Cut-to-Length Harvesting Options for the Integrated Harvesting of the European Industrial Poplar Plantations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials: Machines and Operators
- Micro-harvester (Vimek): the lightest, smallest, and cheapest on the market, with a weight of fewer than 5 tons and a power of only 50 kW.
- Hybrid harvester (Agama): a machine quite similar to the previous one but fitted with an auxiliary electric engine to boost power at the moment of peak demand. Of course, the additional power unit resulted in a slight increase in both weight and price.
- Thinning harvester (Rottne and Sampo): a harvester capable of handling small and medium size trees. Heavier, more powerful, and more expensive than the others, but also more versatile and potentially more productive. Since this type of machine is relatively common, two different models were tested in order to get some idea of the possible variation found within this family of machines.
2.2. Materials: Test Site—Location and Characteristics of the Plantation
2.3. Methods: Experimental Design
2.4. Methods: Determining Mass Output
2.5. Methods: Determining Time Input
2.6. Methods: Determining Machine Cost
2.7. Methods: Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Szulecka, J.; Pretszch, J.; Secco, L. Paradigms in tropical forest plantations: A critical reflection on historical shifts in plantation approaches. Int. For. Rev. 2014, 16, 128–143. [Google Scholar] [CrossRef]
- Food and Agricultural Organisation (FAO). Global Forest Resources Assessment 2015: How Are the World’s Forests Changing? 2nd ed.; Food and Agricultural Organisation of the United Nations: Rome, Italy, 2016. [Google Scholar]
- Penna, I. Understanding the FAO’s ‘Wood Supply from Planted Forests’ Projections; University of Ballarat Centre for Environmental Management Monograph Series No. 2010/01; Lynch, A.J.J., Ed.; University of Ballarat: Ballarat, Australia, 2010. [Google Scholar]
- Sedjo, R.A. The potential of high-yield plantation forestry for meeting timber needs. New For. 1999, 17, 339–360. [Google Scholar] [CrossRef]
- Del Lungo, A.; Ball, J.; Carle, J. Global Planted Forests Thematic Study: Results and Analysis, Planted Forests and Trees Working Paper FP/38; Food and Agriculture Organisation: Rome, Italy, 2006; Available online: http://www.fao.org/forestry/site/10368/en (accessed on 28 May 2021).
- Korhonen, J.; Toppinen, A.; Cubbage, F.; Kuuluvainen, J. Factors driving investment in planted forests: A comparison between OECD and non-OECD countries. Int. For. Rev. 2014, 16, 67–77. [Google Scholar] [CrossRef]
- McEwan, A.; Marchi, E.; Spinelli, R.; Brink, M. Past, present and future of industrial plantation forestry and implication on future timber harvesting technology. J. For. Res. 2020, 31, 339–351. [Google Scholar] [CrossRef]
- Laaksonen-Craig, S. Foreign direct investment in the forest sector: Implications for sustainable forest management in developed and developing countries. For. Pol. Econ. 2004, 6, 359–370. [Google Scholar] [CrossRef]
- Mather, A. Patterns of Afforestation in Britain since 1945. Geography 1978, 63, 157–166. Available online: http://www.jstor.org/stable/40568942 (accessed on 28 May 2021).
