Forests Attenuate Temperature and Air Pollution Discomfort in Montane Tourist Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Design
2.2. Field Measurements
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saarikoski, H.; Jax, K.; Harrison, P.A.; Primmer, E.; Barton, D.N.; Mononen, L.; Vihervaara, P.; Furman, E. Exploring operational ecosystem service definitions: The case of boreal forests. Ecosyst. Serv. 2015, 14, 144–157. [Google Scholar] [CrossRef]
- Doimo, I.; Masiero, M.; Gatto, P. Forest and Wellbeing: Bridging Medical and Forest Research for Effective Forest-Based Initiatives. Forests 2020, 11, 791. [Google Scholar] [CrossRef]
- Riccioli, F.; Fratini, R.; Fagarazzi, C.; Cozzi, M.; Viccaro, M.; Romano, S.; Rocchini, D.; Diaz, S.E.; Tattoni, C. Mapping the Recreational Value of Coppices’ Management Systems in Tuscany. Sustainability 2020, 12, 8039. [Google Scholar] [CrossRef]
- Mandziuk, A.; Fornal-Pieniak, B.; Stangierska, D.; Parzych, S.; Widera, K. Social Preferences of Young Adults Regarding Urban Forest Recreation Management in Warsaw, Poland. Forests 2021, 12, 1524. [Google Scholar] [CrossRef]
- Anderson, H.W.; Hoover, M.D.; Reinhart, K.G. Forests and Water: Effects of Forest Management on Floods, Sedimentation, and Water Supply; Pacific Southwest Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture: Berkeley, CA, USA, 1976; Volume 18. [Google Scholar]
- Manes, F.; Blasi, C.; Salvatori, E.; Capotorti, G.; Galante, G.; Feoli, E.; Incerti, G. Natural vegetation and ecosystem services related to air quality improvement: Tropospheric ozone removal by evergreen and deciduous forests in Latium (Italy). Ann. Bot. 2012, 2, 79–86. [Google Scholar]
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Greenfield, E. Tree and forest effects on air quality and human health in the United States. Environ. Pollut. 2014, 193, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Gohr, C.; Blumroder, J.S.; Sheil, D.; Ibisch, P.L. Quantifying the mitigation of temperature extremes by forests and wetlands in a temperate landscape. Ecol. Inform. 2021, 66, 101442. [Google Scholar] [CrossRef]
- Schwaab, J.; Davin, E.L.; Bebi, P.; Duguay-Tetzlaff, A.; Waser, L.T.; Haeni, M.; Meier, R. Increasing the broad-leaved tree fraction in European forests mitigates hot temperature extremes. Sci. Rep. 2020, 10, 14153. [Google Scholar] [CrossRef]
- Jiao, Y.; Bu, K.; Yang, J.; Li, G.; Shen, L.; Liu, T.; Yu, L.; Zhang, S.; Zhang, H. Biophysical Effects of Temperate Forests in Regulating Regional Temperature and Precipitation Pattern across Northeast China. Remote Sens. 2021, 13, 4767. [Google Scholar] [CrossRef]
- Lawrence, D.; Coe, M.; Walker, W.; Verchot, L.; Vandecar, K. The Unseen Effects of Deforestation: Biophysical Effects on Climate. Front. For. Glob. Change 2022, 5, 756115. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Chow, W.T.L.; Akbar, S.; Heng, S.L.; Roth, M. Assessment of measured and perceived microclimates within a tropical urban forest. Urban Urban Green 2016, 16, 62–75. [Google Scholar] [CrossRef] [Green Version]
- Ferrini, F.; Fini, A.; Mori, J.; Gori, A. Role of Vegetation as a Mitigating Factor in the Urban Context. Sustainability 2020, 12, 4247. [Google Scholar] [CrossRef]
- Renaud, V.; Rebetez, M. Comparison between open-site and below-canopy climatic conditions in Switzerland during the exceptionally hot summer of 2003. Agric. For. Meteorol. 2009, 149, 873–880. [Google Scholar] [CrossRef]
- de Oliveira, C.C.; Alves, F.V.; de Almeida, R.G.; Gamarra, E.L.; Villela, S.D.J.; Martins, P.G.M.D.A. Thermal comfort indices assessed in integrated production systems in the Brazilian savannah. Agrofor. Syst. 2018, 92, 1659–1672. [Google Scholar] [CrossRef]
- Magalhaes, C.A.S.; Zolin, C.A.; Lulu, J.; Lopes, L.B.; Furtini, I.V.; Vendrusculo, L.G.; Zaiatz, A.; Pedreira, B.C.; Pezzopane, J.R.M. Improvement of thermal comfort indices in agroforestry systems in the southern Brazilian Amazon. J. Therm. Biol. 2020, 91, 102636. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, M.A.; Correa, E.N. Suitability of different comfort indices for the prediction of thermal conditions in tree-covered outdoor spaces in arid cities. Theor. Appl. Clim. 2015, 122, 69–83. [Google Scholar] [CrossRef]
- Hou, Y.; Zhao, W.; Hua, T.; Pereira, P. Mapping and assessment of recreation services in Qinghai-Tibet Plateau. Sci. Total Environ. 2022, 838, 156432. [Google Scholar] [CrossRef]
- Jarvis, D.J.; Adamkiewicz, G.; Heroux, M.E.; Rapp, R.; Kelly, F.J. Nitrogen Dioxide. In WHO Guidelines for Indoor Air Quality: Selected Pollutants; World Health Organization: Geneva, Switzerland, 2010. Available online: https://www.ncbi.nlm.nih.gov/books/NBK138707/?report=reader (accessed on 31 August 2022).
