Evaluating the Stand Structure, Carbon Sequestration, Oxygen Release Function, and Carbon Sink Value of Three Artificial Shrubs alongside the Tarim Desert Highway
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Quadrat Setup
2.3. Carbon Sequestration and Oxygen Release by Net Photosynthetic Rate Method
2.4. Carbon Sequestration and Oxygen Release by Biomass Method
2.5. Establishment and Testing of Three Shrub Biomass Models
2.6. Estimation of Carbon Sequestration and Oxygen Release Value
2.7. Data Processing
3. Results
3.1. Quadrat Vegetation Characteristics
3.2. Carbon Sequestration and Oxygen Release Capacity under Photosynthesis
3.2.1. Comparative Analysis of Carbon Sequestration and Oxygen Release in the Quadrat
3.2.2. Comparative Analysis of Carbon Sequestration and Oxygen Release Capacity of Different Plants in Shelterbelt by Net Photosynthetic Rate Method
3.2.3. Annual Carbon Sequestration and Oxygen Release via the Net Photosynthetic Rate Method
3.3. Carbon Sequestration and Oxygen Release Capacity under Biomass Method
3.3.1. Biomass Model Construction
3.3.2. Verification of Biomass Model
3.3.3. Total Carbon Sequestration and Oxygen Release Using the Biomass Method
3.4. Carbon Sequestration and Oxygen Release Benefits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Forzieri, G.; Alkama, R.; Miralles, D.G.; Cescatti, A. Satellites reveal contrasting responses of regional climate to the widespread greening of earth. Science 2017, 356, 1180–1184. [Google Scholar] [CrossRef] [PubMed]
- Sohngen, B.; Tian, X. Global climate change impacts on forests and markets. For. Policy Econ. 2016, 72, 18–26. [Google Scholar] [CrossRef]
- Zhang, S.; Bai, X.; Zhao, C.; Tan, Q.; Xi, H. Global CO2 Consumption by silicate rock chemical weathering: Its past and future. Earth’s Future 2021, 9, e1938E–e2020E. [Google Scholar] [CrossRef]
- Smith, P.; Porter, J.R. Bioenergy in the IPCC assessments. GCB Bioenergy 2018, 10, 428–431. [Google Scholar] [CrossRef]
- Yao, L.; Tan, S.; Xu, Z. Towards carbon neutrality: What has been done and what needs to be done for carbon emission reduction? Environ. Sci. Pollut. Res. Int. 2023, 30, 20570–20589. [Google Scholar] [CrossRef]
- Li, H.; Qin, Q. Challenges for China’s carbon emissions peaking in 2030: A decomposition and decoupling analysis. J. Clean. Prod. 2019, 207, 857–865. [Google Scholar] [CrossRef]
- Lin, B.; Ge, J. Carbon sinks and output of China’s forestry sector: An ecological economic development perspective. Sci. Total Environ. 2019, 655, 1169–1180. [Google Scholar] [CrossRef]
- Hoque, M.Z.; Cui, S.; Islam, I.; Xu, L.; Ding, S. Dynamics of plantation forest development and ecosystem carbon storage change in coastal Bangladesh. Ecol. Indic. 2021, 130, 107954. [Google Scholar] [CrossRef]
- Guo, Z.D.; Hu, H.F.; Li, P.; Li, N.Y.; Fang, J.Y. Spatio-Temporal changes in biomass carbon sinks in China’s forests from 1977 to 2008. Sci. China Life Sci. 2013, 56, 661–671. [Google Scholar] [CrossRef]
- Nghiem, N. Optimal rotation age for carbon sequestration and biodiversity conservation in Vietnam. Forest Policy Econ. 2014, 2014, 56–64. [Google Scholar] [CrossRef]
- Fang, J.Y.; Chen, A.P.; Peng, C.H.; Zhao, S.Q.; Ci, L. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 2001, 292, 2320–2322. [Google Scholar] [CrossRef] [PubMed]
- He, Y.J.; Han, X.R.; Wang, X.P.; Wang, L.Q.; Liang, T. Long-term ecological effects of two artificial forests on soil properties and quality in The Eastern Qinghai-Tibet Plateau. Sci. Total Environ. 2021, 796, 148986. [Google Scholar] [CrossRef] [PubMed]
