Soil Quality Assessment and Management in Karst Rocky Desertification Ecosystem of Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Soil Sampling Measurements
2.3. Soil Quality Evaluation
2.4. Data Analysis
3. Results
3.1. Eco-Environmental Factors
3.2. Soil Quality Based on Total Dataset Method
3.3. Soil Quality Based on Minimum Dataset Method
3.4. Soil Quality Index Validation
4. Discussion
4.1. Soil Quality and Eco-Environmental Factors
4.2. Soil Quality Evaluation Methods
4.3. Relationship between Intense Rocky Desertification and Karst Shallow Fissures
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bai, X.Y.; Wang, S.J.; Xiong, K.N. Assessing spatial-temporal evolution processes of karst rocky desertification land: Indications for restoration strategies. Land Degrad. Dev. 2013, 24, 47–56. [Google Scholar] [CrossRef]
- Lan, J. Responses of soil organic carbon components and their sensitivity to karst rocky desertification control measures in Southwest China. J. Soils Sediments 2021, 21, 978–989. [Google Scholar] [CrossRef]
- Ma, T.; Deng, X.; Chen, L.; Xiang, W. The soil properties and their effects on plant diversity in different degrees of rocky desertification. Sci. Total Environ. 2020, 736, 139667. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Lian, Y.; Qin, X. Rocky desertification in Southwest China: Impacts, causes, and restoration. Earthence Rev. 2014, 132, 1–12. [Google Scholar] [CrossRef]
- Wang, S.J.; Liu, Q.M.; Zhang, D.F. Karst rocky desertification in southwestern China: Geomorphology, landuse, impact and rehabilitation. Land Degrad. Dev. 2004, 15, 115–121. [Google Scholar] [CrossRef]
- Wang, G.; Liu, Y.; Cui, M.; Zhou, Z.; Zhou, J. Effects of secondary succession on soil fungal and bacterial compositions and diversities in a karst area. Plant Soil 2021, 6, 5016–5028. [Google Scholar] [CrossRef]
- Dai, Q.; Peng, X.; Yang, Z.; Zhao, L. Runoff and erosion processes on bare slopes in the Karst Rocky Desertification Area. Catena 2017, 152, 218–226. [Google Scholar] [CrossRef]
- Hartmann, A.; Gleeson, T.; Rosolem, R.; Pianosi, F.; Wagener, T. A simulation model to assess groundwater recharge over Europe’s karst regions. Geosci. Model Dev. Discuss. 2014, 7, 7887–7935. [Google Scholar]
- Peng, J.; Qing, Y.; Ren, X.; Zhang, Y.; Xiong, K.N. Soil erosion monitoring and its implication in a limestone land suffering from rocky desertification in the Huajiang Canyon, Guizhou, Southwest China. Environ. Earth Sci. 2012, 69, 831–841. [Google Scholar] [CrossRef]
- Huang, Q.; Cai, Y.; Xing, X. Rocky Desertification, Antidesertification, and Sustainable Development in the Karst Mountain Region of Southwest China. Ambio 2008, 37, 390–392. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Dai, M.H.; Wang, L.C.; Zeng, C.F.; Su, W.C. The challenge and future of rocky desertification control in Karst areas in Southwest China. Solid Earth Discuss. 2015, 7, 3271–3292. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.; Gao, M.; Zhang, Y.; Long, M.; Li, X. Effects of disturbance to moss biocrusts on soil nutrients, enzyme activities, and microbial communities in degraded karst landscapes in southwest China. Soil Biol. Biochem. 2021, 152, 108065. [Google Scholar] [CrossRef]