- Zhang, J.; Wei, Y.; Fang, Z. Ozone pollution: A major health hazard worldwide. Front. Immunol. 2019, 10, 2518. [Google Scholar] [CrossRef] [Green Version]
- Yue, W.; Huihui, Z.; Jiechen, W.; Hancheng, Z.; Guoqiang, H.; Dan, H.; Guangyu, S. Elevated NO2 damages the photosynthetic apparatus by inducing the accumulation of superoxide anions and peroxynitrite in tobacco seedling leaves. Ecotoxicol. Environ. Saf. 2020, 196, 110534. [Google Scholar] [CrossRef]
- Rao, M.V.; Davis, K.R. The physiology of ozone induced cell death. Planta 2001, 213, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A Europe that Protects: Clean Air for All. COM/2018/330 Final. Available online: https://ec.europa.eu/transparency/documents-register/detail?ref=COM(2018)330&lang=en (accessed on 31 August 2022).
- EU Ambient Air Quality (AAQ) Directive 2008/50/EC. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX:32008L0050 (accessed on 31 August 2022).
- EU Ambient Air Quality (AAQ) Directive 2004/107/EC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021IP0107 (accessed on 31 August 2022).
- Nuvolone, D.; Petri, D.; Voller, F. The effects of ozone on human health. Environ. Sci. Pollut. Res. 2018, 25, 8074–8088. [Google Scholar] [CrossRef] [PubMed]
- Fowler, D.; Flechard, C.; Cape, J.N.; Storeton-West, R.L.; Coyle, M. Measurements of ozone deposition to vegetation quantifying the flux, the stomatal and non-stomatal components. Water Air Soil Pollut. 2001, 130, 63–74. [Google Scholar] [CrossRef]
- Potchter, O.; Cohen, P.; Lin, T.-P.; Matzarakis, A. Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification. Sci. Total Environ. 2018, 631–632, 390–406. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Rodeghiero, M.; Tonolli, S.; Vescovo, L.; Gianelle, D.; Cescatti, A.; Sottocornola, M. INFOCARB: A regional scale forest carbon inventory (Provincia Autonoma di Trento, Southern Italian Alps). For. Ecol. Manag. 2010, 259, 1093–1101. [Google Scholar] [CrossRef]
- Gottardini, E.; Cristofolini, F.; Cristofori, A.; Camin, F.; Calderisi, M.; Ferretti, M. Consistent response of crown transparency, shoot growth and leaf traits on Norway spruce (Picea abies (L.) H. Karst.) trees along an elevation gradient in northern Italy. Ecol. Indic. 2016, 60, 1041–1044. [Google Scholar] [CrossRef]
- Aeschimann, D.; Lauber, K.; Moser, D.M.; Theurillat, J.-P. Flora Alpina; Haupt Verlag: Bern, Switzerland, 2004. [Google Scholar]
- Saltzman, B.E. Colorimetric microdetermination of nitrogen dioxide in the atmosphere. Anal. Chem. 1960, 32, 135–136. [Google Scholar] [CrossRef]
- Nieuwolt, S. Tropical Climatology, 2nd ed.; John Wiley and Sons Inc.: New York, NY, USA, 1998. [Google Scholar]
- Deosthali, V. Assessment of impact of urbanization on climate: An application of bio-climatic index. Atmos. Environ. 1999, 33, 4125–4133. [Google Scholar] [CrossRef]
