Nutrient Availability Has a Greater Influence than Pot Host on Seedling Development of Hemiparasitic Hawaiian Sandalwood (Santalum paniculatum Hook. and Arn.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Treatments
2.3. Plant Material
2.4. Measurements
2.5. Statistical Analysis
3. Results
3.1. Plant Morphology
3.2. Chlorophyll Index
3.3. Foliar Nitrogen and Iron
3.4. Haustoria Abundance
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arunkumar, A.N.; Joshi, G.; Ram, H. Sandalwood: History, Uses, Present Status and the Future. Curr. Sci. 2012, 103, 1408–1416. [Google Scholar]
- Pullaiah, T.; Das, S.C. History of Sandalwood. In Sandalwood: Silviculture, Conservation and Applications; Pullaiah, T., Das, S.C., Bapat, V.A., Swamy, M.K., Reddy, V.D., Murthy, K.S.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 9–20. [Google Scholar]
- da Silva, T.; Kher, J.A.; Soner, M.M.; Page, D.; Zhang, T.; Nataraj, X.; Ma, M. Sandalwood: Basic Biology, Tissue Culture, and Genetic Transformation. Planta 2016, 243, 847–887. [Google Scholar] [CrossRef] [PubMed]
- Harbaugh, D.T.; Baldwin, B.G. Phylogeny and Biogeography of the Sandalwoods (Santalum, Santalaceae): Repeated Dispersals throughout the Pacific. Am. J. Bot. 2007, 94, 1028–1040. [Google Scholar] [CrossRef] [PubMed]
- Merlin, M.; Thompson, L.; Elevitch, C. Santalum Ellipticum, S. Freycinetianum, S. Haleakalae and S. Paniculatum (Hawaiian Sandalwood). In Traditional Trees of the Pacific Islands: Their Culture, Environment and Use; Permanent Agricultural Resources: Honolulu, HI, USA, 2006; pp. 695–714. [Google Scholar]
- Harbaugh, D.T.; Oppenheimer, H.L.; Wood, K.R.; Wagner, W.L. Taxonomic Revision of the Endangered Hawaiian Red-Flowered Sandalwoods (Santalum) and Discovery of an Ancient Hybrid Species. Syst. Bot. 2010, 35, 827–838. [Google Scholar] [CrossRef] [Green Version]
- Merlin, M.; Vanravenswaay, D. The History of Human Impact on the Genus Santalum in Hawai’i. In Proceedings of the Symposium on Sandalwood in the Pacific, Honolulu, HI, USA, 9–11 April 1990; General Technical Report PSW-GTR-122. Pacific Southwest Research Station, Forest Service: Berkeley, CA, USA, 1990; pp. 46–60. [Google Scholar]
- Rock, J.F.C. The Indigenous Trees of the Hawaiian Islands; College of Hawaii, Territory of Hawaii: Honolulu, HI, USA, 1913. [Google Scholar]
- Stemmermann, L. Observations on the Genus Santalum (Santalaceae) in Hawaii. Pac. Sci. 1980, 34, 41–54. [Google Scholar]
- Price, J.P.; Gon, S.M., III; Jacobi, J.D.; Matsuwaki, D. Mapping Plant Species Ranges in the Hawaiian Islands: Developing a Methodology and Associated GIS Layers; USGS: Reston, VA, USA, 2007; Volume 8.
