Effects of Trace Elements on Traits and Functional Active Compounds of Camellia oleifera in Nutrient-Poor Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Study Area
2.2. Experimental Design
2.3. Measurement of Camellia Fruit Characteristics and Economic Indicators
2.4. Measurement of Functional Active Compounds of Camellia Oil
2.5. Statistical Analysis
3. Results
3.1. The Effect of Trace Elements on Fruit Characteristics
3.2. The Effect of Trace Elements on Economic Indicators
3.3. The Effects of Trace Elements on Functional and Active Components of Camellia Oil
3.3.1. Effects of Trace Elements on Total Sterol Content
3.3.2. Effects of Trace Elements on Squalene Content
3.3.3. Effects of Trace Elements on Total Flavonoid Content
3.3.4. Effects of Trace Elements on Polyphenol Content
3.4. Correlation Analysis between Trace Elements and Components in Camellia Oil
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dong, B.; Wu, B.; Hong, W.; Li, X.; Li, Z.; Xue, L.; Huang, Y. Transcriptome analysis of the tea oil camellia (Camellia oleifera) reveals candidate drought stress genes. PLoS ONE 2017, 12, e0181835. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Xie, Y.; Ren, H. Fatty acid composition and tocopherol, sitosterol, squalene components of Camellia reticulata oil. J. Consum. Prot. Food Saf. 2018, 13, 403–406. [Google Scholar] [CrossRef]
- Yu, J.; Yan, H.; Wu, Y.; Wang, Y.; Xia, P. Quality Evaluation of the Oil of Camellia spp. Foods 2022, 11, 2221. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.G.; Cao, Z.R.; Yao, H.; Li, C.; Zhao, Y.; Yuan, D.; Yang, G. The physicochemical properties and fatty acid composition of two new woody oil resources: Camellia hainanica seed oil and Camellia sinensis seed oil. CyTA J. Food 2021, 19, 208–211. [Google Scholar]
- Xiao, X.M.; He, L.; Chen, Y.Y.; Wu, L.; Wang, L.; Liu, Z.P. Anti-inflammatory and antioxidative effects of Camellia oleifera Abel components. Future Med. Chem. 2017, 9, 2069–2079. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhou, G.Y.; Zhang, H.; Liu, J.A. Research progress on the health function of tea oil. J. Med. Plants Res. 2011, 5, 485–489. [Google Scholar]
- Xiang, Z.Y.; Xia, C.; Feng, S.; Chen, T.; Zhou, L.; Liu, L.; Kong, Q.; Yang, H.; Ding, C. Assessment of free and bound phenolics in the flowers and floral organs of two Camellia species flower and their antioxidant activities. Food Biosci. 2022, 49, 101905. [Google Scholar] [CrossRef]
- Zhang, L.X.; Wang, S.J.; Yang, R.; Mao, J.; Jiang, J.; Wang, X.; Zhang, W.; Zhang, Q.; Li, P.W. Simultaneous determination of tocopherols, carotenoids and phytosterols in edible vegetable oil by ultrasound-assisted saponification, LLE and LC-MS/MS. Food Chem. 2019, 289, 313–319. [Google Scholar] [CrossRef]
- Tang, G.X.; Tang, S.B.; Li, Y. Study on soil characters of Camellia oleifera land. Jiangxi For. Sci. Technol. 2002, 1, 20–24. [Google Scholar]