- Amelung, B.; Viner, D. Mediterranean Tourism: Exploring the Future with the Tourism Climatic Index. J. Sustain. Tour. 2006, 14, 349–366. [Google Scholar] [CrossRef]
- Tomczyk, A.M.; Bednorz, E.; Polrolniczak, M. The occurrence of heat waves in Europe and their circulation conditions. Geografie 2019, 124, 1–17. [Google Scholar] [CrossRef]
- Petrou, I.; Kassomenos, P.; Lee, C.C. Trends in air mass frequencies across Europe. Theor. Appl. Clim. 2022, 148, 105–120. [Google Scholar] [CrossRef]
- Sun, X.; Li, X.; Guan, Z.; Liu, J.; Zhang, S. The use of meteorological data to assess the cooling service of forests. Ecosyst. Serv. 2017, 25, 28–34. [Google Scholar] [CrossRef] [Green Version]
- Migliari, M.; Babut, R.; De Gaulmyn, C.; Chesne, L.; Baverel, O. The Metamatrix of Thermal Comfort: A compendious graphical methodology for appropriate selection of outdoor thermal comfort indices and thermo-physiological models for human-biometeorology research and urban planning. Sustain. Cities Soc. 2022, 81, 103852. [Google Scholar] [CrossRef]
- Scott, D.; Jones, B.; Konopek, J. Implications of climate and environmental change for nature-based tourism in the Canadian Rocky Mountains: A case study of Waterton Lakes national park. Tour. Manag. 2007, 28, 570–579. [Google Scholar] [CrossRef]
- Segnalini, M.; Nardone, A.; Bernabucci, U.; Vitali, A.; Ronchi, B.; Lacetera, N. Dynamics of the temperature-humidity index in the Mediterranean basin. Int. J. Biometeorol. 2011, 55, 253–263. [Google Scholar] [CrossRef]
- Pede, E.C.; Barbato, G.; Buffa, A.; Ellena, M.; Mercogliano, P.; Ricciardi, G.; Staricco, L. Mountain tourism facing climate change. Assessing risks and opportunities in the Italian Alps. TeMA J. Land Use Mobil. Environ. 2022, 15, 25–47. [Google Scholar]
- Chevalier, A.; Gheusi, F.; Delmas, R.; Ordonez, C.; Sarrat, C.; Zbinden, R.; Thouret, V.; Athier, G.; Cousin, J.M. Influence of altitude on ozone levels and variability in the lower troposphere: A ground-based study for western Europe over the period 2001–2004. Atmos. Chem. Phys. 2007, 7, 4311–4326. [Google Scholar] [CrossRef] [Green Version]
- Endler, C.; Matzarakis, A. Climate and tourism in the Black Forest during the warm season. Int. J. Biometeorol. 2011, 55, 173–186. [Google Scholar] [CrossRef]
- Oh, B.; Lee, K.J.; Zaslawski, C.; Yeung, A.; Rosenthal, D.; Larkey, L.; Back, M. Health and well-being benefits of spending time in forests: Systematic review. Environ. Health Prev. Med. 2017, 22, 71. [Google Scholar] [CrossRef] [Green Version]
- Moomaw, W.R.; Masino, S.A.; Faison, E.K. Intact Forests in the United States: Proforestation Mitigates Climate Change and Serves the Greatest Good. Front. For. Glob. Change 2019, 2, 27. [Google Scholar] [CrossRef] [Green Version]
Elevation Range, m a.s.l. | Measurement Point | Elevation, m a.s.l. | Long. | Lat. | Distance from OF, m |
---|---|---|---|---|---|
800–900 | OF_1 | 913 | 11.84407 | 46.18728 | - |
FO_1.1 | 907 | 11.84635 | 46.18671 | 188 | |