- Qiu, D.D.; Zhu, G.F.; Lin, X.R.; Jiao, Y.Y.; Lu, S.Y.; Liu, J.T.; Liu, J.W.; Zhang, W.H.; Ye, L.L.; Li, R.; et al. Dissipation and movement of soil water in artificial forest in arid oasis areas: Cognition based on stable isotopes. CATENA 2023, 228, 107178. [Google Scholar] [CrossRef]
- Jörgensen, K.; Granath, G.; Lindahl, B.D.; Strengbom, J. Forest management to increase carbon sequestration in boreal pinus sylvestris forests. Plant Soil 2021, 466, 165–178. [Google Scholar] [CrossRef]
- Cook-Patton, S.C.; Leavitt, S.M.; Gibbs, D.; Harris, N.L.; Lister, K.; Anderson-Teixeira, K.J.; Briggs, R.D.; Chazdon, R.L.; Crowther, T.W.; Ellis, P.W.; et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 2020, 585, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kumar, M.; Pandey, R.; Yu, Z.G.; Cabral-Pinto, M. Forest soil nutrient stocks along altitudinal range of Uttarakhand Himalayas: An aid to nature based climate solutions. CATENA 2021, 207, 105667. [Google Scholar] [CrossRef]
- Ye, T.; Zhang, Y.M. Biomass allocation patterns and allometric relationships of six ephemeroid species in Junggar Basin, China. Acta Prataculturae Sin. 2014, 23, 38–48. [Google Scholar]
- Walker, W.S.; Gorelik, S.R.; Cook-Patton, S.C.; Baccini, A.; Farina, M.K.; Solvik, K.K.; Ellis, P.W.; Sanderman, J.; Houghton, R.A.; Leavitt, S.M.; et al. The global potential for increased storage of carbon on land. Pnas 2022, 119, e2111312119. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, L.; Zhang, P.P.; Wu, F.; Wang, Y.Q.; Xu, C.; Zhang, L.K.; An, S.S.; Kuzyakov, Y.K. Large-scale ecosystem carbon stocks and their driving factors across Loess Plateau. Carb Neutrality 2023, 2, 5. [Google Scholar] [CrossRef]
- Niu, J.P.; Yang, K.; Tang, Z.; Wang, Y. Relationships between soil crust development and soil properties in the Desert Region of North China. Sustainability 2017, 9, 725. [Google Scholar] [CrossRef]
- Liu, X.P.; Zhang, W.J.; Cao, J.S.; Yang, B.; Cai, Y.J. Carbon sequestration of plantation in Beijing-Tianjin sand source areas. J. Mt. Sci. 2018, 15, 2148–2158. [Google Scholar] [CrossRef]
- Xu, M.; Cao, C.; Tong, Q.; Li, Z.; Zhang, H.; He, Q.; Gao, M.; Zhao, J.; Zheng, S.; Chen, W.; et al. Remote sensing based shrub above-ground biomass and carbon storage mapping in Mu Us desert, China. Sci. China Technol. Sci 2010, 53, 176–183. [Google Scholar] [CrossRef]
- Chen, G.L. Photosynthetic Characteristics and Carbon Sequestration and Oxygen Release Capacity of Typical Plants in Helan Mountain. Master’s Thesis, Ningxia University, Yinchuan, China, 2021. [Google Scholar]
- Shang, W.; Li, Y.Q.; Zhao, X.Y.; Zhang, T.H.; Ma, Q.L.; Tang, J.N.; Feng, J.; Su, N. Effects of Caragana microphylla plantations on organic carbon sequestration in total and labile soil organic carbon fractions in the Horqin Sandy Land, northern China. Arid. Land 2017, 9, 688–700. [Google Scholar] [CrossRef]
- Liu, J. The Dynamic of Soil Water Shelterbelt Plants Photosynthetic and Stem Flow under Saline drip irrigation in Taklamakan Desert. Ph.D. Thesis, Northwest Agriculture and Forestry University, Xianyang, China, 2020. [Google Scholar]
- Moradi, A.; Shabanian, N. Sacred groves: A model of Zagros forests for carbon sequestration and climate change mitigation. Environ. Conserv. 2023, 50, 163–168. [Google Scholar] [CrossRef]
- Devi, N.B.; Lepcha, N.T. Carbon sink and source function of Eastern Himalayan forests: Implications of change in climate and biotic variables. Environ. Monit. Assess. 2023, 195, 843. [Google Scholar] [CrossRef]