- Mukhopadhyay, M.; Mondal, T.K. Effect of Zinc and Boron on Growth and Water Relations of Camellia sinensis (L.) O. Kuntze cv. T-78. Natl. Acad. Sci. Lett.-India 2015, 38, 283–286. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, R.; Ye, H.; Wang, J.; Li, X.; Wang, Q.; Rui, Y. Determination of Trace Element Nutrition and Risk Assessment of Heavy Metals in Se-Enriched Camellia oleifera by ICP-MS. Asian J. Chem. 2013, 25, 8833–8834. [Google Scholar] [CrossRef]
- Mukhopadhyay, M.; Das, A.; Subba, P.; Bantawa, P.; Sarkar, B.; Ghosh, P.; Mondal, T.K. Structural, physiological, and biochemical profiling of tea plantlets under zinc stress. Biol. Plant. 2013, 57, 474–480. [Google Scholar] [CrossRef]
- Upadhyaya, H.; Dutta, B.K.; Panda, S.K. Zinc Modulates Drought-Induced Biochemical Damages in Tea Camellia sinensis (L) O Kuntze. J. Agric. Food Chem. 2013, 61, 6660–6670. [Google Scholar] [CrossRef]
- Mei, X.C.; Du, Y.X. Application Effect Test of Boron on Camellia oleifera’s Production. Jiangxi For. Sci. Technol. 2014, 42, 22–23. [Google Scholar]
- Wang, Y.H.; Liu, J.; Ma, X.L.; Jiang, J.M.; Wu, L.; Liu, F. Effects of different selenium–rich methods on quality characteristics and functional components of Camellia oleifera oil. Sci. Technol. Food Ind. 2017, 38, 54–59. [Google Scholar]
- Xu, W. Enrichment of selenium in Camellia oleifera and selenium fertilizer effect on the qualiy of Camellia oil. Master’s Thesis, Anhui Agricultural University, Hefei, China, 2018. [Google Scholar]
- Zhao, J.P.; Wu, L.C.; Chen, Y.Z.; Li, F.C.; Qin, J. Effects of active selenium on soil chemical properties in Camellia oleifera forest. J. Cent. South Univ. For. Technol. 2011, 31, 75–81. [Google Scholar]
- National Meteorological Science Data Center of China. Available online: http://data.cma.cn/analysis/yearbooks.html (accessed on 20 March 2023).
- Wen, Y.; Zhang, Y.; Su, S.; Yang, S.; Ma, L.; Zhang, L.; Wang, X. Effects of Tree Shape on the Microclimate and Fruit Quality Parameters of Camellia oleifera Abel. Forests 2019, 10, 563. [Google Scholar] [CrossRef]
- GB/T 25223-2010; Animal and Vegetable Fats and Oils-Determination of Individual and Total Sterols Contents-Gas Chormatographic Method. ISO: Nanjing, China, 2010.
- LS/T 6120-2017; Inspection of Grain and Oil—Determination of Squalene in Vegetable Oil—Gas Chromatographic. ISO: Beijing, China, 2017.
- Yue, C.; Yu, N.; Li, H.; She, J.; Zhou, W.; Li, Z. Research on fatty acids and active components in Camellia oleifera Abel. seed oil of Hunan province. J. Food Saf. Qual. 2021, 12, 1972–1977. [Google Scholar]
- LS/T 6119-2017; Inspection of Grain and Oils—Determination of Polyphenols in Vegetable Oil—Spectrometric Method. ISO: Beijing, China, 2017.
- Zhou, B.; Chen, Y.Y.; Zeng, L.T.; Cui, Y.Y.; Li, J.L.; Tang, H.; Liu, J.Y.; Tang, J.C. Soil nutrient deficiency decreases the postharvest quality-related metabolite contents of tea (Camellia sinensis (L.) Kuntze) leaves. Food Chem. 2022, 377, 132003. [Google Scholar] [CrossRef]
- Zhu, X.L.; Tang, J.M.; Qin, H.Z.; Bai, K.D.; Chen, Z.Y.; Zou, R.; Liu, S.Y.; Yang, Q.G.; Xiao, W.; Chai, S.F. Contrasting Adaptation Mechanisms of Golden Camellia Species to Different Soil Habitats Revealed by Nutrient Characteristics. Agronomy 2022, 12, 1511. [Google Scholar] [CrossRef]