- West, J. Forests and National Security: British and American Forestry Policy in the Wake of World War I. Environ. Hist. 2003, 8, 270–293. [Google Scholar] [CrossRef]
- Coppock, J. A Decade of Post-War Forestry in Great Britain. Econ. Geogr. 1960, 36, 127–138. [Google Scholar] [CrossRef]
- Londo, M.; Roos, M.; Dekker, J.; De Graaf, H. Willow short-rotation in multiple land-use systems: Evaluation of four combination options in the Dutch context. Biomass Bioenergy 2004, 27, 205–221. [Google Scholar] [CrossRef]
- Vadell, E.; de-Miguel, S.; Pemán, J. Large-scale reforestation and afforestation policy in Spain: A historical review of its underlying ecological, socioeconomic and political dynamics. Land Use Policy 2016, 55, 37–48. [Google Scholar] [CrossRef]
- Rosenqvist, H.; Roos, A.; Ling, E.; Hektor, B. Willow growers in Sweden. Biomass Bioenergy 2000, 18, 137–145. [Google Scholar] [CrossRef]
- Lindegaard, K.; Adams, P.; Holley, M.; Lamley, A.; Henriksson, A.; Larsson, S.; Engelbrechten, H.; Lopez, G.; Pisarek, M. Short rotation plantations policy history in Europe: Lessons from the past and recommendations for the future. Food Energy Secur. 2016, 5, 125–152. [Google Scholar] [CrossRef]
- Freer-Smith, P.; Muys, B.; Bozzano, M.; Drössler, L.; Farrelly, N.; Jactel, H.; Korhonen, J.; Minotta, G.; Nijnik, M.; Orazio, C. Plantation Forests in Europe: Challenges and Opportunities. From Science to Policy 9; European Forest Institute: Joensuu, Finland, 2019. [Google Scholar] [CrossRef]
- Stanton, B.; Eaton, J.; Johnson, J.; Rice, D.; Schuette, B.; Moser, B. Hybrid Poplar in the Pacific Northwest: The Effects of Market-Driven Management. J. For. 2002, 100, 28–33. [Google Scholar] [CrossRef]
- Werner, C.; Haas, E.; Grote, R.; Gauder, M.; Graeff-Höonninger, S.; Claupein, W.; Butterbach-Bahl, K. Biomass production potential from Populus short rotation systems in Romania. GCB Bioenergy 2012, 4, 642–653. [Google Scholar] [CrossRef]
- Lundbäck, M.; Häggström, C.; Nordfjell, T. Worldwide trends in the methods and systems for harvesting, extraction and transportation of roundwood. In Proceedings of the 6th International Forest Engineering Conference, Rotorua, New Zealand, 16–19 April 2018; Available online: http://www.foresteng.canterbury.ac.nz/documents/FEC2018 (accessed on 21 December 2021).
- Kocel, J. Development of the forestry services sector in Poland. Folia For. Pol. 2010, 52, 44–53. [Google Scholar]
- Mederski, P.S.; Karaszewski, Z.; Rosińska, M.; Bembenek, M. Dynamics of harvester fleet change in Poland and factors determining machine occurrence. Sylwan 2016, 160, 795–804. [Google Scholar]
- Moskalik, T.; Borz, S.A.; Dvořák, J.; Ferencčiík, M.; Glushkov, S.; Muiste, P.; Lazdiņš, A.; Styranivsky, O. Timber Harvesting Methods in Eastern European Countries: A Review. Croat. J. For. Eng. 2017, 38, 231–241. [Google Scholar]
- Adebayo, A.; Han, H.S.; Johnson, L. Productivity and cost of cut-to-length and whole-tree harvesting in a mixed-conifer stand. For. Prod. J. 2007, 57, 59–69. [Google Scholar]
- Visser, R.; Spinelli, R. Determining the shape of the productivity function for mechanized felling and felling-processing. J. For. Res. 2012, 17, 397–402. [Google Scholar] [CrossRef]