- Barkhordarian, A.; Bowman, K.W.; Cressie, N.; Jewell, J.; Liu, J. Emergent constraints on tropical atmospheric aridity—Carbon feedbacks and the future of carbon sequestration. Environ. Res. Lett. 2021, 16, 114008. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, L.; Ma, S.; Zhou, Y.; Jia, R.; Li, X.; Yang, H.; Wang, B. Vegetation restoration in dryland with shrub serves as a carbon sink: Evidence from a 13-year observation at the Tengger Desert of Northern China. Land Degrad. Develop. 2023, 1–12. [Google Scholar] [CrossRef]
- An, Z.; Zhang, K.; Tan, L.; Niu, Q.; Wang, T. Mechanisms responsible for sand hazards along Desert Highways and their control: A case study of the Wuhai–Maqin Highway in the Tengger Desert, Northwest China. Front. Environ. Sci. 2022, 10, 878778. [Google Scholar] [CrossRef]
- Ding, X.Y.; Zhou, Z.B.; Xu, X.W.; Lei, J.Q.; Lu, J.J.; Ma, X.X. Three-dimension temporal and spatial dynamics of soil water for the artificial vegetation in the center of Taklimakan Desert under saline water drip-irrigation. Chin. J. Appl. Ecol. 2015, 26, 2600–2608. [Google Scholar]
- Zhang, X.M.; Wang, Y.D.; Xu, X.W.; Jiaqiang, L. Biomass, composition and dynamics of litterfall in Taklimakan Desert highway shelterbelt. J. Desert Res. 2017, 37, 6. [Google Scholar]
- Wang, S.C.; Luo, Y.Y.; Wang, S.S.; Zhang, H.W. Study on carbon reserve and carbon sequestration and oxygen release function of four artificial shrub communities in the south foot of Langshan Mountain. Shandong Agric. Sci. 2022, 54, 116–122. [Google Scholar]
- Fu, D.F.; Bu, B.; Wu, J.G.; Singh, R.P. Investigation on the carbon sequestration capacity of vegetation along a heavy traffic load expressway. J. Environ. Manag. 2019, 241, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Deng, L. Effects of replanted on stand growth and species diversity. J. Est Environ. 2023, 43, 329–336. [Google Scholar]
- Gou, J.H.; Li, C.J.; Zeng, F.J.; Zhang, B.; Liu, B.; Gou, Z.C. Relationship between root bio-mass distribution and soil moisture, nutrient for two desert plant species. Arid. Zone Res. 2016, 33, 1. [Google Scholar]
- Ahmad, A.; Liu, Q.J.; Nizami, S.M.; Mannan, A.; Saeed, S. Carbon emission from deforestation, forest degradation and wood harvest in the temperate region of Hindukush Himalaya, Pakistan between 1994 and 2016. Land Use Policy 2018, 78, 781–790. [Google Scholar] [CrossRef]
- Ma, X.W.; Xiong, K.N.; Zhang, Y.; Lai, J.L.; Zhang, S.H.; Ji, C.Z. Research progresses and prospects of carbon storage in forest ecosystems. J. Northwest For. Univ. 2019, 34, 62–72. [Google Scholar]
- Li, M. Carbon stock and sink economic values of forest ecosystem in the forest industry region of Heilongjiang Province, China. J. For. Res. 2022, 33, 875–882. [Google Scholar] [CrossRef]
- Chen, W.; Zhao, J.; Cao, C.; Tian, H. Shrub biomass estimation in semi-arid sandland ecosystem based on remote sensing technology. Glob. Ecol. Conserv. 2018, 16, e00479. [Google Scholar] [CrossRef]
- Chen, J.L.; Jiang, X.; Zhou, X.L.; Pang, X.A. Studies on aboveground biomass model of Tamarix Ramosissima at the upper reaches of the Tarim River. Xinjiang Agric. Sci. 2014, 51, 1893–1899. [Google Scholar]
- GB/T 38582-2020; State Forestry and Grassland Administration. Specification for Functional Assessment of Forest Ecosystem Services. State Administration for Market Regulation. National Standardization Administration Commission: Beijing, China, 2020.