- Xiang, J.; Rao, S.; Chen, Q.; Zhang, W.; Cheng, S.; Cong, X.; Zhang, Y.; Yang, X.; Xu, F. Research Progress on the Effects of Selenium on the Growth and Quality of Tea Plants. Plants 2022, 11, 2491. [Google Scholar] [CrossRef]
- Hajiboland, R.; Bahrami-Rad, S.; Bastani, S. Phenolics Metabolism in Boron-Deficient Tea Camellia sinensis (L.) O. Kuntze Plants. Acta Biol. Hung. 2013, 64, 196–206. [Google Scholar] [CrossRef]
- Huang, G.W.; Zhang, W.J.; Deng, S.G. Effects of Foliar Fertilizer on the Growth and Physiological Characteristics of Camellia oleifera Seedlings. J. West China For. Sci. 2021, 50, 56–63. [Google Scholar]
- Jiang, J.Y.; Yang, H.Q.; Ouyang, W.; An, M.; Yang, X.; Long, X.; Hu, Y. Effects of Combined Application of Organic Fertilizer and NPK on Growth and Economic Characters of Camellia oleifera. J. Sichuan Agric. Univ. 2022, 40, 73–82. [Google Scholar]
- Yan, C.; Yao, X.; Yin, H.; Wang, K.; Yin, R.; Teng, J. Fruit Development Dynamics and Lignin Accumulation Law of Oil Tea. Acta Agric. Univ. Jiangxiensis 2020, 42, 788–801. [Google Scholar]
- Yan, C. Molecular Regulation of Lignin Biosynthesis in Fruit Development of Oil-Camellia. Ph.D. Thesis, China Academy of Forestry Sciences, Beijing, China, 2020. [Google Scholar]
- Li, Z.J.; Hua, J.Q.; Zeng, Y.R. Oil content of Camellia oleifera fruit trees. J. Zhejiang A F Univ. 2010, 27, 935–940. [Google Scholar]
- Liang, W.J.; Xiao, P.; Cui, M.; Fu, Y.; Luo, L. The growth and development dynamics of Camellia oleifera Abel. fruits and seeds. J. Nanchang Univ. 2019, 43, 46–52. [Google Scholar]
- HU, Y.L.; Long, X.Y.; Yang, H.; Yang, X.; Yang, S.; Pan, Z. Effects of different foliar fertilization concentrations on the chlorophyll content and productivity of oil-tea Camellia. J. For. Environ. 2021, 41, 527–535. [Google Scholar]
- Zan, Y.L.; Wang, L. Effect of exogenous selenium on seed oil and fatty acid content in Helianthus annuus. Guizhou Agric. Sci. 2016, 44, 19–22. [Google Scholar]
- He, P.; Zhang, J.D.; Bai, X.Q. Effects of Some Trace Elements on the Flower and Fruit Drop and Oil Content of Camellia oleifera. Jiangxi For. Sci. Technol. 1984, 5, 5–8. [Google Scholar]
- Lin, P.; Wang, K.; Wang, Y.; Hu, Z.; Yan, C.; Huang, H.; Ma, X.; Cao, Y.; Long, W.; Liu, W.; et al. The genome of oil-Camellia and population genomics analysis provide insights into seed oil domestication. Genome Biol. 2022, 23, 14. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.R.; Jiang, X.G.; Peng, S.F.; Li, F.; Liu, J.; Chen, D.; Wu, L.; Liu, F. Effect of Selenium Content on the Quality and Functional Components of Selenium-riched Camellia oleifera Oil. J. Chin. Inst. Food Sci. Technol. 2015, 15, 142–149. [Google Scholar]
- Pinto, A.; Juniper, D.T.; Sanil, M.; Morgan, L.; Clark, L.; Sies, H.; Rayman, M.P.; Steinbrenner, H. Supranutritional selenium induces alterations in molecular targets related to energy metabolism in skeletal muscle and visceral adipose tissue of pigs. J. Inorg. Biochem. 2012, 114, 47–54. [Google Scholar] [CrossRef]
