Total Streamflow Variation for the Upper Catchment of Bosten Lake Basin in China Inferred from Tree-Ring Width Records
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Tree-Ring Width Measurement
2.3. Development of Tree-Ring Chronologies
2.4. Hydrometeorological Data and Developed Streamflow Reconstructions
2.5. Statistical Analysis
2.6. Characteristics of Hydrometeorological Data Variation
3. Results
3.1. Regional Chronologies Development and Analyses
3.2. Climate Response Analysis
3.3. Streamflow Reconstruction and Its Reliability Tests
3.4. Characteristics of the Total Streamflow Series
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stanev, E.V. Temporal and Spatial Patterns of Sea Level in Inland Basins: Recent Events in the Aral Sea. Geophys. Res. Lett. 2004, 31, L15505. [Google Scholar] [CrossRef]
- Bai, J.; Chen, X.; Li, J.; Yang, L.; Fang, H. Changes in the Area of Inland Lakes in Arid Regions of Central Asia during the Past 30 Years. Environ. Monit. Assess 2011, 178, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Harris, A. Time Series Remote Sensing of a Climatically Sensitive Lake. Remote Sens. Environ. 1994, 50, 83–94. [Google Scholar] [CrossRef]
- Zuo, Q.; Dou, M.; Chen, X.; Zhou, K. Physically-Based Model for Studying the Salinization of Bosten Lake in China. Water Energy Abstr. 2007, 16, 5. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.Z.; Chen, F.H.; Fan, Y.X.; Yang, M.L. Dry Late-Glacial and Early Holocene Climate in Arid Central Asia Indicated by Lithological and Palynological Evidence from Bosten Lake, China. Quat. Int. 2009, 194, 19–27. [Google Scholar] [CrossRef]
- Zhu, C.M.; Li, J.L.; Zhang, X.; Luo, J.C. Bosten water resource dynamic detection and feature analysis in recent 40 years by remote sensing. J. Nat. Resour. 2015, 30, 106–114. (In Chinese) [Google Scholar]
- Guo, M.; Wu, W.; Zhou, X.; Chen, Y.; Li, J. Investigation of the Dramatic Changes in Lake Level of the Bosten Lake in Northwestern China. Theor. Appl. Climatol. 2015, 119, 341–351. [Google Scholar] [CrossRef]
- Sun, Z.D.; Opp, C.; Wang, R.; Gao, Q.Z. Response of land surface flow to climate change in the mountain regions of Bosten Lake valley, Xinjiang, China. J. Mt. Sci. 2010, 28, 206–211. (In Chinese) [Google Scholar] [CrossRef]
- Luo, C.; Wu, S.L. Analysis on the changes of temperature and precipitation in the Bosten Lake basin, Xinjiang. J. Beihua Univ. (Nat. Sci.) 2013, 14, 472–475. (In Chinese) [Google Scholar]
- Gou, X.; Chen, F.; Cook, E.; Jacoby, G.; Yang, M.; Li, J. Streamflow Variations of the Yellow River over the Past 593 Years in Western China Reconstructed from Tree Rings: Streamflow variations of the Yellow River. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Gou, X.; Deng, Y.; Chen, F.; Yang, M.; Fang, K.; Gao, L.; Yang, T.; Zhang, F. Analysis of tree-ring reconstruction and change characteristics of the flow of the upper Yellow River in the past 1234 years. Chin. Sci. Bull. 2010, 55, 3236–3243. (In Chinese) [Google Scholar] [CrossRef]
