Climate Smart Forestry in the Southern United States
Abstract
:1. Introduction
1.1. Guidelines
- (1)
- Reduce and remove greenhouse gas (GHG) emissions to mitigate climate change through forestry (i.e., increased forest carbon storage);
- (2)
- (Adapt forest management to enhance the resilience of forests;
- (3)
- Secure forest production and forest income sustainably.
1.2. Current Status
1.3. Research Origin
2. Aim
3. Loblolly Pine Silviculture
3.1. Aboveground Stand Production
3.2. Improved Genetics
3.3. Site Preparation
3.4. Herbaceous Weed and Woody Control
3.5. Thinning
3.6. Fertilization
3.7. Harvest
3.8. Future Research
4. Timber Products
4.1. Carbon Reduction Pathways
4.2. Avoidance Pathway
4.3. Substitution
4.4. Sawtimber Utilization
4.5. Pulp and Paper Product Utilization
4.6. Bioenergy Utilization
4.7. Further Rersearch
5. Data Collection
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oswalt, S.N.; Smith, W.B.; Miles, P.D.; Pugh, S.A. Forest Resources of the United States, 2017: A technical document supporting the Forest Service 2020 RPA Assessment. In Gen. Tech. Rep. WO-97; U.S. Department of Agriculture, Forest Service, Washington Office: Washington, DC, USA, 2019; Volume 97. [Google Scholar]
- Domke, G.M.; Walters, B.F.; Nowak, D.J.; Smith, J.; Ogle, S.M.; Coulston, J.W.; Wirth, T. Greenhouse gas emissions and removals from forest land, woodlands, and urban trees in the United States, 1990–2018. In Resource Update FS-227; U.S. Department of Agriculture, Forest Service, Northern Research Station: Madison, WI, USA, 2022; Volume 227, pp. 1–5. [Google Scholar]
- Grassi, G.; House, J.; Dentener, F.; Federici, S.; den Elzen, M.; Penman, J. The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Chang. 2017, 7, 220–226. [Google Scholar] [CrossRef]
- Chudy, R.P.; Cubbage, F.W. Research trends: Forest investments as a financial asset class. For. Policy Econ. 2020, 119, 102273. [Google Scholar] [CrossRef] [PubMed]
- Fahey, T.J.; Woodbury, P.B.; Battles, J.J.; Goodale, C.L.; Hamburg, S.P.; Ollinger, S.V.; Woodall, C.W. Forest carbon storage: Ecology, management, and policy. Front. Ecol. Environ. 2010, 8, 245–252. [Google Scholar] [CrossRef]
- Kinerson, R.; Ralston, C.; Wells, C. Carbon cycling in a loblolly pine plantation. Oecologia 1977, 29, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Fox, T.R.; Jokela, E.J.; Allen, H.L. The development of pine plantation silviculture in the southern United States. J. For. 2007, 105, 337–347. [Google Scholar] [CrossRef]
- Bowditch, E.; Santopuoli, G.; Binder, F.; Del Rio, M.; La Porta, N.; Kluvankova, T.; Lesinski, J.; Motta, R.; Pach, M.; Panzacchi, P. What is Climate-Smart Forestry? A definition from a multinational collaborative process focused on mountain regions of Europe. Ecosyst. Serv. 2020, 43, 101113. [Google Scholar] [CrossRef]
- Torresan, C.; Benito Garzón, M.; O’grady, M.; Robson, T.M.; Picchi, G.; Panzacchi, P.; Tomelleri, E.; Smith, M.; Marshall, J.; Wingate, L. A new generation of sensors and monitoring tools to support climate-smart forestry practices. Can. J. For. Res. 2021, 51, 1751–1765. [Google Scholar] [CrossRef]
- Nabuurs, G.-J.; Verkerk, P.J.; Schelhaas, M.; González-Olabarria, J.; Trasobares, A.; Cienciala, E. Climate-Smart Forestry: Mitigation Implact in Three European Regions; European Forest Institute: Joensuu, Finland, 2018; Volume 6. [Google Scholar]
- Mann, W.; Lipper, L.; Tennigkeit, T.; McCarthy, N.; Branca, G.; Paustian, K. Food Security and Agricultural Mitigation in Developing Countries: Options for Capturing Synergies; FAO: Rome, Italy, 2009. [Google Scholar]
- Vose, J.M.; Klepzig, K.D. Climate Change Adaptation and Mitigation Management Options: A Guide for Natural Resource Managers in Southern Forest Ecosystems; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Busby, G.M.; Binkley, C.S.; Chudy, R.P. Constructing optimal global timberland investment portfolios. For. Policy. Econ. 2020, 111, 102083. [Google Scholar] [CrossRef]
- USDA Press. Partnerships for Climate-Smart Commedities [Press Release]. Available online: https://www.usda.gov/media/press-releases/2022/02/07/usda-invest-1-billion-climate-smart-commodities-expanding-markets (accessed on 7 February 2022).