- Wagner, W.L.; Herbst, D.R. Manual of the Flowering Plants of Hawaii, Revised ed.; University of Hawaii Press: Honolulu, HI, USA, 1999. [Google Scholar]
- Li, Y.; Mathews, B.W. Effect of Conversion of Sugarcane Plantation to Forest and Pasture on Soil Carbon in Hawaii. Plant Soil 2010, 335, 245–253. [Google Scholar] [CrossRef]
- Parrotta, J.; Wildburger, S.; Mansourian, C. Understanding Relationships between Biodiversity, Carbon, Forests and People: The Key to Achieving REDD+ Objectives. A Global Assessment Report Prepared by the Global Forest Expert Panel on Biodiversity, Forest Management and REDD+; IUFRO: Vienna, Austria, 2012; Volume 31. [Google Scholar]
- Asquith, A. Alien Species and the Extinction Crisis of Hawaii’s Invertebrates. Endanger. Species Update 1995, 12, 1–8. [Google Scholar]
- Howarth, F.G. Impacts of Alien Land Arthropods and Mollusks on Native Plants and Animals in Hawai’i. In Hawai’i’s Terrestrial Ecosystems. Proc. Symposium, 1984; University of Hawaii Press: Honolulu, HI, USA, 1985; pp. 149–179. [Google Scholar]
- Sax, D.F.; Gaines, S.D. Species Invasions and Extinction: The Future of Native Biodiversity on Islands. Proc. Natl. Acad. Sci. USA 2008, 105, 11490–11497. [Google Scholar] [CrossRef] [Green Version]
- Stemmermann, L. Distribution and Status of Sandalwood in Hawai’i. In Proceedings of the Symposium on Sandalwood in the Pacific, Honolulu, HI, USA, 9–11 April 1990; General Technical Report PSW-GTR-122. Pacific Southwest Research Station, Forest Service: Berkeley, CA, USA; Department of Agriculture: Washington, DC, USA, 1990; pp. 62–65. [Google Scholar]
- Dlnr, S.H. Management Plan for the Ahupua’a of Pu’u Wa’awa’a and the Makai Lands of Pu’u Anahulu; Department of Land and Natural Resources: Honolulu, HI, USA, 2003; pp. 1–82. [Google Scholar]
- Scheffel, M. Sandalwood: Current Interest and Activity by the Hawaii Division of Forestry and Wildlife. In Proceedings of the Symposium on Sandalwood in the Pacific, Honolulu, HI, USA, 9–11 April 1990; General Technical Report PSW-GTR-122. Pacific Southwest Research Station, Forest Service: Berkeley, CA, USA, 1990; p. 61. [Google Scholar]
- Senock, R.S. Hāloa ’Āina Forest Management Plan; On Solid Ground Consulting LLC.: Chico, CA, USA, 2017. [Google Scholar]
- Leopold, S. Big Island, Small Planet: Challenges and Failures in Conserving Hawaiian Sandalwood. HerbalGram. 2015, 108, 60–67. [Google Scholar]
- Santha, S.; Dwivedi, C. Properties of Sandalwood Oil. Anticancer Res. 2015, 35, 3137–3145. [Google Scholar]
- Ramanan, S.; George, A.K.; Chavan, S.B.; Kumar, S.; Jayasubha, S. Progress and Future Research Trends on Santalum Album: A Bibliometric and Science Mapping Approach. Ind. Crops Prod. 2020, 158, 112972. [Google Scholar] [CrossRef]
- Divakara, B.; Viswanath, S.; Nikhitha, C.; Kumar, S. Forest Research Economics of Santalum Album L. Cultivation Under Semiarid Tropics of. For. Res. 2018, 7, 223. [Google Scholar]
- Braun, N.A.; Sim, S.; Kohlenberg, B.; Lawrence, B.M. Hawaiian Sandalwood: Oil Composition of Santalum Paniculatum and Comparison with Other Sandal Species. Nat. Prod. Commun. 2014, 9, 1365–1368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duryea, M.L. Nursery Cultural Practices: Impacts on Seedling Quality. In Forest Nursery Manual: Production of Bareroot Seedlings; Nijhoff, M., Junk, W., Eds.; The Hague: Corvalis, OR, USA, 1984; pp. 143–164. [Google Scholar]
- Radomiljac, A.M. The Influence of Pot Host Species, Seedling Age and Supplementary Nursery Nutrition on Santalum Album Linn. (Indian Sandalwood) Plantation Establishment within the Ord River Irrigation Area, Western Australia. For. Ecol. Manag. 1998, 102, 193–201. [Google Scholar] [CrossRef]