- Woodhouse, C.A.; Lukas, J.J. Multi-Century Tree-Ring Reconstructions of Colorado Streamflow for Water Resource Planning. Clim. Change 2006, 78, 293–315. [Google Scholar] [CrossRef]
- Woodhouse, C.A.; Gray, S.T.; Meko, D.M. Updated Streamflow Reconstructions for the Upper Colorado River Basin. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef]
- Panyushkina, I.P.; Meko, D.M.; Macklin, M.G.; Toonen, W.H.J.; Mukhamadiev, N.S.; Konovalov, V.G.; Ashikbaev, N.Z.; Sagitov, A.O. Runoff Variations in Lake Balkhash Basin, Central Asia, 1779–2015, Inferred from Tree Rings. Clim. Dyn. 2018, 51, 3161–3177. [Google Scholar] [CrossRef]
- Liu, Y.; Song, H.; An, Z.; Sun, C.; Trouet, V.; Cai, Q.; Liu, R.; Leavitt, S.W.; Song, Y.; Li, Q.; et al. Recent Anthropogenic Curtailing of Yellow River Runoff and Sediment Load Is Unprecedented over the Past 500 y. Proc. Natl. Acad. Sci. USA 2020, 117, 18251–18257. [Google Scholar] [CrossRef]
- Ferrero, M.E.; Villalba, R.; De Membiela, M.; Hidalgo, L.F.; Luckman, B.H. Tree-Ring Based Reconstruction of Río Bermejo Streamflow in Subtropical South America. J. Hydrol. 2015, 525, 572–584. [Google Scholar] [CrossRef]
- Pederson, N.; Jacoby, G.C.; D’Arrigo, R.D.; Cook, E.R.; Buckley, B.M.; Dugarjav, C.; Mijiddorj, R. Hydrometeorological Reconstructions for Northeastern Mongolia Derived from Tree Rings: 1651–1995. J. Climate 2001, 14, 872–881. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, Y.; Zhang, R.; Yu, S.; Fan, Y.; Shang, H.; Jiang, S.; Qin, L.; Zhang, H. Tree-Ring Width Based Streamflow Reconstruction for the Kaidu River Originating from the Central Tianshan Mountains since AD 1700. Dendrochronologia 2020, 61, 125700. [Google Scholar] [CrossRef]
- Chen, F.; Huang, X.; Yang, M.; Yang, X.; Fan, Y.; Zhao, H. Westerly dominated Holocene climate model in arid central Asia-Case study on Bosten Lake Basin, Xinjiang, China. Quat. Sci. 2006, 26, 881–887. (In Chinese) [Google Scholar]
- Wang, H.; Pan, Y.; Chen, Y. Impacts of Regional Climate and Teleconnection on Hydrological Change in the Bosten Lake Basin, Arid Region of Northwestern China. J. Water Clim. Change 2018, 9, 74–88. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Zhang, Q.; Fang, G. Analysis of the change in water level and its influencing factors on Bosten Lake Basin from 1960 to 2018. Arid. Zone Res. 2021, 38, 48–58. (In Chinese) [Google Scholar] [CrossRef]
- Speer, J.H. Fundamentals of Tree-Ring Research; University of Arizona Press: Tucson, AZ, USA, 2010. [Google Scholar]
- Holmes, R.L. Computer-Assisted Quality Control in Tree-Ring Dating and Measurement; Tree-Ring Society: Tucson, AZ, USA, 1983. [Google Scholar]
- Cook, E.R.; Krusic, P.J. Program ARSTAN: A Tree-Ring Standardization Program Based on Detrending and Autoregressive Time Series Modeling, with Interactive Graphics; Lamont-Doherty Earth Observatory, Columbia University: Palisades, NY, USA, 2005. [Google Scholar]
- Cook, E.R. A Time Series Analysis Approach to Tree Ring Standardization. Ph.D. Thesis, University of Arizona Tucson, Tucson, AZ, USA, 1985. [Google Scholar]