- Luo, Y.; Gong, Y. α Diversity of desert shrub communities and Its relationship with Climatic factors in Xinjiang. Forests 2023, 14, 178. [Google Scholar] [CrossRef]
- Shan, L.S.; Li, Y.; Zhang, X.M.; Wang, H. Effects of different irrigation regimes on characteristics of transpiring water-consumption of three desert species. Acta Ecol. Sin. 2012, 32, 5692–5702. [Google Scholar] [CrossRef]
- Wei, Y.J. Study on Ecological Benefits and Optimal Configuration of Jilantai Salt Lake Protection System. Ph.D. Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2022. [Google Scholar]
- Li, W.; Wang, W.Q.; Sun, R.M.; Li, M.K.; Liu, H.W.; Shi, Y.F.; Zhu, D.D.; Li, J.Y.; Ma, L.; Fu, S.L. Influence of nitrogen addition on the functional diversity and biomass of fine roots in warm-temperate and subtropical forests. For. Ecol. Manag. 2023, 545, 121309. [Google Scholar] [CrossRef]
- Wang, X.Y.; Ma, Q.L.; Wang, Y.L. Carbon benefits evaluation of the artificial shelter forest in the Shiyanghe River Basin. J. Desert Res. 2020, 40, 197–205. [Google Scholar]
- Meng, T.G.; Wu, L.Y.; Zhang, S.L.; Xu, Y.Y.; Li, X.; Zhang, J.G. Vertical distribution of soil dissolved carbon and its influencing factors in the artificial shelterbelt irrigated with saline water in an Extreme Drought Desert. Huan Jing Ke Xue Huanjing Kexue 2020, 41, 1950–1959. [Google Scholar] [PubMed]
- Zou, Y.Y.; Jin, Z.Z.; Zhang, D.D.; Li, S.Y.; Xu, X.W. Study on litter standing biomass and soil properties under different forest in shelterbelt along the Tarim Desert Highway. Chin. J. Soil Sci. 2015, 46, 656–663. [Google Scholar]
- Zhang, Q.; Zhang, J.G.; Wang, L.M.; Ding, X.X.; Ma, A.S.; Zhang, H.; Li, L.M. Vertical distribution of soil organic and inorganic carbon in the Taklimakan Desert Highway shelterbelt drip-irrigated with different mineralization water. J. Northwest For. Univ. 2019, 34, 1–7. [Google Scholar]
- Liang, Y.; Gustafson, E.J.; He, H.S.; Serra-Diaz, J.M.; Duveneck, M.J.; Thompson, J.R. What is the role of disturbance in catalyzing spatial shifts in forest composition and tree species biomass under climate change? Glob. Change Biol. 2023, 29, 1160–1177. [Google Scholar] [CrossRef]
- Saini, D. Screening and evaluation of candidate trees for terrestrial carbon storage in regions with high air pollution and water stress. Carbon Manag. 2017, 8, 445–456. [Google Scholar] [CrossRef]
- Yu, D.; Han, S. Ecosystem service status and changes of degraded natural reserves–A study from the Changbai Mountain Natural Reserve, China. Ecosyst. Serv. 2016, 20, 56–65. [Google Scholar] [CrossRef]
- Tang, X.H.; Meng, Z.J.; Gao, Y.; Wang, J.; Zhang, P.; Liu, B. Photosynthetic carbon sequestration capacity of five natural desert shrubs in west Ordos region. J. Arid. Land Resour. Environ. 2017, 31, 128–135. [Google Scholar]