- Erber, G.; Holzleitner, F.; Kastner, M.; Stampfer, K. Effect of multi-tree handling and tree-size on harvester performance in small-diameter hardwood thinnings. Silva Fenn. 2016, 50, 1428. [Google Scholar] [CrossRef]
- Magagnotti, N.; Spinelli, R.; Kärhä, K.; Mederski, P. Multi-tree cut-to-length harvesting of short-rotation poplar plantations. Eur. J. For. Res. 2021, 140, 345–354. [Google Scholar] [CrossRef]
- Krejza, J.; Světlìk, J.; Bednář, P. Allometric relationship and biomass expansion factors (BEFs) for above- and below-ground biomass prediction and stem volume estimation for ash (Fraxinus excelsior L.) and oak (Quercus robur L.). Trees 2017, 31, 1303–1316. [Google Scholar] [CrossRef]
- Urban, J.; Čermák, J.; Ceulemans, R. Above- and below-ground biomass, surface and volume, and stored water in a mature Scots pine stand. Eur. J. For. Res. 2015, 134, 61–74. [Google Scholar] [CrossRef]
- Headlee, W.; Zalesny, R. Allometric relationships for aboveground woody biomass differ among hybrid poplar genomic groups and clones in the North-Central USA. Bioenergy Res. 2019, 12, 966–976. [Google Scholar] [CrossRef]
- Hartmann, K.U. Entwicklung Eines Ertragsschätzers für Kurzumtriebsbestände aus Pappel. Ph.D. Thesis, Technische Universität Dresden, Tharandt, Germany, 2010; 162p. [Google Scholar]
- Hjelm, B. Empirical Models for Estimating Volume and Biomass of Poplars on Farmland in Sweden. Ph.D. Thesis, Swedish University of Agricultural Sciences, Faculty of Natural Resources and Agricultural Sciences, Department of Crop Production and Ecology, Uppsala, Sweden, 2015; 61p. [Google Scholar]
- Verlinden, M.S.; Broeckx, L.S.; Van den Bulcke, J.; Van Acker, J.; Ceulemans, R. Comparative study of biomass determinants of 12 poplar (Populus) genotypes in a high-density short-rotation culture. For. Ecol. Manag. 2013, 307, 101–111. [Google Scholar] [CrossRef]
- Björheden, R.; Apel, K.; Shiba, M.; Thompson, M. IUFRO Forest Work Study Nomenclature; Swedish University of Agricultural Science, Department of Operational Efficiency: Garpenberg, Sweden, 1995; 16p. [Google Scholar]
- Spinelli, R.; Visser, R. Analyzing and estimating delays in harvester operations. Int. J. For. Eng. 2008, 19, 36–41. [Google Scholar] [CrossRef]
- Rutherford, A. Introducing ANOVA and ANCOVA: A GLM Approach; Sage Publications Ltd.: London, UK, 2000; 192p, ISBN 0 7619 5160 1. [Google Scholar]
- Vanbeveren, S.P.; Spinelli, R.; Eisenbies, M.; Schweier, J.; Mola-Yudego, B.; Magagnotti, N.; Acuna, M.; Dimitriou, I.; Ceulemans, R. Mechanised harvesting of short-rotation coppices. Renew. Sustain. Energy Rev. 2017, 76, 90–104. [Google Scholar] [CrossRef]
- Spinelli, R.; Magagnotti, N.; Lombardini, C. Low-Investment Fully Mechanized Harvesting of Short-Rotation Poplar (populus spp.) Plantations. Forests 2020, 11, 502. [Google Scholar] [CrossRef]
- Spinelli, R.; Magagnotti, N.; Lombardini, C.; Leonello, E.C. Cost-effective Integrated Harvesting of Short-Rotation Poplar Plantations. BioEnergy Res. 2021, 14, 460–468. [Google Scholar] [CrossRef]
- Spinelli, R.; Magagnotti, N.; Lombardini, C.; Mihelic, M. A Low-Investment Option for the Integrated Semi-mechanized Harvesting of Small-Scale, Short-Rotation Poplar Plantations. Small-Scale For. 2021, 20, 59–72. [Google Scholar] [CrossRef]