- Wigley, T.M.; Briffa, K.R.; Jones, P.D. On the Average Value of Correlated Time Series, with Applications in Dendroclimatology and Hydrometeorology. J. Appl. Meteorol. Climatol. 1984, 23, 201–213. [Google Scholar] [CrossRef]
- D’Arrigo, R.; Mashig, E.; Frank, D.; Wilson, R.; Jacoby, G. Temperature Variability over the Past Millennium Inferred from Northwestern Alaska Tree Rings. Clim. Dyn. 2005, 24, 227–236. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, C.; Hao, W.; Song, H.; Cai, Q.; Tian, H.; Sun, B.; Linderholm, H.W. Tree-Ring-Based Annual Precipitation Reconstruction in Kalaqin, Inner Mongolia for the Last 238 Years. Chin. Sci. Bull. 2011, 56, 2995–3002. [Google Scholar] [CrossRef] [Green Version]
- Opala, M.; Mendecki, M.J. An Attempt to Dendroclimatic Reconstruction of Winter Temperature Based on Multispecies Tree-Ring Widths and Extreme Years Chronologies (Example of Upper Silesia, Southern Poland). Theor. Appl. Climatol. 2014, 115, 73–89. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Shang, H.; Fan, Y.; Yu, S.; Zhang, R.; Qin, L.; Jiang, S. A 475-Year Tree-Ring-Width Record of Streamflow for the Qingshui River Originating in the Southern Slope of the Central Tianshan Mountains, China. Geogr. Ann. Ser. A Phys. Geogr. 2020, 102, 247–266. [Google Scholar] [CrossRef]
- Fritts, H. Tree Rings and Climate; Academic Press, Inc. Ltd.: London, UK; New York, NY, USA, 1976. [Google Scholar]
- Schweingruber, F.H.; Briffa, K.R.; Nogler, P. A Tree-Ring Densitometric Transect from Alaska to Labrador. Int. J. Biometeorol. 1993, 37, 151–169. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, T.; Wei, W.; Nievergelt, D.; Verstege, A.; Yu, S.; Zhang, R.; Esper, J. Development of Tree-Ring Maximum Latewood Density Chronologies for the Western Tien Shan Mountains, China: Influence of Detrending Method and Climate Response. Dendrochronologia 2013, 31, 192–197. [Google Scholar] [CrossRef]
- Michaelsen, J. Cross-Validation in Statistical Climate Forecast Models. J. Appl. Meteorol. Climatol. 1987, 26, 1589–1600. [Google Scholar] [CrossRef]
- Meko, D.; Graybill, D.A. Tree-Ring Reconstruction of Upper Gila Rwer Discharge 1. JAWRA J. Am. Water Resour. Assoc. 1995, 31, 605–616. [Google Scholar] [CrossRef]
- Cook, E.R.; Meko, D.M.; Stahle, D.W.; Cleaveland, M.K. Drought Reconstructions for the Continental United States. J. Clim. 1999, 12, 1145–1162. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Song, H.; Cai, Q.; Li, Q.; Zhao, B.; Liu, H.; Mei, R. Tree-Ring-Width-Based PDSI Reconstruction for Central Inner Mongolia, China over the Past 333 Years. Clim. Dyn. 2017, 48, 867–879. [Google Scholar] [CrossRef]
- Liang, E.; Shao, X.; Hu, Y.; Lin, J. Dendroclimatic Evaluation of Climate-Growth Relationships of Meyer Spruce (Picea Meyeri) on a Sandy Substrate in Semi-Arid Grassland, North China. Trees 2001, 15, 230–235. [Google Scholar] [CrossRef]
- Pederson, N.; Cook, E.R.; Jacoby, G.C.; Peteet, D.M.; Griffin, K.L. The Influence of Winter Temperatures on the Annual Radial Growth of Six Northern Range Margin Tree Species. Dendrochronologia 2004, 22, 7–29. [Google Scholar] [CrossRef]