- Li, Z.G.; Zhu, Q.; Li, J. A comparison of photosynthetic carbon sequestration of four shrubs in Ningxia. Pratacultural. Sci. 2012, 29, 352–357. [Google Scholar]
- Zhang, D.M. Study Carbon Budget of Desert Shrubs in Alashan Desert Region. Master’s Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2012. [Google Scholar]
- Niu, P.X. Study on Biomass and Carbon Storage of Haloxylon ammodendron Community in Gurbantunggut Desert. Master’s Thesis, Shihezi University, Shihezi, China, 2015. [Google Scholar]
- Zheng, Z.H.; Ma, C.X.; Ma, J.L.; Li, J.Y.; Lei, S.X.; Liu, C.; Li, H. Analysis of carbon sequestration and energy producing efficiency of four shrub species. Hubei Agric. Sci. 2011, 50, 4633–4635+4643. [Google Scholar]
- Fen, X.H.; Zhang, X.M.; Liu, X.J.; Cheng, R.M.; Sun, H.R. Growth dynamics of Tamarix chinensis plantations in heavy-saline coastal lands and related ecological effects. Chin. J. Eco. Agric. 2013, 21, 1233–1240. [Google Scholar]
- Ali, F.; Khan, N.; Abd_Allah, E.F.; Ahmad, A. Species Diversity, Growing Stock Variables and Carbon Mitigation Potential in the Phytocoenosis of Monotheca buxifolia Forests along Altitudinal Gradient across Pakistan. Appl. Sci. 2022, 12, 1292. [Google Scholar] [CrossRef]
- Li, J.Q.; Chen, Q.B.; Li, Z.; Peng, B.X.; Zhang, J.L.; Xing, X.X.; Zhao, B.Y.; Song, D.H. Distribution and altitudinal patterns of carbon and nitrogen storage in various forest ecosystems in the central Yunnan Plateau, China. Sci. Rep. 2021, 11, 6269. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.Y.; Song, Y.D.; Wang, Y.C.; Jaing, P.A. Estimation of aboveground biomass of desert plants. Chin. J. Appl. Ecol. 2004, 15, 49–52. [Google Scholar]
- Yasseen, B.T.; Al-Thani, R.F. Endophytes and halophytes to remediate industrial wastewater and saline soils: Perspectives from Qatar. Plants 2022, 11, 1497. [Google Scholar] [CrossRef]
- Zhao, M.Y.; Sun, W.; Luo, Y.K.; Liang, C.Z.; Li, Z.Y.; Shen, H.T.; Niu, X.X.; Zheng, C.Y.; Hu, H.F.; Ma, W.H. Models for estimating the biomass of 26 temperate shrub species in Inner Mongolia, China. Arid. Zone Res. 2019, 36, 1219–1228. [Google Scholar]
- Yang, H.T.; Li, X.R.; Wang, X.R.; Jia, R.L.; Liu, L.C.; Gao, Y.H.; Li, G. Biomass prediction model of four shrub species at southeast edge of the Tengger Desert. J. Desert Res. 2013, 33, 1699–1704. [Google Scholar]
- Tang, X.H.; Gao, H.; Yu, Y.; Meng, Z.J.; Liu, Y.; Wang, S.; Wu, H.; Ding, Y.L. The biomass estimation models for eight desert shrub species in northern edge of the Hobq Desert. J. Arid. Land Resour. Environ. 2016, 30, 168–174. [Google Scholar]