- Exec. Order No. 14008, 86 Fed. Reg. 7619 (27 January 2021). Available online: https://www.federalregister.gov/documents/2021/02/01/2021-02177/tackling-the-climate-crisis-at-home-and-abroad (accessed on 5 May 2022).
- Exec. Order No. 14072, 87 Fed. Reg. 24851 (22 April 2022). Available online: https://www.federalregister.gov/documents/2022/04/27/2022-09138/strengthening-the-nations-forests-communities-and-local-economies (accessed on 5 May 2022).
- SFI 2022 Forest Management Standard Section 2. Available online: https://forests.org/wp-content/uploads/2022_SFI_StandardsandRules_section2.pdf (accessed on 8 August 2022).
- Nitschke, C.R.; Innes, J.L. Integrating climate change into forest management in South-Central British Columbia: An assessment of landscape vulnerability and development of a climate-smart framework. For. Ecol. Manag. 2008, 256, 313–327. [Google Scholar] [CrossRef]
- Nabuurs, G.-J.; Delacote, P.; Ellison, D.; Hanewinkel, M.; Lindner, M.; Nesbit, M.; Ollikainen, M.; Savaresi, A. A New Role for Forests and the Forest Sector in the EU Post-2020 Climate Targets; European Forest Institute: Joensuu, Finland, 2015. [Google Scholar]
- Joyce, L.A.; Birdsey, R.A. Productivity of America’s Forests and Climate Change; US Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station: Fort Collins, CO, USA, 1995; Volume 271. [Google Scholar]
- Houghton, J.T.; Filho, L.G.M.; Bruce, J.; Lee, H.; Callander, B.A.; Haites, E.; Harris, N.; Maskell, K. (Eds.) Climate Change 1994: Radiative Forcing of Climate Change and an Evaluation of the IPCC 1992 IS92 Emission Scenarios; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Teskey, R.; Bongarten, B.; Cregg, B.; Dougherty, P.; Hennessey, T. Physiology and genetics of tree growth response to moisture and temperature stress: An examination of the characteristics of loblolly pine (Pinus taeda L.). Tree Physiol. 1987, 3, 41–61. [Google Scholar] [CrossRef]
- Evans, J. Sustainability of forest plantations: A review of evidence and future prospects. Int. For. Rev. 1999, 1, 153–162. [Google Scholar]
- Joyce, L.A.; Mills, J.R.; Heath, L.S.; McGuire, A.D.; Haynes, R.W.; Birdsey, R.A. Forest sector impacts from changes in forest productivity under climate change. J. Biogeogr. 1995, 22, 703–713. [Google Scholar] [CrossRef]
- Schultz, R.P. Loblolly Pine: The Ecology and Culture of Loblolly Pine (Pinus taeda L.). In Agriculture Handbook 713; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 1997; p. 493. [Google Scholar]
- Fox, T.; Burger, J.; Kreh, R. Effects of site preparation on nitrogen dynamics in the southern Piedmont. For. Ecol. Manag. 1986, 15, 241–256. [Google Scholar] [CrossRef]
- Lowery, R.F.; Gjerstad, D.H. Chemical and mechanical site preparation. In Forest Regeneration Manual; Springer: Berlin/Heidelberg, Germany, 1991; pp. 251–261. [Google Scholar]
- Allen, H.; Dougherty, P.M.; Campbell, R. Manipulation of water and nutrients—Practice and opportunity in southern US pine forests. For. Ecol. Manag. 1990, 30, 437–453. [Google Scholar] [CrossRef]
- Wells, C.G.; Allen, L. Allen, L. A loblolly pine management guide: When and where to apply fertilizer. In Gen. Tech. Rep. SE-36; USDA Forest Service, Southeastern Forest Experiment Station: Asheville, NC, USA, 1985; Volume 36, p. 23. [Google Scholar]