- Zhang, T.; Yuan, Y.; Liu, Y.; Wei, W.; Zhang, R.; Chen, F.; Yu, S.; Shang, H.; Qin, L. A Tree-Ring Based Temperature Reconstruction for the Kaiduhe River Watershed, Northwestern China, since AD 1680: Linkages to the North Atlantic Oscillation. Quat. Int. 2013, 311, 71–80. [Google Scholar] [CrossRef]
- Li, J.; Gou, X.; Cook, E.R.; Chen, F. Tree-Ring Based Drought Reconstruction for the Central Tien Shan Area in Northwest China. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Zhang, R.; Yuan, Y.; Gao, Y.; Wei, W.; Diushen, M.; He, Q.; Shang, H.; Wang, J. Reconstructed Precipitation on a Centennial Timescale from Tree Rings in the Western Tien Shan Mountains, Central Asia. Quat. Int. 2015, 358, 58–67. [Google Scholar] [CrossRef]
- Jiao, L.; Jiang, Y.; Wang, M.; Kang, X.; Zhang, W.; Zhang, L.; Zhao, S. Responses to Climate Change in Radial Growth of Picea schrenkiana along Elevations of the Eastern Tianshan Mountains, Northwest China. Dendrochronologia 2016, 40, 117–127. [Google Scholar] [CrossRef]
- Chen, F.; He, Q.; Bakytbek, E.; Yu, S.; Zhang, R. Reconstruction of a Long Streamflow Record Using Tree Rings in the Upper Kurshab River (Pamir-Alai Mountains) and Its Application to Water Resources Management. Int. J. Water Resour. Dev. 2017, 33, 976–986. [Google Scholar] [CrossRef]
- Shang, H.M.; Mamattuersun, K.; Li, H.; Yu, S.; Zhang, R.; Zhang, T.; Chen, F.; Lu, H.; Wei, W.; Yuan, Y. Evaluation on the climatic information of tree-ring width of Picea schrenkiana from Yarkand River Basin. Desert Oasis Meteorol. 2017, 11, 17–24. (In Chinese) [Google Scholar]
- Zhou, J.; Abulimiti, A.; Mao, W.; Jiao, M.; An, M.; Shen, Y. The responses of the runoff processes to climate in the Qingshuihe River watershed on the southern slope of Tianshan Mountains. J. Glaciol. Geocryol. 2014, 36, 685–690. (In Chinese) [Google Scholar]
- Zhou, J.; Gao, Y.; Shen, Y.; Han, T.; Mao, W. Response of extreme hydrological events to climate change in cold watersheds of Huangshuigou River and Qingshuihe River on the southern slope of Tianshan. J. Glaciol. Geocryol. 2014, 36, 1042–1048. (In Chinese) [Google Scholar]
- Yuan, Y.; Shao, X.; Wei, W.; Yu, S.; Gong, Y.; Trouet, V. The Potential to Reconstruct Manasi River Streamflow in the Northern Tien Shan Mountains (NW China). Tree Ring Res. 2007, 63, 81–93. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Diushen, M.; Bakytbek, E.; Shang, H.; Gao, Y.; Huang, L.; Zhang, R.; Chen, F.; Yu, S.; Yin, Z. Tree Ring Record of Annual Runoff for Issyk Lake, Central Asia. J. Water Clim. Change 2019, 10, 610–623. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Yuan, Y.; Chen, F.; Shang, H.; Zhang, T.; Yu, S.; Qin, L.; Zhang, R. A 291 year precipitation reconstruction in the upper Irtyshn river basin based on tree-ring width. Acta Ecol. Sin. 2016, 36, 2866–2875. (In Chinese) [Google Scholar]
- Zhao, X.; Zhang, R.; Chen, F.; Bagila, M.; Vitaliy, K.; Bulkair, M.; Yu, S.; He, Q.; Daniyar, D.; Nurzhan, K. Reconstructed summertime (June–July) streamflow dating back to 1788 CE in the Kazakh Uplands as inferred from tree rings. J. Hydrol. Reg. Stud. 2022, 40, 101007. [Google Scholar] [CrossRef]