- Wei, X.P.; Zhao, C.M.; Wang, G.X.; Chen, B.M.; Chen, D.L. Estimation of above-and below-ground biomass of dominant desert plant species in an oasis-desert ecotone of Minqin, China. Chin. J. Plant Ecol. 2005, 29, 12–17. [Google Scholar]
- Liu, D.J.; Zhang, C.; Ogaya, R.; Estiarte, M.; Peñuelas, J.; Valencia, E. Effects of decadal experimental drought and climate extremes on vegetation growth in Mediterranean forests and shrublands. J. Veg. Sci. 2020, 31, 768–779. [Google Scholar] [CrossRef]
- Yang, Q. Stability of Typical Desert Plant Populations, Communities and Ecosystems Across Water-Salt Gradient. Master’s Thesis, Xinjiang University, Urumqi, China, 2019. [Google Scholar]
- Yang, H.T.; Wang, Z.R.; Tan, H.J.; Gao, Y.H. Allometric models for estimating shrub biomass in desert grassland in northern China. Arid. Land Res. Manag. 2017, 31, 283–300. [Google Scholar] [CrossRef]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Gregor, L.; Hauck, J.; Le Quéré, C.; Luijkx, I.T.; Olsen, A.; Peters, G.P.; et al. Global carbon budget 2022. Earth Syst. Sci. Data 2022, 14, 4811–4900. [Google Scholar] [CrossRef]
- Lahn, B. A history of the global carbon budget. WIREs Clim. Change 2020, 11, e636. [Google Scholar] [CrossRef]
Function Type | Expression |
---|---|
Primary function | W = a + bX |
Quadratic function | W = a + bX + cX2 |
Logarithmic function | W = a + blnX |
Power function | W = aXb |
Exponential function | W = aebX |
Species of Trees | Vegetation Area (ha) | Carbon Sequestration | Oxygen Release | ||
---|---|---|---|---|---|
Carbon Sequestration per Unit Leaf Surface (kg m−2 a−1) | Annual Carbon Sequestration (104 t a−1) | Annual Oxygen Release per Leaf Surface (kg m−2 a−1) | Annual Oxygen Release (104 t a−1) | ||
H. ammodendron | 1291.36 | 1.95 | 2.52 | 1.42 | 1.83 |
C. mongolicum | 328.20 | 2.02 | 0.66 | 1.47 | 0.48 |
T. chinensis | 166.06 | 2.20 | 0.37 | 1.60 | 0.27 |
Total | 1785.62 | 3.55 | 2.58 |
Species of Trees | Sample Size | Diameter at Breast Height (cm) | Plant Height (cm) | Crown Average Diameter (m) | Crown Area (m2) | Measured Total Biomass (kg plant−1) |
---|---|---|---|---|---|---|
H. ammodendron | 12 | 5.70 ± 0.53 | 181.83 ± 7.06 | 1.95 ± 0.94 | 3.05 ± 0.29 | 14.62 ± 1.17 |
C. mongolicum | 12 | 2.57 ± 0.26 | 158.12 ± 6.73 | 1.58 ± 0.11 | 2.07 ± 0.29 | 12.33 ± 0.88 |
T. chinensis | 12 | 2.63 ± 0.32 | 193.30 ± 6.93 | 1.64 ± 0.07 | 2.15 ± 0.18 | 7.95 ± 0.55 |
Species of Trees | Independent Variable | Optimum Model | Argument | R2 | SEE | P | |
---|---|---|---|---|---|---|---|
a | b | ||||||
H. ammodendron | CH | 2.7982 | 0.9736 | 0.9641 | 0.908 | <0.001 | |
C. mongolicum | LH | 6.0349 | 0.7696 | 0.9540 | 0.827 | <0.001 | |
T. chinensis | CH | 2.8663 | 0.7265 | 0.9414 | 0.578 | <0.001 |
Species of Trees | Biomass | Total Relative Error/RS (%) | Mean Relative Error/RMA (%) |