- Ping, Y.; Tang, Y.Q.; Zhou, N.Q.; Wang, J.X.; She, T.Y.; Zhang, X.H. Characteristics of red clay creep in karst caves and loss leakage of soil in the karst rocky desertification area of Puding County, Guizhou, China. Environ. Earth Sci. 2011, 63, 543–549. [Google Scholar]
- Bewket, W.; Teferi, E. Assessment of soil erosion hazard and prioritization for treatment at the watershed level: Case study in the Chemoga watershed, Blue Nile basin, Ethiopia. Land Degrad. Dev. 2010, 20, 609–622. [Google Scholar] [CrossRef]
- Eldridge, D.J.; Reed, S.; Travers, S.K.; Bowker, M.A.; Zhao, Y. The pervasive and multifaceted influence of biocrusts on water in the world’s drylands. Glob. Change Biol. 2020, 26, 6003–6014. [Google Scholar] [CrossRef]
- Karlen, D.; Gardner, J.C.; Rosek, M.J. A Soil Quality Framework for Evaluating the Impact of CRP. J. Prouction Agric. 1988, 11, 50–60. [Google Scholar] [CrossRef]
- Doran, W.J. Defining Soil Quality for a Sustainable Environment. In A Framework for Evaluating Physical and Chemical Indicators of Soil Quality; Soil Science Society of America: Madison, WI, USA, 1994. [Google Scholar]
- Marzaioli, R.; D’Ascoli, R.; Pascale, R.; Rutigliano, F.A. Soil quality in a Mediterranean area of Southern Italy as related to different land use types. Appl. Soil Ecol. 2010, 44, 205–212. [Google Scholar] [CrossRef]
- Bo, S.; Zhou, S.; Zhao, Q. Evaluation of spatial and temporal changes of soil quality based on geostatistical analysis in the hill region of subtropical China. Geoderma 2003, 115, 85–99. [Google Scholar]
- Qi, Y.; Darilek, J.L.; Huang, B.; Zhao, Y.; Sun, W.; Gu, Z. Evaluating soil quality indices in an agricultural region of Jiangsu Province, China. Geoderma 2009, 149, 325–334. [Google Scholar] [CrossRef]
- Gong, W.Z. Assessment and analysis of soil quality changes after eleven years of reclamation in subtropical China. Geoderma 1998, 81, 339–355. [Google Scholar]
- Yang, Y.; Li, P.; Ding, J.; Zhao, X.; Ma, W.; Ji, C.; Fang, J. Increased topsoil carbon stock across China’s forests. Glob Change Biol. 2014, 20, 2687–2696. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Wang, S.; Peng, T.; Peng, H.; Oliver, D.M. Evaluating the structure characteristics of epikarst at a typical peak cluster depression in Guizhou plateau area using ground penetrating radar attributes. Geomorphology 2020, 364, 7015–7026. [Google Scholar] [CrossRef]
- Cheng, Q.; Chen, X.; Tao, M.; Binley, A. Characterization of karst structures using quasi-3D electrical resistivity tomography. Environ. Earth Sci. 2019, 78, 284–297. [Google Scholar] [CrossRef]
- Jie, Z.; Tang, Y.; Ping, Y.; Zhang, X.; Zhou, N.; Wang, J. Inference of creep mechanism in underground soil loss of karst conduits I. Conceptual model. Nat. Hazards 2012, 62, 1191–1215. [Google Scholar]
- State Forestry Administration of the People’s Republic of China. LY/T 1840–2009 Technical Code for Vegetation Restoration in Karst Rocky Desertifification Areas; China Standards Press: Beijing, China, 2011. [Google Scholar]
- Xiong, K.N.; Li, P.; Zhou, Z.F. Remote Sensing of KarstRocky Desertification—A Typical Research of GIS—A Case Study of Guizhou Province; Geology Publishing House: Beijing, China, 2002; pp. 22–28. [Google Scholar]