- Annapurna, D.; Rathore, T.S.; Joshi, G. Modern Nursery Practices in the Production of Quality Seedlings of Indian Sandalwood (Santalum Album L.)—Stage of Host Requirement and Screening of Primary Host Species. J. Sustain. For. 2006, 22, 33–55. [Google Scholar] [CrossRef]
- Struthers, A.R.; Lamont, B.B.; Fox, J.E.D.; Wijesuriya, S.; Struthers, R.; Lamont, B.B.; Fox, J.E.D.; Wijesuriya, S. Mineral Nutrition of Sandalwood (Santalum Spicatum). J. Exp. Bot. 2022, 37, 1274–1284. [Google Scholar] [CrossRef]
- Das, C.; Das, S.; Tah, J.; Chandra, B.; Viswavidyalaya, K. Effect of Soil Nutrients on the Growth and Survivility of White Sandal (Santalum Album L) In South West Bengal. Int. J. Curr. Res. 2020, 10, 76264–76267. [Google Scholar]
- Barrett, D.R.; Fox, J.E.D. Santalum Album: Kernel Composition, Morphological and Nutrient Characteristics of Pre-Parasitic Seedlings under Various Nutrient Regimes. Ann. Bot. 1997, 79, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Radomiljac, A.M.; McComb, J.A.; Shea, S.R. Field Establishment of Santalum Album L.—The Effect of the Time of Introduction of a Pot Host (Alternanthera Nana R. Br.). For. Ecol. Manag. 1998, 111, 107–118. [Google Scholar] [CrossRef]
- Neil, P.E. Growing Sandalwood in Nepal—Potential Silvicultural Methods and Research Priorities 1. In Proceedings of the Symposium on Sandalwood in the Pacific, Honolulu, HI, USA, 9–11 April 1990; General Technical Report PSW-GTR-122. Pacific Southwest Research Station, Forest Service: Berkeley, CA, USA, 1990. No. Mathur 1979. pp. 72–75. [Google Scholar]
- Peeris, M.K.P.; Senarath, W.T.P.S.K. In Vitro Propagation of Santalum Album L. J. Natl. Sci. Found. Sri Lanka 2015, 43, 265–272. [Google Scholar] [CrossRef] [Green Version]
- Annapurna, D.; Rathore, T.S.; Joshi, G. Effect of Container Type and Size on the Growth and Quality of Seedlings of Indian Sandalwood (Santalum Album L.). Aust. For. 2004, 67, 82–87. [Google Scholar] [CrossRef]
- Annapurna, D.; Rathore, T.S.; Joshi, G. Refinement of Potting Medium Ingredients for Production of High Quality Seedlings of Sandalwood (Santalum Album L.). Aust. For. 2005, 68, 44–49. [Google Scholar] [CrossRef]
- Speetjens, T.M.; Thyroff, E.C.; Yeh, A.K.F.; Jacobs, D.F. Propagation of ’Iliahi (Santalum Paniculatum Hook. & Arn.) a Valuable Endemic Hawaiian Sandalwood Species. Tree Plant. Notes 2021, 64, 33–49. [Google Scholar]
- Těšitel, J.; Plavcová, L.; Cameron, D.D. Interactions between Hemiparasitic Plants and Their Hosts: The Importance of Organic Carbon Transfer. Plant Signal. Behav. 2010, 5, 1072–1076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Press, M.C. Autotrophy and Heterotrophy in Root Hemiparasites. Trends Ecol. Evol. 1989, 4, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Tennakoon, K.U.; Pate, J.S.; Stewart, G.R. Haustorium-Related Uptake and Metabolism of Host Xylem Solutes by the Root Hemiparasitic Shrub Santalum Acuminatum (R. Br.) A. DC. (Santalaceae). Ann. Bot. 1997, 80, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Radomiljac, A.M.; McComb, J.A.; Pate, J.S.; Tennakoon, K.U. Xylem Transfer of Organic Solutes in Santalum Album L. (Indian Sandalwood) in Association with Legume and Non-Legume Hosts. Ann. Bot. 1998, 82, 675–682. [Google Scholar] [CrossRef] [Green Version]
- Radomiljac, A.M.; McComb, J.A. Nitrogen-Fixing and Non-Nitrogen-Fixing Woody Host Influences on the Growth of the Root Hemi-Parasite Santalum Album L. In Proceedings of the an International Seminar, Bangalore, India, 18–19 December 1998; pp. 54–57. [Google Scholar]