- Xiao, Z. Impact of solar activity on Earth’s climate. Chin. J. Nat. 2021, 43, 408–419. (In Chinese) [Google Scholar]
- Nagovitsyn, Y.A. A Nonlinear Mathematical Model for the Solar Cyclicity and Prospects for Reconstructing the Solar Activity in the Past. Astron. Lett. 1997, 23, 742–748. [Google Scholar]
- Fu, C.; James, A.L.; Wachowiak, M.P. Analyzing the Combined Influence of Solar Activity and El Niño on Streamflow across Southern Canada. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Allan, R.; Lindesay, J.; Parker, D. El Niño Southern Oscillation and Climatic Variability; CSIRO Publishing: Collingwood, Australia, 1996. [Google Scholar]
- Baldwin, M.P.; Gray, L.J.; Dunkerton, T.J.; Hamilton, K.; Haynes, P.H.; Randel, W.J.; Holton, J.R.; Alexander, M.J.; Hirota, I.; Horinouchi, T. The Quasi-Biennial Oscillation. Rev. Geophys. 2001, 39, 179–229. [Google Scholar] [CrossRef]
- Chen, F.; Yuan, Y. Streamflow Reconstruction for the Guxiang River, Eastern Tien Shan (China): Linkages to the Surrounding Rivers of Central Asia. Environ. Earth Sci. 2016, 75, 1–9. [Google Scholar]
- Wen, K.G.; Shi, Y.G.; Ren, Y.Y. Documents of Chinese Meteorological Disaster: Volume of Xinjiang; Meteorological Publishers: Bejing, China, 2006. (In Chinese) [Google Scholar]
Watershed | Site Name | Site Code | Latitude (N) | Longitude (E) | Trees/Cores | Elevation (m) | Aspect | Slope | Maximum Tree Age | The Rate of Absent Rings (%) |
---|---|---|---|---|---|---|---|---|---|---|
Kaidu River | Aermuxi | AEM | 42.49° | 84.72° | 25/50 | ~2540 | W | 20° | 395 (1616–2010) | 0.552 |
Akenxiaer | AKX | 42.46° | 84.74° | 27/53 | ~2740 | W | 15° | 378 (1633–2010) | 0.289 | |
Taoergaotingxili | TEG | 42.60° | 84.73° | 28/56 | ~2560 | NW | 20° | 414 (1597–2010) | 0.409 | |
Xingfumuchangdong | XFE | 42.66° | 84.56° | 28/56 | ~2490 | N | 25° | 316 (1694–2009) | 0.329 | |
Xingfumuchangnan | XFN | 42.63° | 84.61° | 29/58 | ~2650 | N | 35° | 355 (1656–2010) | 0.250 | |
Qingshui River | Nayitigou | NYS | 42.53° | 86.97° | 31/60 | ~2870 | NNW | 20° | 405 (1611–2015) | 0.994 |
Qingshuihe | QSB | 42.55° | 86.67° | 27/53 | ~2710 | N | 40° | 580 (1436–2015) | 0.787 | |
Huangshuigou River | Fusitan | FST | 42.75° | 86.45° | 34/66 | ~2600 | N | 40° | 744 (1262–2005) | 3.019 |
Saseke | SSK | 42.60° | 86.48° | 33/64 | ~2800 | N | 40° | 439 (1567–2005) | 0.666 |
Statistic | FST | SSK | HSR |
---|---|---|---|
Mean index (MI) | 0.983 | 0.952 | 0.998 |
Standard deviation (SD) | 0.357 | 0.264 | 0.340 |
Mean sensitivity (MS) | 0.349 | 0.222 | 0.314 |
First-order autocorrelation (AC1) | 0.485 | 0.555 | 0.508 |
Inter-series correlation between trees | 0.426 | 0.356 | 0.384 |
Inter-series correlation among all series | 0.432 | 0.364 | 0.388 |
Mean within-tree correlation | 0.778 | 0.753 | 0.769 |
Signal-to-noise ratio (SNR) | 43.327 | 30.294 | 62.029 |
Expressed population signal (EPS) | 0.977 | 0.968 | 0.984 |