- Bremner, J.M. Determination of nitrogen in soil by the Kjeldahl method. J. Agric. Sci. 1960, 55, 11–33. [Google Scholar] [CrossRef]
- Pang, P. Determination of Total Phosphorus in Soil by Ammonium Molybdate Spectrophotometry. Chin. J. Spectrosc. Lab. 2003, 20, 697–699. [Google Scholar]
- Wischmeier, W.H. A soil erodibility nomograph for farmland and construction sites. J. Soil Water Conserv. 1971, 26, 189–193. [Google Scholar]
- Magdoff, F.R.; Tabatabai, M.A.; Hanlon, E.; Schulte, E.E.; Hopkins, B.G. Estimation of Soil Organic Matter by Weight Loss-On-Ignition. Soil Org. Matter: Anal. Interpret. 1996, 46, 21–31. [Google Scholar]
- Rahmanipour, F.; Marzaioli, R.; Bahrami, H.A.; Fereidouni, Z.; Bandarabadi, S.R. Assessment of soil quality indices in agricultural lands of Qazvin Province, Iran. Ecol. Indic. 2014, 40, 19–26. [Google Scholar] [CrossRef]
- Mahajan, G.; Das, B.; Morajkar, S.; Desai, A.; Patel, K. Soil quality assessment of coastal salt-affected acid soils of India. Environ. Sci. Pollut. Res. 2020, 27, 26221–26238. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, X.; Li, Z.; Xu, C.; Luo, W. Improvements in soil quality with vegetation succession in subtropical China karst. Sci. Total Environ. 2021, 775, 145876. [Google Scholar] [CrossRef] [PubMed]
- Fincher, C.E. Defining and Assessing Quality. Academic Standards; Institute of Higher Education, University of Georgia: Athens, Greece, 1994. [Google Scholar]
- Zhao, Q.G.; Huang, G.Q.; Ma, Y.Q. The problems in red soil ecosystem in southern of China and its countermeasures. Acta Ecol. Sin. 2013, 33, 7615–7622. [Google Scholar]
- Zhao, C.; Li-Ping, H.E.; Gui-Xiang, L.I.; Chai, Y.; Shao, J.P. Effect and Assessment of Vegetation Restoration on Soil Quality in Kunyang Phosphorite Mine Area. J. West China For. Sci. 2018, 47, 106–111. [Google Scholar]
- Yan, Y.; Dai, Q.; Wang, X.; Jin, L.; Mei, L. Response of shallow karst fissure soil quality to secondary succession in a degraded karst area of southwestern China. Geoderma 2019, 348, 76–85. [Google Scholar] [CrossRef]
- Liu, J.; Vu, N.H.; Zhen, S.; Zhu, H.; Fei, Z.; Zhong, Z. Characteristics of bulk and rhizosphere soil microbial community in an ancient Platycladus orientalis forest. Appl. Soil Ecol. 2018, 132, 91–98. [Google Scholar] [CrossRef]
- Getahun, G.T.; Ktterer, T.; Munkholm, L.J.; Parvage, M.M.; Kirchmann, H. Short-term effects of loosening and incorporation of straw slurry into the upper subsoil on soil physical properties and crop yield. Soil Tillage Res. 2018, 184, 62–67. [Google Scholar] [CrossRef]
- Askari, M.S.; O’Rourke, S.M.; Holden, N.M. Evaluation of soil quality for agricultural production using visible-near-infrared spectroscopy. Geoderma 2015, 243, 80–91. [Google Scholar]
- Li, Z.W.; Xu, X.L.; Zhu, J.X.; Xu, C.H.; Wang, K.L. Sediment yield is closely related to lithology and landscape properties in heterogeneous karst watersheds-Science Direct. J. Hydrol. 2019, 568, 437–446. [Google Scholar] [CrossRef]
- Wang, S.J.; Li, Y.B. Problems and development trends about researches on karst rocky desertification. Adv. Earth Sci. 2007, 22, 573–582. [Google Scholar]
- Xiao, D.; He, X.; Zhang, W.; Hu, P.; Sun, M.; Wang, K. Comparison of bacterial and fungal diversity and network connectivity in karst and non-karst forests in southwest China. Sci. Total Environ. 2022, 822, 153179–153198. [Google Scholar] [CrossRef]