- Ouyang, Y.; Zhang, X.; Chen, Y.; Teixeira da Silva, J.A.; Ma, G. Growth, Photosynthesis and Haustorial Development of Semiparasitic Santalum Album L. Penetrating into Roots of Three Hosts: A Comparative Study. Trees Struct. Funct. 2016, 30, 317–328. [Google Scholar] [CrossRef]
- Wilkinson, K.M. Propagation Protocol for ʻiliahi (Santalum Freycinetianum). Nativ. Plants J. 2007, 8, 248–251. [Google Scholar] [CrossRef]
- Hirano, R.T. Propagation of Santalum, Sandalwood Tree. In Proceedings of the Symposium on Sandalwood in the Pacific, Honolulu, HI, USA, 9–11 April 1990; General Technical Report PSW-GTR-122. Pacific Southwest Research Station, Forest Service: Berkeley, CA, USA, 1990; Volume 122, pp. 43–45. [Google Scholar]
- Vejan, P.; Khadiran, T.; Abdullah, R.; Ahmad, N. Controlled Release Fertilizer: A Review on Developments, Applications and Potential in Agriculture. J. Control. Release 2021, 339, 321–334. [Google Scholar] [CrossRef]
- Cox, D.A. Reducing Nitrogen Leaching-Losses from Containerized Plants: The Effectiveness of Controlled-Release Fertilizers. J. Plant Nutr. 1993, 16, 533–545. [Google Scholar] [CrossRef]
- Alva, A.K. Differential Leaching of Nutrients from Soluble vs. Controlled-Release Fertilizers. Environ. Manag. 1992, 16, 769–776. [Google Scholar] [CrossRef]
- Landis, T.D.; Dumroese, R.K. Using Polymer-Coated Controlled-Release Fertilizers in the Nursery and after Outplanting. For. Nurs. Notes 2009, Winter 6, 5–12. [Google Scholar]
- Arnott, J.T.; Burdett, A.N. Early Growth of Planted Western Hemlock in Relation to Stock Type and Controlled-Release Fertilizer Application. Can. J. For. 1988, 18, 710–717. [Google Scholar] [CrossRef]
- Dumroese, R.K.; Jacobs, D.F.; Davis, A.S. Inoculating Acacia Koa with Bradyrhizobium and Applying Fertilizer in the Nursery: Effects on Nodule Formation and Seedling Growth. HortScience 2009, 44, 443–446. [Google Scholar] [CrossRef] [Green Version]
- Clemens, D.F.; Whitehurst, B.M.; Whitehurst, G.B. Chelates in Agriculture. Fertil. Res. 1990, 25, 127–131. [Google Scholar] [CrossRef]
- Marschner, P. Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: Croydon, Australia, 2011. [Google Scholar]
- Álvarez-Fernández, A.; García-Marco, S.; Lucena, J.J. Evaluation of Synthetic Iron(III)-Chelates (EDDHA/Fe3+, EDDHMA/Fe3+ and the Novel EDDHSA/Fe3+) to Correct Iron Chlorosis. Eur. J. Agron. 2005, 22, 119–130. [Google Scholar] [CrossRef]
- Shalaby, O.A.E.-S.; Konopinski, M.; Ramadan, M.E.-S. Effect of Chelated Iron and Silicon on the Yield and Quality of Tomato Plants Grown under Semi-Arid Conditions. Acta Sci. Pol. Hortorum Cultus 2017, 16, 29–40. [Google Scholar] [CrossRef]
- Rocha, D.; Santhoshkumar, A.V. Host Plant Influence on Haustorial Growth and Development of Indian Sandalwood (Santalum Album). Indian Sandalwood Compend. 2022, 229–244. [Google Scholar]
- Baribault, T. Sandalwood Regeneration and Volume Inventory—Hāloa ’Āina; Forest Solution Inc.: Kamuela, HI, USA, 2014; Volume I. [Google Scholar]
- Friday, J.B.; Keir, M.J.; McMillen, H.L.; Rubenstein, T. Reforestation in the Hawaiian Islands. Tree Plant. Notes 2022, 65, 34–55. [Google Scholar]
- Medeiros, A.C.; Allmen, E.I.V.o.n.; Chimera, C.G. Dry Forest Restoration and Unassisted Native Tree Seedling Recruitment at Auwahi, Maui. Pac. Sci. 2014, 68, 33–45. [Google Scholar] [CrossRef]
- Ammondt, S.A.; Litton, C.M.; Ellsworth, L.M.; Leary, J.K. Restoration of Native Plant Communities in a Hawaiian Dry Lowland Ecosystem Dominated by the Invasive Grass Megathyrsus Maximus. Appl. Veg. Sci. 2013, 16, 29–39. [Google Scholar] [CrossRef]