First year EPS ≥ 0.85 | 1320 | 1695 | 1470 |
Statistic | Linear Regression Model Mean (Range) | Exponential Regression Model Mean (Range) |
---|---|---|
Correlation coefficient (r1) | 0.766 (0.733–0.783) | 0.795 (0.770–0.811) |
Squared multiple correlation (R2) | 0.586 (0.538–0.613) | 0.633 (0.593–0.657) |
Adjusted squared multiple correlation (R2adj) | 0.577 (0.528–0.604) | 0.625 (0.584–0.650) |
Standard error (SE) | 1.929 (1.771–1.950) | 0.179 (0.174–0.181) |
F-value (F) | 66.671 (54.7230–74.299) | 81.032 (68.388–90.222) |
Statistic | Linear Regression Model | Exponential Regression Model | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Calibration (1956–1980) | Verification (1981–2005) | Calibration (1981–2005) | Verification (1956–1980) | Full Calibration (1956–2005) | Calibration (1956–1980) | Verification (1981–2005) | Calibration (1981–2005) | Verification (1956–1980) | Full Calibration (1956–2005) | |
r1 | 0.621 (p < 0.001) | 0.807 (p < 0.001) | 0.841 (p < 0.001) | 0.608 (p < 0.001) | 0.766 (p < 0.001) | 0.620 (p < 0.001) | 0.847 (p < 0.001) | 0.871 (p < 0.001) | 0.604 (p < 0.001) | 0.795 (p < 0.001) |
r2 | 0.792 (p < 0.001) | 0.579 (p < 0.01) | 0.653 (p < 0.001) | 0.786 (p < 0.001) | 0.639 (p < 0.001) | 0.781 (p < 0.001) | 0.636 (p < 0.001) | 0.696 (p < 0.001) | 0.774 (p < 0.001) | 0.695 (p < 0.001) |
R2 | 0.386 | 0.652 | 0.706 | 0.370 | 0.586 | 0.385 | 0.717 | 0.759 | 0.365 | 0.633 |
RE | / | 0.674 | / | 0.485 | / | / | 0.703 | / | 0.661 | / |
CE | / | 0.599 | / | –0.149 | / | / | 0.635 | / | 0.248 | / |
t | / | 4.307 | / | 3.170 | / | / | 4.642 | / | 3.653 | / |
S | / | 20 + /5– | / | 15 + /10– | / | / | 24 + /1– | / | 16 + /9– | / |
10 Wettest Years | 10 Driest Years | 10 Wettest Decades | 10 Driest Decades | LONG-TERM | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Year | Value (m3/s) | Year | Value (m3/s) | Decade | Mean Value (m3/s) | Decade | Mean Value (m3/s) | Years | Mean Value (m3/s) | Variation Coefficient |
1803 | 193.803 | 1894 | 39.152 | 1800s | 142.794 | 1910s | 95.653 | 1700–1799 | 119.182 | 0.183 |
1765 | 182.419 | 1917 | 45.688 | 1750s | 140.166 | 1860s | 97.068 | 1800–1899 | 116.856 | 0.204 |
1959 | 173.156 | 1774 | 59.154 | 1990s | 137.890 | 1710s | 99.099 | 1900–1999 | 113.567 | 0.192 |
1804 | 166.177 | 1916 | 64.630 | 1810s | 135.953 | 1930s | 100.268 | 1700–2005 | 117.083 | 0.194 |
1802 | 166.169 | 1918 | 68.222 | 1760s | 134.339 | 1870s | 102.969 | |||
1738 | 166.159 | 1944 | 69.927 | 1960s | 133.622 | 1770s | 103.196 | |||
1836 | 161.934 | 1862 | 71.085 | 1790s | 133.339 | 1940s | 105.448 | |||
1756 | 159.365 | 1931 | 76.214 | 1740s | 126.968 | 1850s | 106.451 | |||
1805 | 159.044 | 1710 | 76.468 | 1920s | 123.448 | 1900s | 106.805 | |||
1923 | 158.874 | 1863 | 76.551 | 1730s | 123.260 | 1980s | 107.755 |
Short Description of Flood, Snowfall, Drought, or Locust Disasters for the Study Area and Surrounding Areas | |
---|---|
Wettest Year | |