- Neary, D.; Rockwood, D.; Comerford, N.; Swindel, B.; Cooksey, T. Importance of weed control, fertilization, irrigation, and genetics in slash and loblolly pine early growth on poorly drained spodosols. For. Ecol. Manag. 1990, 30, 271–281. [Google Scholar] [CrossRef]
- McKinley, D.C.; Ryan, M.G.; Birdsey, R.A.; Giardina, C.P.; Harmon, M.E.; Heath, L.S.; Houghton, R.A.; Jackson, R.B.; Morrison, J.F.; Murray, B.C. A synthesis of current knowledge on forests and carbon storage in the United States. Ecol. Appl. 2011, 21, 1902–1924. [Google Scholar] [CrossRef]
- Susaeta, A.; Carter, D.R.; Adams, D.C. Sustainability of forest management under changing climatic conditions in the southern United States: Adaptation strategies, economic rents and carbon sequestration. J. Environ. Manag. 2014, 139, 80–87. [Google Scholar] [CrossRef]
- Susaeta, A.; Carter, D.R.; Adams, D.C. Impacts of climate change on economics of forestry and adaptation strategies in the southern United States. J. Agric. Appl. Econ. 2014, 46, 257–272. [Google Scholar] [CrossRef]
- Bracho, R.; Vogel, J.G.; Will, R.E.; Noormets, A.; Samuelson, L.J.; Jokela, E.J.; Gonzalez-Benecke, C.A.; Gezan, S.A.; Markewitz, D.; Seiler, J.R.; et al. Carbon accumulation in loblolly pine plantations is increased by fertilization across a soil moisture availability gradient. For. Ecol. Manag. 2018, 424, 39–52. [Google Scholar] [CrossRef]
- Sha, Z.; Bai, Y.; Li, R.; Lan, H.; Zhang, X.; Li, J.; Liu, X.; Chang, S.; Xie, Y. The global carbon sink potential of terrestrial vegetation can be increased substantially by optimal land management. Commun. Earth Environ. 2022, 3, 8. [Google Scholar] [CrossRef]
- Fox, T.R.; Jokela, E.J.; Allen, H.L. The evolution of pine plantation silviculture in the southern United States. In Gen. Tech. Rep. SRS–75; US Department of Agriculture, Forest Service, Southern Research Station: Asheville, NC, USA, 2004; Volume 8, pp. 63–82. [Google Scholar]
- Jokela, E.J.; Martin, T.A.; Vogel, J.G. Twenty-five years of intensive forest management with southern pines: Important lessons learned. J. For. 2010, 108, 338–347. [Google Scholar]
- Gonzalez-Benecke, C.A.; Martin, T.A.; Jokela, E.J.; Torre, R.D.L. A flexible hybrid model of life cycle carbon balance for loblolly pine (Pinus taeda L.) management systems. Forests 2011, 2, 749–776. [Google Scholar] [CrossRef]
- McKeand, S.E.; Crook, R.P.; Lee Allen, H. Genotypic stability effects on predicted family responses to silvicultural treatments in loblolly pine. South. J. Appl. For. 1997, 21, 84–89. [Google Scholar] [CrossRef]
- Zhai, L.; Jokela, E.J.; Gezan, S.A.; Vogel, J.G. Family, environment and silviculture effects in pure- and mixed-family stands of loblolly (Pinus taeda L.) and slash (P. Elliottii Engelm. var. Elliotttii) pine. For. Ecol. Manag. 2015, 337, 28–40. [Google Scholar] [CrossRef]
- Aspinwall, M.J.; McKeand, S.E.; King, J.S. Carbon Sequestration from 40 Years of Planting Genetically Improved Loblolly Pine across the Southeast United States. For. Sci. 2012, 58, 446–456. [Google Scholar] [CrossRef]
- McKeand, S.E. The evolution of a seedling market for genetically improved loblolly pine in the southern United States. J. For. 2019, 117, 293–301. [Google Scholar] [CrossRef]
- Asaro, C.; Nowak, J.T.; Elledge, A. Why have southern pine beetle outbreaks declined in the southeastern U.S. with the expansion of intensive pine silviculture? A brief review of hypotheses. For. Ecol. Manag. 2017, 391, 338–348. [Google Scholar] [CrossRef]
