Practical LAI Estimation with DHP Images in Complex Forest Structure with Rugged Terrain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Digital Hemispherical Photography System
2.3. Terrestial LiDAR Data
2.4. Estimation of LAI with the DHP Images
2.5. Spatial Footprint of DHP
3. Results and Discussion
3.1. How the Footprint of DHP Varies over Different View Zenith Angles?
3.2. How Does the Vertical Height of a Footprint Vary across View Zenith Angles in a Forest with Complex Structure?
3.3. How Different Is the LAI Estimates between Different View Zenith Angles?
3.4. Are Hinge Angle (57°) and LAI-2000/2200 Methods Suitable for Places with Complex Forest Structures and Rugged Terrain?
3.5. What Is the Practical Solution Using the DHP System for LAI Estimation in Complex Forest Structures with Rugged Terrain?
3.6. Potentials and Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yan, G.; Hu, R.; Luo, J.; Weiss, M.; Jiang, H.; Mu, X.; Xie, D.; Zhang, W. Review of Indirect Optical Measurements of Leaf Area Index: Recent Advances, Challenges, and Perspectives. Agric. For. Meteorol. 2019, 265, 390–411. [Google Scholar] [CrossRef]
- Parker, G.G. Tamm Review: Leaf Area Index (LAI) Is Both a Determinant and a Consequence of Important Processes in Vegetation Canopies. For. Ecol. Manag. 2020, 477, 118496. [Google Scholar] [CrossRef]
- Bonan, G.B.; Pollard, D.; Thompson, S.L. Influence of Subgrid-Scale Heterogeneity in Leaf Area Index, Stomatal Resistance, and Soil Moisture on Grid-Scale Land--Atmosphere Interactions. J. Clim. 1993, 6, 1882–1897. [Google Scholar] [CrossRef]
- Anav, A.; Murray-Tortarolo, G.; Friedlingstein, P.; Sitch, S.; Piao, S.; Zhu, Z. Evaluation of Land Surface Models in Reproducing Satellite Derived Leaf Area Index over the High-Latitude Northern Hemisphere. Part II: Earth System Models. Remote Sens. 2013, 5, 3637–3661. [Google Scholar] [CrossRef]
- Kumar, S.V.; Mocko, D.M.; Wang, S.; Peters-Lidard, C.D.; Borak, J. Assimilation of Remotely Sensed Leaf Area Index into the Noah-MP Land Surface Model: Impacts on Water and Carbon Fluxes and States over the Continental United States. J. Hydrometeorol. 2019, 20, 1359–1377. [Google Scholar] [CrossRef]
- Morisette, J.T.; Baret, F.; Privette, J.L.; Myneni, R.B.; Nickeson, J.E.; Garrigues, S.; Shabanov, N.V.; Weiss, M.; Fernandes, R.A.; Leblanc, S.G.; et al. Validation of Global Moderate-Resolution LAI Products: A Framework Proposed within the CEOS Land Product Validation Subgroup. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1804–1817. [Google Scholar] [CrossRef]
- Baret, F.; Camacho, F.; Fang, H.; Garrigues, S.; Gobron, N.; Lang, M.; Lacaze, R.; LeBlanc, S.; Meroni, M.; Martinez, B.; et al. Global Leaf Area Index Product Validation Good Practices; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Meier, C.; Everhart, J.; Jones, K. TOS Protocol and Procedure: Measurement of Leaf Area Index, K ed.; National Ecological Observatory Network: Boulder, CO, USA, 2018. [Google Scholar]
- Karan, M.; Liddell, M.; Prober, S.M.; Arndt, S.; Beringer, J.; Boer, M.; Cleverly, J.; Eamus, D.; Grace, P.; Van Gorsel, E.; et al. The Australian SuperSite Network: A Continental, Long-Term Terrestrial Ecosystem Observatory. Sci. Total Environ. 2016, 568, 1263–1274. [Google Scholar] [CrossRef]