1803–1805 | 1. Frequently intense rainfall in Ili Prefecture, which is in the northwest of the study area, led to grain reduction in 1803. 2. Flood occurred in Yarkant River, a river source of Tarim River, in July 1804. 3. Thousands of people suffered from snowfall disaster in Huocheng County of Ili Prefecture, in spring 1804. |
1836 | 1. Flood occurred in Dihua City (Urumqi now), which is in the north of the study area, in May 1836. |
1923 | 1. Snowfall and freezing disasters occurred in Aletai Prefecture, which is in the north of the study area, leading to a large number of people and livestock death in winter 1922. 2. Intense rainfall led to a flood in Baiyang River, which is in the north of the study area, in July 1923. |
1959 | 1. Frequently intense rainfall occurred in Akesu Prefecture, Boertala Prefecture, Changji Prefecture, Hami Prefecture, Kashi Prefecture, and Shihezi Prefecture, which are around the study area, in spring and summer 1959. 2. Great snowfalls occurred in Ili Prefecture, Tacheng Prefecture, and Boertala Prefecture, which are in the northwest of the study area, leading to a large amount of livestock death in spring 1959. |
Driest Year | |
1894 | 1. Drought occurred in Dihua City and Changji Prefecture in 1893. 2. Plagues of locusts occurred in Wusu County of Tacheng Prefecture in June 1916. |
1916–1918 | 1. Frequently great droughts occurred in Ili Prefecture and Kashi Prefecture in 1916–1918. People fled their homes, and 90% of rooms were empty. 2. Plagues of locusts occurred in Jinghe County of Boertala Prefecture, which is in the northwest of the study area, in June 1916. |
1931 | 1. Great drought occurred in Shule County of Kashi Prefecture, which is in the southwest of the study area, in 1930. |
1944 | 1. Less snowfall in the previous year and lack of rainfall in the current year, resulting in great drought, occurred in northern Xinjiang Province in 1943. 2. Drought occurred in Hutubi County, which is in the northwest of the study area, in 1944. 3. Frequent plagues of locusts occurred in Wusu County in 1943–1945. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Zhang, T.; Shang, H.; Fan, Y.; Yu, S.; Jiang, S.; Mao, W.; Liu, X. Total Streamflow Variation for the Upper Catchment of Bosten Lake Basin in China Inferred from Tree-Ring Width Records. Forests 2023, 14, 622. https://doi.org/10.3390/f14030622
Liu K, Zhang T, Shang H, Fan Y, Yu S, Jiang S, Mao W, Liu X. Total Streamflow Variation for the Upper Catchment of Bosten Lake Basin in China Inferred from Tree-Ring Width Records. Forests. 2023; 14(3):622. https://doi.org/10.3390/f14030622
Chicago/Turabian StyleLiu, Kexiang, Tongwen Zhang, Huaming Shang, Yuting Fan, Shulong Yu, Shengxia Jiang, Weiyi Mao, and Xinchun Liu. 2023. "Total Streamflow Variation for the Upper Catchment of Bosten Lake Basin in China Inferred from Tree-Ring Width Records" Forests 14, no. 3: 622. https://doi.org/10.3390/f14030622
APA StyleLiu, K., Zhang, T., Shang, H., Fan, Y., Yu, S., Jiang, S., Mao, W., & Liu, X. (2023). Total Streamflow Variation for the Upper Catchment of Bosten Lake Basin in China Inferred from Tree-Ring Width Records. Forests, 14(3), 622. https://doi.org/10.3390/f14030622