- Lazdinš, A.; Prindulis, U.; Kaleja, S.; Daugaviete, M.; Zimelis, A. Productivity of Vimek 404 T5 harvester and Vimek 610 forwarder in early thinning. Agron. Res. 2016, 14, 475–484. [Google Scholar]
- Lanford, B.L. Application of a Small Forwarder in Plantation Thinning. South J. Appl. For. 1982, 6, 183–188. [Google Scholar] [CrossRef]
- Tufts, R.A. Productivity and cost of the Ponsse 15-series, cut-to-length harvesting system in Southern pine plantations. For. Prod. J. 1997, 47, 39–46. [Google Scholar]
- Väätäinen, K.; Ala-Fossi, A.; Nuutinen, Y.; Röser, D. The Effect of Single Grip Harvester’s Log Bunching on Forwarder Efficiency. Balt. For. 2006, 12, 64–69. [Google Scholar]
- Asikainen, A. Discrete-Event Simulation of Mechanized Wood-Harvesting Systems; Research Notes 28; University of Joensuu, Faculty of Forestry: Joensuu, Finland, 1995; 86p. [Google Scholar]
- Abad, A.G.; Paynabar, K.; Jin, J.J. Modeling and Analysis of Operator Effects on Process Quality and Throughput in Mixed Model Assembly Systems. ASME. J. Manuf. Sci. Eng. 2011, 133, 021016. [Google Scholar] [CrossRef]
- Baker, M. 1,500 Scientists Lift the Lid on Reproducibility. Nature 2016, 533, 452–454. [Google Scholar] [CrossRef]
- Holtzscher, M.A.; Bossy, L.L. Tree diameter effects on cost and productivity of CTL systems. For. Prod. J. 1997, 47, 25–30. [Google Scholar]
- Jirousek, R.; Klvac, R.; Skoupy, A. Productivity and costs of the mechanised cut-to-length wood harvesting system in clear felling operations. J. For. Sci. 2007, 53, 476–482. [Google Scholar] [CrossRef] [Green Version]
- Kärhä, K.; Rönkkö, E.; Gumse, S. Productivity and cutting costs of thinning harvesters. Int. J. For. Eng. 2004, 15, 43–56. [Google Scholar] [CrossRef]
- Nakagawa, M.; Hamatsu, J.; Saitou, T.; Ishida, H. Effect of tree size on productivity and time required for work elements in selective thinning by a harvester. Int. J. For. Eng. 2007, 18, 24–28. [Google Scholar] [CrossRef]
- Siren, M.; Aaltio, J. Productivity and costs of thinning harvesters and harvester-forwarders. Int. J. For. Eng. 2003, 14, 39–48. [Google Scholar] [CrossRef]
- Kellogg, L.D.; Bettinger, P. Thinning productivity and cost for a mechanized cut-to-length system in the Northwest Pacific Coast region of the USA. J. For. Eng. 1994, 5, 43–54. [Google Scholar] [CrossRef]
Concept | Machine | Power | Weight | Head | Ø Capacity |
---|---|---|---|---|---|
Type | Model | kW | kg | type | cm |
Micro | Vimek 404 | 50 | 4500 | Keto Forst V4 | 34 |
Hybrid | Agama H6 | 75 | 7700 | Nisula 325H | 34 |
Small | Sampo HR46 | 124 | 9500 | Kesla 18RH | 50 |
Small | Rottne H8 | 125 | 10,200 | EGS 406 | 43 |
Agama | Rottne | Sampo | Vimek | p | ||
---|---|---|---|---|---|---|
Plot surface | ha | 0.08 a | 0.10 b | 0.10 b | 0.08 a | <0.0001 |
DBH | cm | 11.9 a | 12.2 a | 12.2 a | 12.4 a | 0.1151 |
Plot mass | BDT | 3.96 a | 5.26 b | 5.28 b | 4.21 a | <0.0001 |
Stocking | BDT ha−1 | 49.4 a | 52.4 a | 52.6 a | 53.0 a | 0.3761 |
Log yield | % | 58 a | 61 a | 61 a | 52 b | 0.0009 |
Extraction distance | m | 337 a | 339 a | 308 a | 383 b | 0.0291 |
Agama | Rottne | Sampo | Vimek | p | ||
---|---|---|---|---|---|---|