- Tang, J.; Tang, X.X.; Qin, Y.M.; He, Q.S.; Yi, Y.; Ji, Z.L. Karst rocky desertification progress: Soil calcium as a possible driving force. Sci. Total Environ. 2018, 649, 1250–1259. [Google Scholar] [CrossRef] [PubMed]
- Qi, D.; Xu, W.; Tao, J.; Zhou, X.; Udaya, D. Soil pH Is the Primary Factor Correlating with Soil Microbiome in Karst Rocky Desertification Regions in the Wushan County, Chongqing, China. Front. Microbiol. 2018, 9, 10–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, D.; Chen, Y.; He, X.Y.; Xu, Z.H.; Bai, S.H.; Zhang, W.; Cheng, M.; Hu, P.L.; Wang, K.L. Temperature and precipitation significantly influence the interactions between arbuscular mycorrhizal fungi and diazotrophs in karst ecosystems. For. Ecol. Manag. 2021, 497, 119464. [Google Scholar] [CrossRef]
- Hu, P.; Zhang, W.; Xiao, L.; Yang, R.; Wang, K. Moss-dominated biological soil crusts modulate soil nitrogen following vegetation restoration in a subtropical karst region. Geoderma 2019, 352, 70–79. [Google Scholar] [CrossRef]
- Bates, S.T.; Iii, T.; Sweat, K.G.; Garcia-Pichel, F. Fungal communities of lichen-dominated biological soil crusts: Diversity, relative microbial biomass, and their relationship to disturbance and crust cover. J. Arid Environ. 2010, 74, 1192–1199. [Google Scholar] [CrossRef]
- Steven, B.; Kuske, C.R.; Gallegos-Graves, L.V.; Reed, S.C.; Belnap, J. Climate Change and Physical Disturbance Manipulations Result in Distinct Biological Soil Crust Communities. Appl. Environ. Microbiol. 2015, 81, 7448–7459. [Google Scholar] [CrossRef]
- Bao, T.; Zhao, Y.; Yang, X.; Ren, W.; Wang, S. Effects of disturbance on soil microbial abundance in biological soil crusts on the Loess Plateau, China. J. Arid. Environ. 2019, 163, 59–67. [Google Scholar] [CrossRef]
- Hui, N.; Sun, N.; Du, H.; Umair, M.; Liu, C. Karst rocky desertification does not erode ectomycorrhizal fungal species richness but alters microbial community structure. Plant Soil 2019, 445, 383–396. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Liu, C.Q.; Li, P.P.; Wang, J.Z.; Xing, D.; Wang, B.L. Photosynthetic characteristics involved in adaptability to Karst soil and alien invasion of paper mulberry (Broussonetia papyrifera (L.) Vent.) in comparison with mulberry (Morus alba L.). Photosynthetica 2009, 47, 155–160. [Google Scholar] [CrossRef]
- Yu, Y.F.; Peng, W.X.; Song, T.Q.; Zeng, F.P.; Fan, F.J. Stoichiometric characteristics of plant and soil C, N and P in different forest types in depressions between karst hills, southwest China. Chin. J. Appl. Ecol. 2014, 25, 947–954. [Google Scholar]
- Yu, P.; Liu, S.; Zhang, L.; Li, Q.; Zhou, D. Selecting the minimum data set and quantitative soil quality indexing of alkaline soils under different land uses in northeastern China. Sci. Total Environ. 2018, 564, 616–617. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, S.; Masto, R.E.; Yadav, A.; George, J.; Ram, L.C.; Shukla, S.P. Soil quality index for evaluation of reclaimed coal mine spoil. Sci. Total Environ. 2016, 542, 540–550. [Google Scholar] [CrossRef] [PubMed]