- Fang, H.; Baret, F.; Plummer, S.; Schaepman-Strub, G. An Overview of Global Leaf Area Index (LAI): Methods, Products, Validation, and Applications. Rev. Geophys. 2019, 57, 739–799. [Google Scholar] [CrossRef]
- Park, S.J. Generality and Specificity of Landforms of the Korean Peninsula, and Its Sustainability. J. Korean Geogr. Soc. 2014, 49, 656–674. [Google Scholar]
- Muscarella, R.; Kolyaie, S.; Morton, D.C.; Zimmerman, J.K.; Uriarte, M. Effects of Topography on Tropical Forest Structure Depend on Climate Context. J. Ecol. 2020, 108, 145–159. [Google Scholar] [CrossRef]
- Gonsamo, A.; Walter, J.-M.N.; Pellikka, P. Sampling Gap Fraction and Size for Estimating Leaf Area and Clumping Indices from Hemispherical Photographs. Can. J. For. Res. 2010, 40, 1588–1603. [Google Scholar] [CrossRef]
- Leblanc, S.G.; Chen, J.M. A Practical Scheme for Correcting Multiple Scattering Effects on Optical LAI Measurements. Agric. For. Meteorol. 2001, 110, 125–139. [Google Scholar] [CrossRef]
- Stenberg, P.; Linder, S.; Smolander, H.; Flower-Ellis, J. Performance of the LAI-2000 Plant Canopy Analyzer in Estimating Leaf Area Index of Some Scots Pine Stands. Tree Physiol. 1994, 14, 981–995. [Google Scholar] [CrossRef] [PubMed]
- Varhola, A.; Coops, N.C. Estimation of Watershed-Level Distributed Forest Structure Metrics Relevant to Hydrologic Modeling Using LiDAR and Landsat. J. Hydrol. 2013, 487, 70–86. [Google Scholar] [CrossRef]
- Majasalmi, T.; Korhonen, L.; Korpela, I.; Vauhkonen, J. Application of 3D Triangulations of Airborne Laser Scanning Data to Estimate Boreal Forest Leaf Area Index. Int. J. Appl. Earth Obs. Geoinf. 2017, 59, 53–62. [Google Scholar] [CrossRef]
- Geng, J.; Yuan, G.; Chen, J.M.; Lyu, C.; Tu, L.; Fan, W.; Tian, Q.; Wu, Z.; Tao, T.; Yu, M.; et al. Error Analysis of LAI Measurements with LAI-2000 Due to Discrete View Angular Range Angles for Continuous Canopies. Remote Sens. 2021, 13, 1405. [Google Scholar] [CrossRef]
- Lee, B.; Kim, N.; Kim, E.-S.; Jang, K.; Kang, M.; Lim, J.-H.; Cho, J.; Lee, Y. An Artificial Intelligence Approach to Predict Gross Primary Productivity in the Forests of South Korea Using Satellite Remote Sensing Data. Forests 2020, 11, 1000. [Google Scholar] [CrossRef]
- Korea Meteorological Administration. Climatological Normals of Korea; Korea Meteorological Administration: Seoul, Republic of Korea, 2015.
- Yun, S.J.; Chun, J. Long-Term Ecological Research on Korean Forest Ecosystems: The Current Status and Challenges. Ecol. Res. 2018, 33, 1289–1302. [Google Scholar] [CrossRef]
- Chianucci, F.; Cutini, A. Digital Hemispherical Photography for Estimating Forest Canopy Properties: Current Controversies and Opportunities. IForest-Biogeosci. For. 2012, 5, 290. [Google Scholar] [CrossRef]
- Li, S.; Fang, H.; Zhang, Y.; Wang, Y. Comprehensive Evaluation of Global CI, FVC, and LAI Products and Their Relationships Using High-Resolution Reference Data. Sci. Remote Sens. 2022, 6, 100066. [Google Scholar] [CrossRef]