- Su, W.L.; Liu, N.; Mei, L.; Luo, J.; Zhu, Y.J.; Liang, Z. Global Transcriptomic Profile Analysis of Genes Involved in Lignin Biosynthesis and Accumulation Induced by Boron Deficiency in Poplar Roots. Biomolecules 2019, 9, 156. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.L.; Tang, W.L.; Liu, J.; Liu, J.; Wu, L.C.; Liu, F. Effects of selenium-enriched fertilizer on the main chemical characteristics and functional components of Camellia oil. Food Sci. Technol. 2015, 40, 148–154. [Google Scholar]
- Song, C.Z.; Liu, M.Y.; Meng, J.F.; Chi, M.; Xi, Z.M.; Zhang, Z.W. Promoting Effect of Foliage Sprayed Zinc Sulfate on Accumulation of Sugar and Phenolics in Berries of Vitis vinifera cv. Merlot Growing on Zinc Deficient Soil. Molecules 2015, 20, 2536–2554. [Google Scholar] [CrossRef] [PubMed]
Treatment Number | Selenium (mg/L) | Boron (mg/L) | Zinc (Dilution Factor) |
---|---|---|---|
CK | 0 | 0 | - |
Y1 | 0 | 2 | 1000 |
Y2 | 0 | 4 | 1500 |
Y3 | 0 | 6 | 2000 |
Y4 | 100 | 0 | 1000 |
Y5 | 100 | 2 | 0 |
Y6 | 100 | 4 | 2000 |
Y7 | 100 | 6 | 1500 |
Y8 | 150 | 0 | 1500 |
Y9 | 150 | 2 | 2000 |
Y10 | 150 | 4 | 0 |
Y11 | 150 | 6 | 1000 |
Y12 | 200 | 0 | 2000 |
Y13 | 200 | 2 | 1500 |
Y14 | 200 | 4 | 1000 |
Y15 | 200 | 6 | 0 |
Treatment Number | Longitudinal Diameter of Single Fruit (mm) | Transverse Diameter of Single Fruit (mm) | Peel Thickness of Single Fruit (mm) | Single Fruit Weight (g) | Number of Seeds Per Fruit | Single Fresh Seed Weight (g) |
---|---|---|---|---|---|---|
Mean ± Standard Error | Mean ± Standard Error | Mean ± Standard Error | Mean | Mean | Mean | |
CK | 33.84 ± 2.91 ab | 35.29 ± 3.65 ab | 3.80 ± 0.55 bcd | 22.81 | 6.17 | 1.29 |
1 | 33.27 ± 3.28 ab | 35.00 ± 3.80 ab | 3.63 ± 0.83 cd | 22.16 | 4.93 | 1.68 |
2 | 34.88 ± 2.80 a | 35.22 ± 3.22 ab | 3.77 ± 0.65 bcd | 22.66 | 5.57 | 1.27 |
3 | 32.64 ± 2.91 b | 32.97 ± 3.11 c | 3.67 ± 0.68 cd | 18.88 | 5.60 | 1.15 |
4 | 34.19 ± 2.68 ab | 35.58 ± 3.46 ab | 3.77 ± 0.54 bcd | 23.29 | 5.30 | 1.47 |
5 | 34.27 ± 3.18 ab | 35.49 ± 3.50 ab | 4.21 ± 0.77 a | 22.4 | 6.03 | 1.27 |
6 | 34.11 ± 2.79 ab | 35.28 ± 3.01 ab | 4.00 ± 0.61 abc | 22.35 | 5.90 | 1.26 |
7 | 34.51 ± 3.48 a | 35.37 ± 3.38 ab | 3.93 ± 0.63 abc | 23.37 | 5.37 | 1.45 |
8 | 33.92 ± 3.56 ab | 35.40 ± 4.12 ab | 4.02 ± 0.63 abc | 23.06 | 6.13 | 1.22 |
9 | 33.34 ± 2.96 ab | 33.65 ± 3.87 bc | 3.97 ± 0.64 abc | 20.39 | 5.50 | 1.27 |
10 | 34.20 ± 2.97 ab | 34.8 ± 2.79 abc | 3.52 ± 0.63 d | 21.79 | 5.90 | 1.24 |
11 | 34.14 ± 3.60 ab | 35.97 ± 3.93 a | 4.07 ± 0.69 ab | 25.22 | 7.63 | 1.21 |
12 | 33.41 ± 1.85 ab | 34.0 ± 2.14 abc | 3.65 ± 0.50 cd | 20.17 | 6.17 | 1.11 |
13 | 34.40 ± 2.94 ab | 35.24 ± 2.95 ab | 3.8 ± 0.56 abcd | 22.85 | 7.30 | 1.22 |
14 | 34.18 ± 1.96 ab | 34.6 ± 2.36 abc | 3.8 ± 0.69 abcd | 21.95 | 7.03 | 1.02 |
15 | 33.12 ± 2.98 ab | 34.0 ± 3.41 abc | 3.97 ± 0.52 abc | 20.99 | 6.20 | 1.14 |
Treatment Number | Ratio of Fresh Seed Per Fruit (%) | Ratio of Dry Seed to Fresh Seed (%) | Ratio of Kernels in Dry Seed (%) | Ratio of Dry to Fresh Kernels (%) | Oil Content in Dry Kernels (%) | Oil Content in Fruit (%) | Fruit Yield Per Plant (kg) | Oil Yield Per Plant (kg) |