- Soosairaj, S.; Britto, S.J.; Balaguru, B.; Natarajan, D.; Nagamurugan, N. Habitat Similarity and Species Distribution Analysis in Tropical Forests of Eastern Ghats, Tamilnadu. Trop. Ecol. 2005, 46, 183–191. [Google Scholar]
- Mendoza-tafolla, R.O.; Juarez-lopez, P.; Sandoval, M.; Alejo-santiago, G. Estimating Nitrogen and Chlorophyll Status of Romaine Lettuce Using SPAD and at LEAF Readings. Not. Bot. Horti Agrobot. Cluj-Napoca 2019, 47, 751–756. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Z.; Cao, Q.; Zhang, K.; Ata-Ul-Karim, S.T.; Tan, Y.; Zhu, Y.; Cao, W.; Liu, X. Optimal Leaf Positions for SPAD Meter Measurement in Rice. Front. Plant Sci. 2016, 7, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, J.B.; Case, V.W. Sampling, Handling, and Analyzing Plant Tissue Samples. In Soil Testing and Plant Analysis; Soil Science Society of America: Madison, WI, USA, 1990; pp. 389–427. [Google Scholar]
- Haase, D.L. Morphological and Physiological Evaluations of Seedling Quality. In National Proceedings: Forest and Conservation Nursery Associations; U.S. Department of Agriculture Forest Service: Fort Collins, CO, USA, 2007; pp. 3–8. [Google Scholar]
- Jacobs, D.F.; Davis, A.S.; Kasten Dumroese, R.; Burney, O.T. Nursery Cultural Techniques Facilitate Restoration of Acacia Koa Competing with Invasive Grass in a Dry Tropical Forest. Forests 2020, 11, 1124. [Google Scholar] [CrossRef]
- Welch, R.M. Micronutrient Nutrition of Plants. Crit. Rev. Plant Sci. 1995, 14, 49–82. [Google Scholar] [CrossRef]
- Bauer, G.; Schulze, E.D.; Mund, M. Nutrient Contents and Concentrations in Relation to Growth of Picea Abies and Fagus Sylvatica along a European Transect. Tree Physiol. 1997, 17, 777–786. [Google Scholar] [CrossRef]
- Pallardy, S.G. Physiology of Woody Plants, 3rd ed.; Academic Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Samira, R.; Stallmann, A.; Massenburg, L.N.; Long, T.A. Ironing out the Issues: Integrated Approaches to Understanding Iron Homeostasis in Plants. Plant Sci. 2013, 210, 250–259. [Google Scholar] [CrossRef]
- Lindsay, W.L.; Schwab, A.P. The Chemistry of Iron in Soils and Its Availability to Plants. J. Plant Nutr. 1982, 5, 821–840. [Google Scholar] [CrossRef]
- Colombo, C.; Palumbo, G.; He, J.Z.; Pinton, R.; Cesco, S. Review on Iron Availability in Soil: Interaction of Fe Minerals, Plants, and Microbes. J. Soils Sediments 2014, 14, 538–548. [Google Scholar] [CrossRef]
- Abadía, J.; Vázquez, S.; Rellán-Álvarez, R.; El-Jendoubi, H.; Abadía, A.; Álvarez-Fernández, A.; López-Millán, A.F. Towards a Knowledge-Based Correction of Iron Chlorosis. Plant Physiol. Biochem. 2011, 49, 471–482. [Google Scholar] [CrossRef]
- Ilhami Köksal, A.; Dumanoǧlu, H.; Güneş, N.T.; Aktaş, M. The Effects of Different Amino Acid Chelate Foliar Fertilizers on Yield, Fruit Quality, Shoot Growth and Fe, Zn, Cu, Mn Content of Leaves in Williams Pear Cultivar (Pyrus Communis L.). Turk. J. Agric. For. 1999, 23, 651–658. [Google Scholar]
- Pestana, M.; Varennes, A.D.e.; Faria, E.A. Diagnosis and Correction of Iron Chlorosis in Fruit Trees: A. Review. Food Agric. Environ. 2003, 1, 46–51. [Google Scholar]
- Perry, D.A.; Rose, S.L.; Pilz, D.; Schoenberger, M.M. Reduction of Natural Ferric Iron Chelators in Disturbed Forest Soils. Soil Sci. Soc. Am. J. 1984, 48, 379–382. [Google Scholar] [CrossRef]
- Cress, W.A.; Johnson, G.V.; Barton, L.L. The Role of Endomycorrhizal Fungi in Iron Uptake by Hilaria Jamesii. J. Plant Nutr. 1986, 9, 547–556. [Google Scholar] [CrossRef]