- Nabiollahi, K.; Golmohamadi, F.; Taghizadeh-Mehrjardi, R.; Kerry, R.; Davari, M. Assessing the effects of slope gradient and land use change on soil quality degradation through digital mapping of soil quality indices and soil loss rate. Geoderma 2018, 318, 16–28. [Google Scholar] [CrossRef]
- Walkley, A.J.; Black, I.A. An Examination of the Degtjareff Method for Determining Soil Organic Matter, and A Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Garca-Gil, J.C.; Plaza, C.; Soler-Rovira, P.; Polo, A. Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biol. Biochem. 2000, 32, 1907–1913. [Google Scholar] [CrossRef]
- Sumeriya, H.K.; Singh, P.; Kaushik, M.K. Effect of in situ soil moisture conservation practices and its interaction with nutrients in yield, quality and economics of sorghum [Sorghum bicolor (L.) moench]. Ann. Agri. Bio. Res. 2013, 19, 234–238. [Google Scholar]
- Davidson, E.A.; Belk, E.; Boone, R.D. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Glob. Change Biol. 1998, 4, 217–227. [Google Scholar] [CrossRef]
- Hikosaka, K. Interspecific difference in the photosynthesis-nitrogen relationship: Patterns, physiological causes, and ecological importance. J. Plant Res. 2004, 117, 481–494. [Google Scholar] [CrossRef]
- Jiao, F.; Wen, Z.M.; An, S.S. Changes in soil properties across a chronosequence of vegetation restoration on the Loess Plateau of China. Catena 2011, 86, 110–116. [Google Scholar] [CrossRef]
- Nyeck, B.; Yemefack, M.; Ngo-Mbogba, M. Assessing soil quality under different land cover types within shifting agriculture in South Cameroon. Soil Tillage Res. 2015, 150, 124–131. [Google Scholar]
- Ying, B.; Xiong, K.; Wang, Q.; Wu, Q. Can agricultural biomass energy provide an alternative energy source for karst rocky desertification areas in Southwestern China? Investigating Guizhou Province as example. Environ. Sci. Pollut. Res. 2021, 28, 44315–44331. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Zhou, D.; Bai, X.; Zeng, C.; Xiao, J.; Qian, Q.; Luo, G. Responses of soil physical and chemical properties to karst rocky desertification evolution in typical karst valley area. IOP Conf. Ser. Earth Environ. Sci. 2018, 108, 032012. [Google Scholar] [CrossRef]
- Cao, Z.; Zhang, K.; He, J.; Yang, Z.; Zhou, Z. Linking rocky desertification to soil erosion by investigating changes in soil magnetic susceptibility profiles on karst slopes. Geoderma 2021, 389, 114949. [Google Scholar] [CrossRef]
- Zheng, W.; Rao, C.J.; Wu, Q.; Wang, E.W.; Jiang, X.J.; Xu, Y.C.; Hu, L.; Chen, Y.Z.; Liang, X.C.; Yan, W.D. Changes in the soil labile organic carbon fractions following bedrock exposure in a karst context. Forests 2022, 13, 516. [Google Scholar] [CrossRef]
- Nie, Y.P.; Chen, H.S.; Wang, K.L.; Tan, W.; Deng, P.Y.; Yang, J. Seasonal water use patterns of woody species growing on the continuous dolostone outcrops and nearby thin soils in subtropical China. Plant Soil 2011, 341, 399–412. [Google Scholar] [CrossRef]
- Xie, L.W.; Zhong, J.; Chen, F.F.; Cao, F.X.; Li, J.J.; Wu, L.C. Evaluation of soil fertility in the succession of karst rocky desertification using principal component analysis. Solid Earth 2015, 6, 515–524. [Google Scholar] [CrossRef]
- Lu, X.; Toda, H.; Ding, F.; Fang, S.; Xu, H. Effect of vegetation types on chemical and biological properties of soils of karst ecosystems. Eur. J. Soil Biol. 2014, 61, 49–57. [Google Scholar] [CrossRef]