FO_1.2 | 908 | 11.84332 | 46.18703 | 64 | |
FO_1.3 | 927 | 11.84213 | 46.18779 | 160 | |
1100–1200 | OF_2 | 1177 | 11.84307 | 46.19578 | - |
FO_2.1 | 1210 | 11.8451 | 46.19569 | 158 | |
FO_2.2 | 1179 | 11.84353 | 46.1949 | 104 | |
FO_2.3 | 1185 | 11.8398 | 46.19627 | 258 | |
1500–1600 | OF_3 | 1521 | 11.84935 | 46.21214 | - |
FO_3.1 | 1544 | 11.85066 | 46.21268 | 118 | |
FO_3.2 | 1504 | 11.84818 | 46.21095 | 159 | |
FO_3.3 | 1547 | 11.84896 | 46.2127 | 71 |
Elevation Range, m a.s.l. | Mean ΔOF-FO | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
800–900 | 1100–1200 | 1500–1600 | ||||||||
OF (n = 1) | FO (n = 3) | ΔOF-FO | OF (n = 1) | FO (n = 3) | ΔOF-FO | OF (n = 1) | FO (n = 3) | ΔOF-FO | ||
Mean T, °C (n = 77) | 17.9 | 15.7 ± 0.53 | 2.3 | 16.4 | 14.0 ± 0.38 | 2.3 | 14.6 | 12.1 ± 0.38 | 2.5 | +14.5% *** |
Min T, °C (n = 77) | 11.0 | 11.3 ± 0.10 | −0.3 | 9.0 | 10.2 ± 0.06 | −1.2 | 8.3 | 8.6 ± 0.07 | −0.3 | −6.3% *** |
Max T, °C (n = 77) | 29.6 | 21.6 ± 1.52 | 8.0 | 29.5 | 19.5 ± 1.01 | 10.0 | 24.2 | 16.7 ± 1.25 | 7.5 | +30.6% *** |
Mean RH, % (n = 77) | 72.6 | 82.0 ± 2.84 | −9.4 | 77.6 | 84.2 ± 1.99 | −6.6 | 78.5 | 85.4 ± 2.10 | −6.9 | −10.0% *** |
Min RH, % (n = 77) | 44.4 | 56.6 ± 0.73 | −12.2 | 40.7 | 59.9 ± 0.22 | −19.2 | 49.4 | 64.2 ± 0.31 | −14.8 | −34.3% *** |
Max RH, % (n = 77) | 97.9 | 96.6 ± 7.23 | 1.3 | 99.7 | 97.5 ± 6.98 | 2.2 | 99.0 | 97.4 ± 6.87 | 1.6 | +1.7% *** |
Mean THI, °C (n = 77) | 18.0 | 15.0 ± 0.42 | 3.0 | 15.3 | 13.5 ± 0.33 | 1.9 | 14.1 | 11.7 ± 0.33 | 2.5 | +15.5% *** |
Min THI, °C (n = 77) | 11.8 | 11.1 ± 0.09 | 0.6 | 9.0 | 10.1 ± 0.06 | −1.1 | 8.4 | 8.5 ± 0.07 | −0.1 | −2.1% ** |
Max THI, °C (n = 77) | 26.3 | 19.7 ± 1.18 | 6.6 | 26.0 | 17.9 ± 0.83 | 8.1 | 21.8 | 15.4 ± 1.06 | 6.4 | +28.5% *** |
Mean NO2, µg m−3 (n = 11) | 2.2 | 2.2 ± 0.42 | 0.0 | 1.1 | 1.2 ± 0.37 | −0.1 | 1.1 | 0.9 ± 0.15 | 0.2 | +1.7% n.s. |
Mean O3, µg m−3 (n = 11) | 71.1 | 59.0 ± 3.16 | 12.1 | 62.5 | 68.9 ± 3.18 | −6.3 | 80.5 | 71.9 ± 5.51 | 8.6 | +6.7% ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gottardini, E.; Cristofolini, F.; Cristofori, A.; Ferretti, M. Forests Attenuate Temperature and Air Pollution Discomfort in Montane Tourist Areas. Forests 2023, 14, 545. https://doi.org/10.3390/f14030545
Gottardini E, Cristofolini F, Cristofori A, Ferretti M. Forests Attenuate Temperature and Air Pollution Discomfort in Montane Tourist Areas. Forests. 2023; 14(3):545. https://doi.org/10.3390/f14030545
Chicago/Turabian StyleGottardini, Elena, Fabiana Cristofolini, Antonella Cristofori, and Marco Ferretti. 2023. "Forests Attenuate Temperature and Air Pollution Discomfort in Montane Tourist Areas" Forests 14, no. 3: 545. https://doi.org/10.3390/f14030545
APA StyleGottardini, E., Cristofolini, F., Cristofori, A., & Ferretti, M. (2023). Forests Attenuate Temperature and Air Pollution Discomfort in Montane Tourist Areas. Forests, 14(3), 545. https://doi.org/10.3390/f14030545