- Niedballa, J.; Axtner, J.; Döbert, T.F.; Tilker, A.; Nguyen, A.; Wong, S.T.; Fiderer, C.; Heurich, M.; Wilting, A. Imageseg: An R Package for Deep Learning-Based Image Segmentation. Methods Ecol. Evol. 2022, 13, 2363–2371. [Google Scholar] [CrossRef]
- Chianucci, F.; Macek, M. HemispheR: An R Package for Fisheye Canopy Image Analysis. Agric. For. Meteorol. 2023, 336, 109470. [Google Scholar] [CrossRef]
- Miller, J.B. A Formula for Average Foliage Density. Aust. J. Bot. 1967, 15, 141–144. [Google Scholar] [CrossRef]
- Lang, A.R.G.; Yueqin, X. Estimation of Leaf Area Index from Transmission of Direct Sunlight in Discontinuous Canopies. Agric. For. Meteorol. 1986, 37, 229–243. [Google Scholar] [CrossRef]
- Ryu, Y.; Nilson, T.; Kobayashi, H.; Sonnentag, O.; Law, B.E.; Baldocchi, D.D. On the Correct Estimation of Effective Leaf Area Index: Does It Reveal Information on Clumping Effects? Agric. For. Meteorol. 2010, 150, 463–472. [Google Scholar] [CrossRef]
- Leblanc, S.G.; Fournier, R.A. Hemispherical Photography Simulations with an Architectural Model to Assess Retrieval of Leaf Area Index. Agric. For. Meteorol. 2014, 194, 64–76. [Google Scholar] [CrossRef]
- Kwon, B.; Kim, H.S.; Jeon, J.; Yi, M.J. Effects of Temporal and Interspecific Variation of Specific Leaf Area on Leaf Area Index Estimation of Temperate Broadleaved Forests in Korea. Forests 2016, 7, 215. [Google Scholar] [CrossRef]
- Chen, J.M.; Black, T.A. Measuring Leaf Area Index of Plant Canopies with Branch Architecture. Agric. For. Meteorol. 1991, 57, 1–12. [Google Scholar] [CrossRef]
- Macfarlane, C.; Grigg, A.; Evangelista, C. Estimating Forest Leaf Area Using Cover and Fullframe Fisheye Photography: Thinking inside the Circle. Agric. For. Meteorol. 2007, 146, 1–12. [Google Scholar] [CrossRef]
- Wagner, S.; Hagemeier, M. Method of Segmentation Affects Leaf Inclination Angle Estimation in Hemispherical Photography. Agric. For. Meteorol. 2006, 139, 12–24. [Google Scholar] [CrossRef]
- Chianucci, F.; Pisek, J.; Raabe, K.; Marchino, L.; Ferrara, C.; Corona, P. A Dataset of Leaf Inclination Angles for Temperate and Boreal Broadleaf Woody Species. Ann. For. Sci. 2018, 75, 50. [Google Scholar] [CrossRef]
- Bao, Y.; Ni, W.; Wang, D.; Yue, C.; He, H.; Verbeeck, H. Effects of Tree Trunks on Estimation of Clumping Index and LAI from HemiView and Terrestrial LiDAR. Forests 2018, 9, 144. [Google Scholar] [CrossRef]
- Chen, J.M. Optically-Based Methods for Measuring Seasonal Variation of Leaf Area Index in Boreal Conifer Stands. Agric. For. Meteorol. 1996, 80, 135–163. [Google Scholar] [CrossRef]
- Weiss, M.; Baret, F.; Smith, G.J.; Jonckheere, I.; Coppin, P. Review of Methods for in Situ Leaf Area Index (LAI) Determination: Part II. Estimation of LAI, Errors and Sampling. Agric. For. Meteorol. 2004, 121, 37–53. [Google Scholar] [CrossRef]
- Yan, G.; Jiang, H.; Luo, J.; Mu, X.; Li, F.; Qi, J.; Hu, R.; Xie, D.; Zhou, G. Quantitative Evaluation of Leaf Inclination Angle Distribution on Leaf Area Index Retrieval of Coniferous Canopies. J. Remote Sens. 2021, 2021, 2708904. [Google Scholar] [CrossRef]
- Bailey, B.N.; Mahaffee, W.F. Rapid Measurement of the Three-Dimensional Distribution of Leaf Orientation and the Leaf Angle Probability Density Function Using Terrestrial LiDAR Scanning. Remote Sens. Environ. 2017, 194, 63–76. [Google Scholar] [CrossRef]
