [Google Scholar] [CrossRef]
- Smith, S.E.; Smith, F.A. Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 2012, 104, 1–13. [Google Scholar] [CrossRef]
- Zhu, X.C.; Song, F.B.; Liu, S.Q.; Liu, T.D. Effects of arbuscular mycorrhizal fungus on photosynthesis and water status of maize under high temperature stress. Plant Soil 2011, 346, 189–199. [Google Scholar] [CrossRef]
- Smith, J.E. Mycorrhizal symbiosis (third edition). Soil Sci. Soc. Am. J. 2009, 73, 694. [Google Scholar] [CrossRef]
- Sterkenburg, E.; Bahr, A.; Durling, M.; Clemmensen, K.; Lindahl, B. Changes in fungal communities along a boreal forest soil fertility gradient. New Phytol. 2015, 207, 1145–1158. [Google Scholar] [CrossRef] [PubMed]
- Bardgett, R.; McAlister, E. The measurement of soil fungal: Bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands. Biol. Fertil. Soils 1999, 29, 282–290. [Google Scholar] [CrossRef]
- Tedersoo, L.; Bahram, M.; Toots, M.; Diedhiou, A.; Henkel, T.; Kjøller, R.; Morris, M.; Nara, K.; Nouhra, E.; Peay, K.; et al. Towards global patterns in the diversity and community structure of ectomycorrhizal fungi. Mol. Ecol. 2012, 21, 4160–4170. [Google Scholar] [CrossRef] [PubMed]
Sample Site | Geographical Location | Altitude (m) | Canopy Density (%) | Number of Trees | Mean Forest Height (m) | Mean Forest DBH (cm) | Tree Biomass (t·ha−1) | Shrub Biomass (t·ha−1) | Herb Biomass (t·ha−1) | Litter Biomass (t·ha−1) |
---|---|---|---|---|---|---|---|---|---|---|
Plot A | 36°52′13.80″ N 102°26′36.60″ E | 2835 | 70 | 112 | 6.44 | 11.6 | 115.95 | 0.82 | 0.51 | 8.53 |
Plot B | 36°52′16.20″ N 102°26′36.60″ E | 2817 | 60 | 89 | 6.98 | 11.6 | 40.63 | 1.22 | 0.72 | 0.99 |
Plot C | 36°52′16.20″ N 102°26′40.80″ E | 2816 | 80 | 88 | 6.48 | 10.9 | 32.62 | 0.72 | 0.64 | 1.37 |
Plot D | 36°52′22.80″ N 102°26′34.20″ E | 2815 | 65 | 102 | 7.88 | 12.6 | 73.53 | 0.36 | 0.26 | 1.09 |
Plot E | 36°52′24.00″ N 102°26′36.00″ E | 2847 | 70 | 89 | 6.46 | 13.5 | 41.28 | 0.17 | 0.62 | 1.80 |
Plot F | 36°52′24.00″ N 102°26′31.80″ E | 2795 | 64 | 90 | 8.14 | 10.6 | 88.43 | 0.50 | 0.34 | 0.78 |
Microbial Taxa | Soil Depth | OTUs 1 | Chao1 | PD | Shannon–Wiener |
---|---|---|---|---|---|
Bacteria | 0–10 cm | 2703 ± 86 a | 4806 ± 158 a | 160.2 ± 5.18 a | 9.04 ± 0.24 a |
10–20 cm | 2543 ± 69 b | 4602 ± 137 ab | 151.6 ± 4.89 b | 8.73 ± 0.15 b | |
20–30 cm | 2451 ± 92 b | 4502 ± 170 b | 149.3 ± 4.62 b | 8.61 ± 0.19 bc | |
30–50 cm | 2247 ± 139 c | 4223 ± 208 c | 139.8 ± 5.89 c | 8.35 ± 0.28 c | |
Fungi | 0–10 cm | 965 ± 68 a | 1577 ± 108 a | 215.9 ± 19.22 a | 6.17 ± 0.27 a |
10–20 cm | 907 ± 107 ab | 1494 ± 120 ab | 212.6 ± 29.13 a | 5.90 ± 0.86 a | |
20–30 cm | 851 ± 99 ab | 1392 ± 145 bc | 224.5 ± 43.64 a | 5.65 ± 0.84 a | |
30–50 cm | 797 ± 74 b | 1330 ± 76 c | 197.6 ± 35.19 a | 5.31 ± 0.94 a |
Factor | Bacterial Communities | Fungal Communities | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
df | SS 1 | F | p | Explained Variation | df | SS 2 | F | p | Explained Variation | |
Soil depth | 3 | 0.298 | 2.574 | 0.001 | 23.7% | 3 | 0.896 | 1.544 | 0.015 | 13.9% |
Sample plot | 5 | 0.308 | 1.595 | 0.016 | 24.4% | 5 | 2.599 | 2.685 | 0.001 | 40.2% |
Soil organic carbon | 1 | 0.092 | 2.374 | 0.019 | 7.28% | 1 | 0.250 | 1.291 | 0.148 | |
Soil pH | 1 | 0.060 | 1.560 | 0.132 | 1 | 0.180 | 0.925 | 0.578 | ||
Residual | 13 | 0.502 | 15 | 2.516 |
Variables | Bacterial Diversity PC1 | Bacterial Function PC1 | Fungal Diversity PC1 | Fungal Function PC1 | Fungal Function PC2 | |
---|---|---|---|---|---|---|
Soil depth | Direct effects | 0.806 | 0.473 | |||
Total effects | −0.767 | 0.579 | −0.469 | 0.301 | −0.292 | |
Sampling plot | Direct effects | −0.195 | −0.333 | 0.404 | ||
Total effects | −0.219 | 0.277 | 0.194 | −0.222 | 0.123 | |
Soil pH | Direct effects | −0.518 | 0.278 | 0.357 | −0.906 | |
Total effects | −0.518 | 0.278 | 0.357 | −0.906 | ||
Soil organic carbon | Direct effects | 0.429 | 0.601 | 0.609 | ||
Total effects | 0.429 | 0.601 | 0.609 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, L.; Wang, X.; Song, X.; Dai, D.; Ding, L.; Degen, A.A.; Wang, C. Vertical Patterns of Soil Bacterial and Fungal Communities along a Soil Depth Gradient in a Natural Picea crassifolia Forest in Qinghai Province, China. Forests 2023, 14, 1016. https://doi.org/10.3390/f14051016
Hu L, Wang X, Song X, Dai D, Ding L, Degen AA, Wang C. Vertical Patterns of Soil Bacterial and Fungal Communities along a Soil Depth Gradient in a Natural Picea crassifolia Forest in Qinghai Province, China. Forests. 2023; 14(5):1016. https://doi.org/10.3390/f14051016
Chicago/Turabian StyleHu, Lei, Xin Wang, Xiaoyan Song, Di Dai, Luming Ding, Abraham Allan Degen, and Changting Wang. 2023. "Vertical Patterns of Soil Bacterial and Fungal Communities along a Soil Depth Gradient in a Natural Picea crassifolia Forest in Qinghai Province, China" Forests 14, no. 5: 1016. https://doi.org/10.3390/f14051016
APA StyleHu, L., Wang, X., Song, X., Dai, D., Ding, L., Degen, A. A., & Wang, C. (2023). Vertical Patterns of Soil Bacterial and Fungal Communities along a Soil Depth Gradient in a Natural Picea crassifolia Forest in Qinghai Province, China. Forests, 14(5), 1016. https://doi.org/10.3390/f14051016