---|---|---|---|---|---|---|---|---|
CK | 34.76 | 52.86 | 69.61 | 98.79 | 54.83 | 6.93 | 11.81 | 0.82 |
1 | 37.50 | 56.44 | 67.09 | 98.03 | 53.41 | 7.44 | 13.46 | 1.00 |
2 | 33.54 | 57.94 | 70.07 | 98.97 | 55.47 | 7.48 | 13.22 | 0.99 |
3 | 34.17 | 61.46 | 58.16 | 98.54 | 51.39 | 6.19 | 10.00 | 0.62 |
4 | 33.38 | 49.19 | 65.12 | 98.52 | 51.41 | 5.42 | 14.27 | 0.77 |
5 | 34.23 | 49.79 | 64.46 | 98.47 | 51.93 | 5.62 | 17.05 | 0.96 |
6 | 33.17 | 49.99 | 58.50 | 99.10 | 48.64 | 4.68 | 13.23 | 0.62 |
7 | 33.37 | 54.93 | 66.63 | 98.66 | 51.48 | 6.20 | 9.93 | 0.62 |
8 | 32.44 | 52.58 | 67.54 | 98.24 | 52.58 | 5.95 | 10.75 | 0.64 |
9 | 34.15 | 54.76 | 67.66 | 97.51 | 51.72 | 6.38 | 12.12 | 0.77 |
10 | 33.53 | 58.45 | 62.85 | 99.77 | 49.50 | 6.08 | 11.92 | 0.72 |
11 | 35.53 | 49.86 | 62.45 | 99.36 | 48.94 | 5.38 | 13.03 | 0.70 |
12 | 33.91 | 51.14 | 67.03 | 98.26 | 51.43 | 5.87 | 10.99 | 0.65 |
13 | 34.27 | 49.74 | 64.80 | 98.75 | 50.15 | 5.47 | 15.65 | 0.86 |
14 | 32.82 | 52.15 | 65.93 | 98.63 | 51.24 | 5.70 | 15.90 | 0.91 |
15 | 33.55 | 55.02 | 67.81 | 98.95 | 51.86 | 6.42 | 12.29 | 0.79 |
Trace Element | Total Sterol Content of Camellia Oil | Squalene Content of Camellia Oil | Total Flavonoid Content of Camellia Oil | Polyphenol Content of Camellia Oil |
---|---|---|---|---|
Selenium | 0.403 ** | 0.713 ** | 0.328 * | 0.249 |
Boron | 0.458 ** | −0.072 | −0.149 | −0.072 |
Zinc | −0.03 | 0.223 | −0.05 | 0.122 |
Source of Variation | Degrees of Freedom | Total Sterol Content | Squalene Content | Total Flavonoid Content | Polyphenol Content | ||||
---|---|---|---|---|---|---|---|---|---|
p Value | R Value | p Value | R Value | p Value | R Value | p Value | R Value | ||
Selenium | 3 | 0.315 | 38.250 | 0.003 | 50.688 | 0.085 | 6.850 | 0.117 | 18.500 |
Boron | 3 | 0.361 | 35.500 | 0.903 | 14.650 | 0.702 | 2.775 | 0.577 | 10.890 |
Zinc | 3 | 0.937 | 27.375 | 0.842 | 16.188 | 0.806 | 2.868 | 0.612 | 10.860 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, Q.; Deng, Z.; Pan, L.; Nie, L.; Yang, Y.; Huang, Y.; Huang, J. Effects of Trace Elements on Traits and Functional Active Compounds of Camellia oleifera in Nutrient-Poor Forests. Forests 2023, 14, 830. https://doi.org/10.3390/f14040830
Dai Q, Deng Z, Pan L, Nie L, Yang Y, Huang Y, Huang J. Effects of Trace Elements on Traits and Functional Active Compounds of Camellia oleifera in Nutrient-Poor Forests. Forests. 2023; 14(4):830. https://doi.org/10.3390/f14040830
Chicago/Turabian StyleDai, Qiuyue, Zheng Deng, Lan Pan, Lang Nie, Yunyuan Yang, Yongfang Huang, and Jiuxiang Huang. 2023. "Effects of Trace Elements on Traits and Functional Active Compounds of Camellia oleifera in Nutrient-Poor Forests" Forests 14, no. 4: 830. https://doi.org/10.3390/f14040830
APA StyleDai, Q., Deng, Z., Pan, L., Nie, L., Yang, Y., Huang, Y., & Huang, J. (2023). Effects of Trace Elements on Traits and Functional Active Compounds of Camellia oleifera in Nutrient-Poor Forests. Forests, 14(4), 830. https://doi.org/10.3390/f14040830