- Vicari, M.B.; Pisek, J.; Disney, M. New Estimates of Leaf Angle Distribution from Terrestrial LiDAR: Comparison with Measured and Modelled Estimates from Nine Broadleaf Tree Species. Agric. For. Meteorol. 2019, 264, 322–333. [Google Scholar] [CrossRef]
- Liu, J.; Skidmore, A.K.; Wang, T.; Zhu, X.; Premier, J.; Heurich, M.; Beudert, B.; Jones, S. Variation of Leaf Angle Distribution Quantified by Terrestrial LiDAR in Natural European Beech Forest. ISPRS J. Photogramm. Remote Sens. 2019, 148, 208–220. [Google Scholar] [CrossRef]
- Stovall, A.E.L.; Masters, B.; Fatoyinbo, L.; Yang, X. TLSLeAF: Automatic Leaf Angle Estimates from Single-Scan Terrestrial Laser Scanning. New Phytol. 2021, 232, 1876–1892. [Google Scholar] [CrossRef]
- Gonsamo, A.; Pellikka, P. Methodology Comparison for Slope Correction in Canopy Leaf Area Index Estimation Using Hemispherical Photography. For. Ecol. Manag. 2008, 256, 749–759. [Google Scholar] [CrossRef]
Date | LAI | Date | LAI |
---|---|---|---|
1 April 2022 | 1.06 | 8 September 2022 | 1.57 |
8 April 2022 | 0.68 | 14 October 2022 | 2.14 |
15 April 2022 | 0.82 | 19 October 2022 | 1.25 |
22 April 2022 | 0.94 | 28 October 2022 | 0.92 |
2 May 2022 | 1.81 | 10 November 2022 | 0.74 |
6 May 2022 | 1.62 | 29 November 2022 | 0.53 |
13 May 2022 | 2.00 | 9 December 2022 | 0.58 |
3 June 2022 | 2.08 | 12 January 2023 | 0.36 |
24 June 2022 | 2.38 | 21 February 2023 | 0.33 |
22 July 2022 | 1.98 | 17 March 2023 | 0.53 |
29 July 2022 | 1.91 | 28 April 2023 | 1.56 |
5 August 2022 | 2.00 | 4 July 2023 | 2.23 |
12 August 2022 | 1.68 |
ID | Latitude |
---|---|
Wavelength | 1550 nm |
Laser class | Class 1 |
Horizontal Field of View | 360° |
Vertical Field of View | 300° |
Range | 0.5–130 m |
Measuring rate | Up to 2,000,000 pts/s |
Resolution | 3 mm @ 10 m 6 mm @ 10 m 12 mm @ 10 m |
Angular accuracy | 18″ |
3D point accuracy | 1.9 mm @10 m 2.9 mm @ 20 m 5.3 mm @ 40 m |
Weight | 5.35 kg |
LAI Methods | Range of VZA | #Annulus | #Sector |
---|---|---|---|
L10 | 0°–10° | 1 | 8 |
L20 | 0°–20° | 2 | 8 |
L30 | 0°–30° | 3 | 8 |
L40 | 0°–40° | 4 | 8 |
L50 | 0°–50° | 5 | 8 |
L60 | 0°–60° | 6 | 8 |
L70 | 0°–70° | 7 | 8 |
L80 | 0°–80° | 8 | 8 |
L90 | 0°–90° | 9 | 8 |
LAI-2000/2200 | 0°–75° | 5 | 1 |
HA | 55°–60° | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Cha, S.; Lim, J.; Chun, J.; Jang, K. Practical LAI Estimation with DHP Images in Complex Forest Structure with Rugged Terrain. Forests 2023, 14, 2047. https://doi.org/10.3390/f14102047
Lee J, Cha S, Lim J, Chun J, Jang K. Practical LAI Estimation with DHP Images in Complex Forest Structure with Rugged Terrain. Forests. 2023; 14(10):2047. https://doi.org/10.3390/f14102047
Chicago/Turabian StyleLee, Junghee, Sungeun Cha, Joongbin Lim, Junghwa Chun, and Keunchang Jang. 2023. "Practical LAI Estimation with DHP Images in Complex Forest Structure with Rugged Terrain" Forests 14, no. 10: 2047. https://doi.org/10.3390/f14102047
APA StyleLee, J., Cha, S., Lim, J., Chun, J., & Jang, K. (2023). Practical LAI Estimation with DHP Images in Complex Forest Structure with Rugged Terrain. Forests, 14(10), 2047. https://doi.org/10.3390/f14102047