- Roberds, J.H.; Strom, B.L.; Hain, F.P.; Gwaze, D.P.; McKeand, S.E.; Lott, L.H. Estimates of genetic parameters for oleoresin and growth traits in juvenile loblolly pine. Can. J. For. Res. 2003, 33, 2469–2476. [Google Scholar] [CrossRef]
- Roth, B.E.; Jokela, E.J.; Martin, T.A.; Huber, D.A.; White, T.L. Genotype × environment interactions in selected loblolly and slash pine plantations in the Southeastern United States. For. Ecol. Manag. 2007, 238, 175–188. [Google Scholar] [CrossRef]
- Wilcox, P.L.; Amerson, H.V.; Kuhlman, E.G.; Liu, B.-H.; O’Malley, D.M.; Sederoff, R.R. Detection of a major gene for resistance to fusiform rust disease in loblolly pine by genomic mapping. Proc. Natl. Acad. Sci. USA 1996, 93, 3859–3864. [Google Scholar] [CrossRef]
- Ryan, M.; Binkley, D.; Fownes, J.H. Age-related decline in forest productivity: Pattern and process. Adv. Ecol. Res. 1997, 27, 213–262. [Google Scholar]
- Vitousek, P.M.; Andariese, S.W.; Matson, P.A.; Morris, L.; Sanford, R.L. Effects of harvest intensity, site preparation, and herbicide use on soil nitrogen transformations in a young loblolly pine plantation. For. Ecol. Manag. 1992, 49, 277–292. [Google Scholar] [CrossRef]
- Zhao, D.; Kane, M.; Borders, B.E.; Harrison, M.; Rheney, J.W. Site preparation and competing vegetation control affect loblolly pine long-term productivity in the southern Piedmont/Upper Coastal Plain of the United States. Ann. For. Sci. 2009, 66, 705. [Google Scholar] [CrossRef]
- Lauer, D.; Muir, R.; Glover, G. Combining herbicide applications with mechanical site preparation. South. Weed Sci. Soc. 1998, 51, 112–113. [Google Scholar]
- Zhao, D.; Kane, M.; Teskey, R.; Fox, T.R.; Albaugh, T.J.; Allen, H.L.; Rubilar, R. Maximum response of loblolly pine plantations to silvicultural management in the southern United States. For. Ecol. Manag. 2016, 375, 105–111. [Google Scholar] [CrossRef]
- Martin, S.W.; Shiver, B.D. Twelve-year results of a loblolly pine site preparation study in the Piedmont and Upper Coastal Plain of South Carolina, Georgia, and Alabama. South. J. Appl. For. 2002, 26, 32–36. [Google Scholar] [CrossRef]
- Wittwer, R.F.; Dougherty, P.M.; Cosby, D. Effects of Ripping and Herbicide Site Preparation Treatments on Loblolly Pine Seedling Growth and Survival. South. J. Appl. For. 1986, 10, 253–257. [Google Scholar] [CrossRef]
- Cain, M.D. Planted Loblolly and Slash Pine Response to Bedding and Flat Disking on a Poorly Drained Site: An Update; Department of Agriculture, Forest Service, Southern Forest Experiment Station: New Orleans, LA, USA, 1978; Volume 237. [Google Scholar]
- Ross, D.W.; Berisford, C.W.; Godbee, J.F., Jr. Pine tip moth, Rhyacionia spp., response to herbaceous vegetation control in an intensively site-prepared loblolly pine plantation. For. Sci. 1990, 36, 1105–1118. [Google Scholar]
- Oneil, E. Cradle to Gate Life Cycle Assessment of US Regional Forest Resources—US Southern Pine Forests; CORRIM, Ed.; Consortium for Research on Renewable Industrial Materials: Corvalis, OR, USA, 2021; p. 41. [Google Scholar]
- Albaugh, T.J.; Allen, H.L.; Zutter, B.R.; Quicke, H.E. Vegetation control and fertilization in midrotation Pinus taeda stands in the southeastern United States. Ann. For. Sci. 2003, 60, 619–624. [Google Scholar] [CrossRef]
- Michael, J. Growth of loblolly pine treated with hexazinone, sulfometuron methyl, and metsulfuron methyl for herbaceous weed control. South. J. Appl. For. 1985, 9, 20–26. [Google Scholar] [CrossRef]