---|---|---|---|
H. ammodendron | W | 1.27 | 7.20 |
C. mongolicum | 1.47 | 5.40 | |
T. chinensis | −2.49 | 6.60 |
Species of Trees | Diameter at Breast Height (cm) | Plant Height (cm) | Crown Average Diameter (m) | Crown Area (m2) | Predicted Biomass (kg plant−1) |
---|---|---|---|---|---|
H. ammodendron | 4.08 ± 0.15 | 178.61 ± 5.13 | 2.19 ± 0.05 | 4.13 ± 0.22 | 19.62 |
C. mongolicum | 2.50 ± 0.22 | 156.68 ± 7.43 | 1.50 ± 0.09 | 1.96 ± 0.21 | 11.67 |
T. chinensis | 2.73 ± 0.25 | 181.92 ± 10.51 | 1.69 ± 0.11 | 2.54 ± 0.40 | 8.72 |
Species of Trees | Biomass (kg Plant−1) | Number of Plants (Million) | Total Biomass (104 t) | Carbon Content (kg kg−1) | Carbon Stock (104 t) | Carbon Storage Density (t ha−1) | Total Carbon Sequestration (104 t) | Total Oxygen Release (104 t) |
---|---|---|---|---|---|---|---|---|
H. ammodendron | 19.62 | 12.6 | 24.72 | 0.5 | 12.36 | 67.00 | 45.32 | 32.96 |
C. mongolicum | 11.67 | 4.13 | 4.82 | 2.41 | 51.40 | 8.84 | 6.43 | |
T. chinensis | 8.72 | 1.47 | 1.28 | 0.64 | 26.98 | 2.35 | 1.71 | |
Total | 18.20 | 15.41 | 60.41 | 56.51 | 41.10 |
Species of Trees | Annual Price of Pn Method (Million CNY a−1) | Total Value of Biomass Method (Million CNY) | ||||
---|---|---|---|---|---|---|
Carbon Sequestration | Oxygen Release | Carbon Sequestration and Oxygen Release | Carbon Sequestration | Oxygen Release | Carbon Sequestration and Oxygen Release | |
H. ammodendron | 1.34 | 8.42 | 9.76 | 24.16 | 151.29 | 175.45 |
C. mongolicum | 0.35 | 2.21 | 2.56 | 4.71 | 29.51 | 34.22 |
T. chinensis | 0.19 | 1.22 | 1.41 | 1.25 | 7.85 | 9.10 |
Total | 1.88 | 11.85 | 13.73 | 30.12 | 188.65 | 218.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Zayiti, A.; He, X. Evaluating the Stand Structure, Carbon Sequestration, Oxygen Release Function, and Carbon Sink Value of Three Artificial Shrubs alongside the Tarim Desert Highway. Forests 2023, 14, 2137. https://doi.org/10.3390/f14112137
Li L, Zayiti A, He X. Evaluating the Stand Structure, Carbon Sequestration, Oxygen Release Function, and Carbon Sink Value of Three Artificial Shrubs alongside the Tarim Desert Highway. Forests. 2023; 14(11):2137. https://doi.org/10.3390/f14112137
Chicago/Turabian StyleLi, Lin, Abudoukeremujiang Zayiti, and Xuemin He. 2023. "Evaluating the Stand Structure, Carbon Sequestration, Oxygen Release Function, and Carbon Sink Value of Three Artificial Shrubs alongside the Tarim Desert Highway" Forests 14, no. 11: 2137. https://doi.org/10.3390/f14112137
APA StyleLi, L., Zayiti, A., & He, X. (2023). Evaluating the Stand Structure, Carbon Sequestration, Oxygen Release Function, and Carbon Sink Value of Three Artificial Shrubs alongside the Tarim Desert Highway. Forests, 14(11), 2137. https://doi.org/10.3390/f14112137