Harvester productivity | BDT SMH−1 | 3.4 a | 3.2 a | 3.0 ab | 2.6 b | 0.0040 |
Harvester cost | EUR BDT−1 | 13.6 a | 20.3 b | 20.0 b | 15.4 a | <0.0001 |
Forwarder productivity | BDT SMH−1 | 2.7 a | 4.2 b | 3.3 c | 2.5 a | <0.0001 |
Forwarder cost | EUR BDT−1 | 14.7 ac | 9.6 b | 12.5 c | 16.6 a | <0.0001 |
Total cost | EUR BDT−1 | 28.3 a | 29.9 ab | 32.5 b | 32.0 ab | 0.0041 |
[Equation (1)] € BDT−1 = a + b BDT ha−1 + c Agama + dRottne | Adj. R2 = 0.696 | n = 33 | |||||||
a | p-Value | B | p-Value | c | p-Value | d | p-Value | ||
56.190 | <0.0001 | −0.453 | <0.0001 | −5.574 | <0.0001 | −2.561 | 0.0036 | - | - |
[Equation (2)] BDT SMH−1 Fell = a + b BDT ha−1 + c Agama + d Vimek | Adj. R2 = 0.944 | n = 33 | |||||||
a | p-Value | B | p-Value | c | p-Value | d | p-Value | ||
34.372 | <0.0001 | −0.272 | <0.0001 | −7.392 | <0.0001 | −4.529 | <0.0001 | - | - |
[Equation (3)] BDT SMH−1 Extraction = a + b BDT ha−1 + c Distance + d Agama + e Rottne | Adj. R2 = 0.753 | n = 25 | |||||||
a | p-Value | B | p-Value | c | p-Value | d | p-Value | e | p-Value |
2.322 | 0.0050 | 0.016 | 0.2710 | 0.0001 | 0.6190 | −0.619 | <0.0001 | 0.7624 | <0.0001 |
[Equation (4)] BDT SMH−1 Extraction = a + b Distance | Adj. R2 = 0.020 | n = 25 | |||||||
a | p-Value | B | p-Value | ||||||
2.799 | 0.0038 | 0.020 | 0.4978 | - | - | - | - | - | - |
[Equation (5)] Log % = a + b BDT ha−1 | Adj. R2 = 0.900 | n = 25 | |||||||
a | p-Value | B | p-Value | ||||||
24.715 | <0.0001 | 0.686 | <0.0001 | - | - | - | - | - | - |
Technology | Stocking | DBH | Felling | Processing | Extraction | Total Cost | Log Yield | Reference |
---|---|---|---|---|---|---|---|---|
type | gt ha−1 | cm | gt SMH−1 | gt SMH−1 | gt SMH−1 | EUR gt−1 | % | |
CTL | 120 | 12 | 6–7 | - | 5–10 | 12–14 | 50–60 | This study |
CTL | 88 | 12 | 17–18 | - | 24 | 14 | 34–36 | [26] |
WTH | 130 | 15–16 | 14 | 19 | 21 | 11 | 40–50 | [37] |
WTH | 85 | 11.7 | 12–15 | 12–15 | 12–15 | 16–17 | 51 | [38] |
WTH | 111 | 12.5 | 13–14 | 18–20 | 9 | 14–16 | 41 | [39] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spinelli, R.; Magagnotti, N.; De Francesco, F.; Kováč, B.; Heger, P.; Heilig, D.; Heil, B.; Kovács, G.; Zemánek, T. Cut-to-Length Harvesting Options for the Integrated Harvesting of the European Industrial Poplar Plantations. Forests 2022, 13, 1478. https://doi.org/10.3390/f13091478
Spinelli R, Magagnotti N, De Francesco F, Kováč B, Heger P, Heilig D, Heil B, Kovács G, Zemánek T. Cut-to-Length Harvesting Options for the Integrated Harvesting of the European Industrial Poplar Plantations. Forests. 2022; 13(9):1478. https://doi.org/10.3390/f13091478
Chicago/Turabian StyleSpinelli, Raffaele, Natascia Magagnotti, Fabio De Francesco, Barnabáš Kováč, Patrik Heger, Dávid Heilig, Bálint Heil, Gábor Kovács, and Tomáš Zemánek. 2022. "Cut-to-Length Harvesting Options for the Integrated Harvesting of the European Industrial Poplar Plantations" Forests 13, no. 9: 1478. https://doi.org/10.3390/f13091478
APA StyleSpinelli, R., Magagnotti, N., De Francesco, F., Kováč, B., Heger, P., Heilig, D., Heil, B., Kovács, G., & Zemánek, T. (2022). Cut-to-Length Harvesting Options for the Integrated Harvesting of the European Industrial Poplar Plantations. Forests, 13(9), 1478. https://doi.org/10.3390/f13091478