- Nelson, L.R.; Ezell, A.W.; Yeiser, J.L. Imazapyr and triclopyr tank mixtures for basal bark control of woody brush in the southeastern United States. New For. 2006, 31, 173–183. [Google Scholar] [CrossRef]
- Will, R.E.; Munger, G.T.; Zhang, Y.; Borders, B.E. Effects of annual fertilization and complete competition control on current annual increment, foliar development, and growth efficiency of different aged Pinus taeda stands. Can. J. For. Res. 2002, 32, 1728–1740. [Google Scholar] [CrossRef]
- Borders, B.; Will, R.; Markewitz, D.; Clark, A.; Hendrick, R.; Teskey, R.; Zhang, Y. Effect of complete competition control and annual fertilization on stem growth and canopy relations for a chronosequence of loblolly pine plantations in the lower coastal plain of Georgia. For. Ecol. Manag. 2004, 192, 21–37. [Google Scholar] [CrossRef]
- Martin, T.; Jokela, E. Developmental patterns and nutrition impact radiation use efficiency components in southern pine stands. Ecol. Appl. 2004, 14, 1839–1854. [Google Scholar] [CrossRef]
- Callaghan, D.W.; Khanal, P.N.; Straka, T.J.; Hagan, D.L. Influence of Forestry Practices Cost on Financial Performance of Forestry Investments. Resources 2019, 8, 28. [Google Scholar] [CrossRef]
- Will, R.E.; Narahari, N.V.; Shiver, B.D.; Teskey, R.O. Effects of planting density on canopy dynamics and stem growth for intensively managed loblolly pine stands. For. Ecol. Manag. 2005, 205, 29–41. [Google Scholar] [CrossRef]
- Hoover, C.; Stout, S. The carbon consequences of thinning techniques: Stand structure makes a difference. J. For. 2007, 105, 266–270. [Google Scholar]
- Sayer, M.S.; Goelz, J.; Chambers, J.L.; Tang, Z.; Dean, T.; Haywood, J.D.; Leduc, D.J. Long-term trends in loblolly pine productivity and stand characteristics in response to thinning and fertilization in the West Gulf region. For. Ecol. Manag. 2004, 192, 71–96. [Google Scholar] [CrossRef]
- Hennessey, T.; Dougherty, P.; Lynch, T.; Wittwer, R.; Lorenzi, E. Long-term growth and ecophysiological responses of a southeastern Oklahoma loblolly pine plantation to early rotation thinning. For. Ecol. Manag. 2004, 192, 97–116. [Google Scholar] [CrossRef]
- Gan, J. Risk and damage of southern pine beetle outbreaks under global climate change. For. Ecol. Manag. 2004, 191, 61–71. [Google Scholar] [CrossRef]
- Fortuin, C.C.; Montes, C.R.; Vogt, J.T.; Gandhi, K.J.K. Predicting risks of tornado and severe thunderstorm damage to southeastern U.S. forests. Landsc. Ecol. 2022, 37, 1905–1919. [Google Scholar] [CrossRef]
- Nowak, J.T.; Meeker, J.R.; Coyle, D.R.; Steiner, C.A.; Brownie, C. Southern pine beetle infestations in relation to forest stand conditions, previous thinning, and prescribed burning: Evaluation of the southern pine beetle prevention program. J. For. 2015, 113, 454–462. [Google Scholar] [CrossRef]
- Stanturf, J.A.; Goodrick, S.L.; Outcalt, K.W. Disturbance and coastal forests: A strategic approach to forest management in hurricane impact zones. For. Ecol. Manag. 2007, 250, 119–135. [Google Scholar] [CrossRef]
- Bragg, D.C.; Shelton, M.G. Recovery of planted loblolly pine 5 years after severe ice storms in Arkansas. South. J. Appl. For. 2010, 34, 13–20. [Google Scholar] [CrossRef]
- Albaugh, T.J.; Lee Allen, H.; Dougherty, P.M.; Johnsen, K.H. Long term growth responses of loblolly pine to optimal nutrient and water resource availability. For. Ecol. Manag. 2004, 192, 3–19. [Google Scholar] [CrossRef]