- Bell, T.L.; Adams, M.A.; Rennenberg, H. Attack on All Fronts: Functional Relationships between Aerial and Root Parasitic Plants and Their Woody Hosts and Consequences for Ecosystems. Tree Physiol. 2011, 31, 3–15. [Google Scholar] [CrossRef]
- Tomilov, A.; Tomilova, N.; Yoder, J.I. In Vitro Haustorium Development in Roots and Root Cultures of the Hemiparasitic Plant Triphysaria Versicolor. Plant Cell Tissue Organ. Cult. 2004, 77, 257–265. [Google Scholar] [CrossRef]
- Chang, M.; Lynn, D.G. The Haustorium and the Chemistry of Host Recognition in Parasitic Angiosperms. J. Chem. Ecol. 1986, 12, 561–579. [Google Scholar] [CrossRef]
- Li, Z.; Meng, S.; Qin, F.; Wang, S.; Liang, J.; He, X.; Lu, J. Host Root Exudates Initiate a Foraging Preference by the Root Parasite Santalum Album. Tree Physiol. 2022, 43, 301–314. [Google Scholar] [CrossRef]
- Balasubramanian, A.; Prasath, C.N.H.; Radhakrishnan, S.; Sivaprakash, M. Host-Specific Influence on Early Growth and Physiological Attributes of Sandal (Santalum Album) Grown in Farmlands. J. Environ. Biol. 2014, 35, 1013–1020. [Google Scholar] [CrossRef]
- Lu, J.K.; Xu, D.P.; Kang, L.H.; He, X.H. Host-Species-Dependent Physiological Characteristics of Hemiparasite Santalum Album in Association with N2-Fixing and Non-N2-Fixing Hosts Native to Southern China. Tree Physiol. 2014, 34, 1006–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inoue, T.; Yamauchi, Y.; Eltayeb, A.H.; Samejima, H.; Babiker, A.G.T.; Sugimoto, Y. Gas Exchange of Root Hemi-Parasite Striga Hermonthica and Its Host Sorghum Bicolor under Short-Term Soil Water Stress. Biol. Plant. 2013, 57, 773–777. [Google Scholar] [CrossRef]
Dry Mass | Collar Diameter | Shoot Height | S/R | Chl. | N Cont. | N Conc. | Fe Cont. | Fe Conc. | Total Haustoria | |
---|---|---|---|---|---|---|---|---|---|---|
CRF | <0.001 | <0.001 | <0.001 | 0.442 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.211 |
Fe | <0.001 | <0.001 | <0.001 | 0.400 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.832 |
Host | 0.145 | 0.291 | 0.640 | 0.249 | 0.004 | 0.198 | 0.876 | 0.435 | 0.014 | 0.015 |
CRF × Fe | <0.001 | 0.032 | 0.002 | 0.951 | <0.001 | 0.016 | <0.001 | <0.001 | 0.703 | 0.319 |
CRF × Host | 0.656 | 0.845 | 0.452 | 0.533 | 0.227 | 0.178 | 0.268 | 0.166 | 0.090 | 0.663 |
Fe × Host | 0.214 | 0.389 | 0.658 | 0.708 | 0.120 | 0.170 | 0.575 | 0.634 | 0.528 | 0.905 |
CRF × Fe × Host | 0.701 | 0.532 | 0.884 | 0.506 | 0.138 | 0.156 | 0.270 | 0.856 | 0.736 | 0.592 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Speetjens, T.M.; Jacobs, D.F. Nutrient Availability Has a Greater Influence than Pot Host on Seedling Development of Hemiparasitic Hawaiian Sandalwood (Santalum paniculatum Hook. and Arn.). Forests 2023, 14, 458. https://doi.org/10.3390/f14030458
Speetjens TM, Jacobs DF. Nutrient Availability Has a Greater Influence than Pot Host on Seedling Development of Hemiparasitic Hawaiian Sandalwood (Santalum paniculatum Hook. and Arn.). Forests. 2023; 14(3):458. https://doi.org/10.3390/f14030458
Chicago/Turabian StyleSpeetjens, Tawn M., and Douglass F. Jacobs. 2023. "Nutrient Availability Has a Greater Influence than Pot Host on Seedling Development of Hemiparasitic Hawaiian Sandalwood (Santalum paniculatum Hook. and Arn.)" Forests 14, no. 3: 458. https://doi.org/10.3390/f14030458
APA StyleSpeetjens, T. M., & Jacobs, D. F. (2023). Nutrient Availability Has a Greater Influence than Pot Host on Seedling Development of Hemiparasitic Hawaiian Sandalwood (Santalum paniculatum Hook. and Arn.). Forests, 14(3), 458. https://doi.org/10.3390/f14030458