Rocky Desertification Grade | 0.2 km2 Bare Rock Rate (%) | 0.2 km2 Vegetation + Soil Coverage | Degree of Soil Erosion | Vegetation Characteristics | Average Soil Depth |
---|---|---|---|---|---|
NRD | 20–30 | 70–80 | not obvious | dominated by rocky and xerophytic shrubs | shallow |
LRD | 31–50 | 50–69 | relatively obvious | sparse shrub and grass | shallow |
MRD | 51–70 | 30–49 | obvious | low structure, coverage and biomass are relatively stable | shallow |
IRD | 71–90 | 10–29 | strong | mainly shrub grass of low structure | shallow |
Plot Type | SD | Slope/° | Altitude/m | RER/% | VC/% | Interference Conditions |
---|---|---|---|---|---|---|
NRD | Northeast | 23 | 1300–1305 | 26 | 92 | Wasteland, without interference |
LRD | Northeast | 20 | 1202–1225 | 42 | 79 | Wasteland, without interference |
MRD | Northeast | 20 | 1162–1289 | 66 | 58 | Light human disturbance |
IRD | Northeast | 16 | 1158–1160 | 85 | 20 | Intense human disturbance |
TDS | PC 1 | PC 2 | PC 3 |
---|---|---|---|
Sucrase | 0.125 | 0.941 | −0.248 |
Amylase | −0.463 | 0.502 | −0.715 |
β-glucosidase | 0.897 | 0.149 | −0.315 |
pH | 0.940 | −0.315 | −0.033 |
SMC | 0.600 | 0.330 | 0.650 |
TN | 0.961 | 0.246 | 0.065 |
TP | 0.949 | 0.276 | 0.084 |
TK | −0.851 | 0.277 | 0.193 |
SOM | 0.987 | 0.084 | −0.092 |
Mn | −0.463 | 0.575 | 0.572 |
Indicator | TDS | MDS | |||
---|---|---|---|---|---|
COM | Weight | COM | Weight | Norm Value | |
Sucrase | 0.963 | 0.102 | 0.923 | 0.331 | 1.37 |
Amylase | 0.977 | 0.104 | 0.911 | 0.327 | 1.59 |
β-glucosidase | 0.926 | 0.098 | 2.24 | ||
pH | 0.983 | 0.104 | 2.36 | ||
SMC | 0.892 | 0.095 | 1.73 | ||
TN | 0.988 | 0.105 | 2.38 | ||
TP | 0.985 | 0.105 | 2.36 | ||
TK | 0.839 | 0.089 | 2.14 | ||
SOM | 0.989 | 0.105 | 0.955 | 0.342 | 2.43 |
Mn | 0.871 | 0.093 | 1.55 |
Soil Quality Index | Change Range | Mean | Standard Deviation | Coefficient of Variation/% | Proportion of Sample Plots/% | |||
---|---|---|---|---|---|---|---|---|
Excellent (0.8–1.0) | Good (0.6–0.8) | Medium (0.4–0.6) | Poor (0–0.4) | |||||
SQI-NL | 0.214–0.709 | 0.466 | 0.143 | 30.69 | 0 | 27.78 | 30.56 | 41.67 |
SQI-L | 0.124–0.782 | 0.425 | 0.191 | 44.94 | 2.78 | 22.22 | 22.22 | 52.78 |
SQI-SSF | 0.211–0.823 | 0.483 | 0.172 | 35.61 | 5.56 | 30.56 | 25.00 | 38.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Zheng, W.; Rao, C.; Wang, E.; Yan, W. Soil Quality Assessment and Management in Karst Rocky Desertification Ecosystem of Southwest China. Forests 2022, 13, 1513. https://doi.org/10.3390/f13091513
Wu Q, Zheng W, Rao C, Wang E, Yan W. Soil Quality Assessment and Management in Karst Rocky Desertification Ecosystem of Southwest China. Forests. 2022; 13(9):1513. https://doi.org/10.3390/f13091513
Chicago/Turabian StyleWu, Qian, Wei Zheng, Chengjiao Rao, Enwen Wang, and Wende Yan. 2022. "Soil Quality Assessment and Management in Karst Rocky Desertification Ecosystem of Southwest China" Forests 13, no. 9: 1513. https://doi.org/10.3390/f13091513
APA StyleWu, Q., Zheng, W., Rao, C., Wang, E., & Yan, W. (2022). Soil Quality Assessment and Management in Karst Rocky Desertification Ecosystem of Southwest China. Forests, 13(9), 1513. https://doi.org/10.3390/f13091513