- Jokela, E.J.; Dougherty, P.M.; Martin, T.A. Production dynamics of intensively managed loblolly pine stands in the southern United States: A synthesis of seven long-term experiments. For. Ecol. Manag. 2004, 192, 117–130. [Google Scholar] [CrossRef]
- Amateis, R.L.; Liu, J.; Ducey, M.J.; Lee Allen, H. Modeling response to ridrotation nitrogen and phosphorus fertilization in loblolly pine plantations. South. J. Appl. For. 2000, 24, 207–212. [Google Scholar] [CrossRef]
- Fox, T.R.; Lee Allen, H.; Albaugh, T.J.; Rubilar, R.; Carlson, C.A. Tree nutrition and forest fertilization of pine plantations in the southern United States. South. J. Appl. For. 2007, 31, 5–11. [Google Scholar] [CrossRef]
- Carter, D.R.; Allen, H.L.; Fox, T.R.; Albaugh, T.J.; Rubilar, R.A.; Campoe, O.C.; Cook, R.L. A 50-Year Retrospective of the Forest Productivity Cooperative in the Southeastern United States: Regionwide Trials. J. For. 2020, 119, 73–85. [Google Scholar] [CrossRef]
- Shephard, N.T.; Joshi, O.; Susaeta, A.; Will, R.E. A stand level application of efficiency analysis to understand efficacy of fertilization and thinning with drought in a loblolly pine plantation. For. Ecol. Manag. 2021, 482, 118855. [Google Scholar] [CrossRef]
- Markewitz, D. Fossil fuel carbon emissions from silviculture: Impacts on net carbon sequestration in forests. For. Ecol. Manag. 2006, 236, 153–161. [Google Scholar] [CrossRef]
- Gan, J.; Smith, C.; Langeveld, J. Effects of considering greenhouse gas consequences on fertilizer use in loblolly pine plantations. J. Environ. Manag. 2012, 113, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, P.; Stainback, G.A.; Dwivedi, P. Economic impact of net carbon payments and bioenergy production in fertilized and non-fertilized loblolly pine plantations. Forests 2015, 6, 3045–3059. [Google Scholar] [CrossRef]
- Masum, M.F.H.; Wang, W.; Colson, G.; Dwivedi, P. Replacing coal in Georgia’s power plants with woody biomass to increase carbon benefit: A mixed integer linear programming model. J. Environ. Manag. 2022, 316, 115060. [Google Scholar] [CrossRef]
- Jonker, J.; van der Hilst, F.; Markewitz, D.; Faaij, A.; Junginger, H. Carbon balance and economic performance of pine plantations for bioenergy production in the Southeastern United States. Biomass Bioenergy 2018, 117, 44–55. [Google Scholar] [CrossRef]
- Albaugh, T.J.; Fox, T.R.; Cook, R.L.; Raymond, J.E.; Rubilar, R.A.; Campoe, O.C. Forest fertilizer applications in the southeastern United States from 1969 to 2016. For. Sci. 2019, 65, 355–362. [Google Scholar] [CrossRef]
- Lippke, B.; Puettmann, M.; Oneil, E.; Dearing Oliver, C. The Plant a Trillion Trees Campaign to Reduce Global Warming—Fleshing Out the Concept. J. Sustain. For. 2021, 40, 1–31. [Google Scholar] [CrossRef]
- Perez-Garcia, J.; Lippke, B.; Comnick, J.; Manriquez, C. An assessment of carbon pools, storage, and wood products market substitution using life-cycle analysis results. Wood Fiber Sci. 2005, 37, 140–148. [Google Scholar]
- Lippke, B.; Wilson, J.; Meil, J.; Taylor, A. Characterizing the importance of carbon stored in wood products. Wood Fiber Sci. 2010, 42, 5–14. [Google Scholar]
- Milota, M. CORRIM Report: Module C Life Cycle Assessment for the Production of Southeastern Softwood Lumber; 2015; Available online: https://corrim.org/wp-content/uploads/Module-C-SE-Lumber.pdf (accessed on 5 May 2022).
- Fuller, M.; Dwivedi, P. The Cost of Carbon Stored on Afforested Lands in the Southern United States. Trees For. People 2021, 6, 100129. [Google Scholar] [CrossRef]
- Reed, W.J. The effects of the risk of fire on the optimal rotation of a forest. J. Environ. Econ. Manag. 1984, 11, 180–190. [Google Scholar] [CrossRef]
- Milota, M.; Puettmann, M.E. Life-cycle assessment for the cradle-to-gate production of softwood lumber in the pacific northwest and southeast regions. For. Prod. 2017, 67, 331–342. [Google Scholar] [CrossRef]
- Johnson, L.R.; Lippke, B.; Marshall, J.D.; Comnick, J. Life-cycle impacts of forest resource activities in the Pacific Northwest and Southeast United States. Wood Fiber Sci. 2005, 37, 30–46. [Google Scholar]
- Shephard, N.T.; Joshi, O.; Meek, C.R.; Will, R.E. Long-term growth effects of simulated-drought, mid-rotation fertilization, and thinning on a loblolly pine plantation in southeastern Oklahoma, USA. For. Ecol. Manag. 2021, 494, 119323. [Google Scholar] [CrossRef]
- Maggard, A.O.; Will, R.E.; Wilson, D.S.; Meek, C.R.; Vogel, J.G. Fertilization reduced stomatal conductance but not photosynthesis of Pinus taeda which compensated for lower water availability in regards to growth. For. Ecol. Manag. 2016, 381, 37–47. [Google Scholar] [CrossRef]
- Ross, C.W.; Grunwald, S.; Vogel, J.G.; Markewitz, D.; Jokela, E.J.; Martin, T.A.; Bracho, R.; Bacon, A.R.; Brungard, C.W.; Xiong, X. Accounting for two-billion tons of stabilized soil carbon. Sci. Total Environ. 2020, 703, 134615. [Google Scholar] [CrossRef]
- Vogel, J.G.; Bracho, R.; Akers, M.; Amateis, R.; Bacon, A.; Burkhart, H.E.; Gonzalez-Benecke, C.A.; Grunwald, S.; Jokela, E.J.; Kane, M.B.; et al. Regional Assessment of Carbon Pool Response to Intensive Silvicultural Practices in Loblolly Pine Plantations. Forests 2022, 13, 36. [Google Scholar] [CrossRef]
- Oliver, C.D.; Nassar, N.T.; Lippke, B.R.; McCarter, J.B. Carbon, Fossil Fuel, and Biodiversity Mitigation With Wood and Forests. J. Sustain. For. 2014, 33, 248–275. [Google Scholar] [CrossRef]
- Malmsheimer, R.W.; Bowyer, J.L.; Fried, J.S.; Gee, E.; Izlar, R.; Miner, R.A.; Munn, I.A.; Oneil, E.; Stewart, W.C. Managing forests because carbon matters: Integrating energy, products, and land management policy. J. For. 2011, 109, S7–S50. [Google Scholar]
- Hertwich, E.G. Increased carbon footprint of materials production driven by rise in investments. Nat. Geosci. 2021, 14, 151–155. [Google Scholar] [CrossRef]
- CORRIM Library of LCA’s on Wood Products. Available online: https://corrim.org/lcas-on-wood-products-library/ (accessed on 19 July 2022).
- Favero, A.; Daigneault, A.; Sohngen, B. Forests: Carbon sequestration, biomass energy, or both? Sci. Adv. 2020, 6, eaay6792. [Google Scholar] [CrossRef] [PubMed]
- Favero, A.; Mendelsohn, R.; Sohngen, B. Using forests for climate mitigation: Sequester carbon or produce woody biomass? Clim. Chang. 2017, 144, 195–206. [Google Scholar] [CrossRef]
- Favero, A.; Mendelsohn, R.; Sohngen, B.; Stocker, B. Assessing the long-term interactions of climate change and timber markets on forest land and carbon storage. Environ. Res. Lett. 2021, 16, 014051. [Google Scholar] [CrossRef]
- Woodall, C.W.; Coulston, J.W.; Domke, G.M.; Walters, B.F.; Wear, D.N.; Smith, J.E.; Andersen, H.-E.; Clough, B.J.; Cohen, W.B.; Griffith, D.M. The US forest carbon accounting framework: Stocks and stock change, 1990–2016. In Gen. Tech. Rep. NRS-154; US Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA, USA, 2015; Volume 154, pp. 1–49. [Google Scholar]
- Lan, K.; Kelley, S.S.; Nepal, P.; Yao, Y. Dynamic life cycle carbon and energy analysis for cross-laminated timber in the Southeastern United States. Environ. Res. Lett. 2020, 15, 124036. [Google Scholar] [CrossRef]
- Ganguly, I.; Pierobon, F.; Sonne Hall, E. Global warming mitigating role of wood products from Washington state’s private forests. Forests 2020, 11, 194. [Google Scholar] [CrossRef]
- Hurmekoski, E.; Smyth, C.; Stern, T.; Verkerk, P.J.; Asada, R. Substitution impacts of wood use at the market level: A systematic review. Environ. Res. Lett. 2021, 16, 123004. [Google Scholar] [CrossRef]
- Leskinen, P.; Cardellini, G.; González-García, S.; Hurmekoski, E.; Sathre, R.; Seppälä, J.; Smyth, C.; Stern, T.; Verkerk, P.J. Substitution effects of wood-based products in climate change mitigation. Sci. Policy 2018. [Google Scholar]
- Nepal, P.; Skog, K.E.; McKeever, D.B.; Bergman, R.D.; Abt, K.L.; Abt, R.C. Carbon mitigation impacts of increased softwood lumber and structural panel use for nonresidential construction in the United States. For. Prod. 2016, 66, 77–87. [Google Scholar] [CrossRef]
- Forster, E.J.; Healey, J.R.; Dymond, C.; Styles, D. Commercial afforestation can deliver effective climate change mitigation under multiple decarbonisation pathways. Nat. Commun. 2021, 12, 3831. [Google Scholar] [CrossRef]
- Loehle, C. Carbon sequestration due to commercial forestry: An equilibrium analysis. For. Prod. 2020, 70, 60–63. [Google Scholar] [CrossRef]
- Upton, B.; Miner, R.; Spinney, M.; Heath, L.S. The greenhouse gas and energy impacts of using wood instead of alternatives in residential construction in the United States. Biomass Bioenergy 2008, 32, 1–10. [Google Scholar] [CrossRef]
- Skog, K.E. Sequestration of carbon in harvested wood products for the United States. For. Prod. J. 2008, 58, 56–72. [Google Scholar]
- Puettmann, M.; Pierobon, F.; Ganguly, I.; Gu, H.; Chen, C.; Liang, S.; Jones, S.; Maples, I.; Wishnie, M. Comparative LCAs of conventional and mass timber buildings in regions with potential for mass timber penetration. Sustainability 2021, 13, 13987. [Google Scholar] [CrossRef]
- Chen, Z.; Gu, H.; Bergman, R.D.; Liang, S. Comparative life-cycle assessment of a high-rise mass timber building with an equivalent reinforced concrete alternative using the Athena impact estimator for buildings. Sustainability 2020, 12, 4708. [Google Scholar] [CrossRef]
- Prestemon, J.P.; Nepal, P.; Sahoo, K. Housing starts and the associated wood products carbon storage by county by Shared Socioeconomic Pathway in the United States. PLoS ONE 2022, 17, e0270025. [Google Scholar]
- Sathre, R.; O’Connor, J. Meta-analysis of greenhouse gas displacement factors of wood product substitution. Environ. Sci. Policy 2010, 13, 104–114. [Google Scholar] [CrossRef]
- Prisley, S.P.; Gaudreault, C.; Lamers, P.; Stewart, W.; Miner, R.; Junginger, H.; Oneil, E.; Malmsheimer, R.; Volk, T.A. Comment on ‘Does replacing coal with wood lower CO2 emissions? Dynamic lifecycle analysis of wood bioenergy’. Environ. Res. Lett. 2018, 13, 128002. [Google Scholar] [CrossRef]
- Oliver, C.D. Achieving and maintaining biodiversity and economic productivity. J. For. 1992, 90, 20–25. [Google Scholar]
- van Ewijk, S.; Stegemann, J.A.; Ekins, P. Limited climate benefits of global recycling of pulp and paper. Nat. Sustain. 2021, 4, 180–187. [Google Scholar] [CrossRef]
- Cote, M.; Poganietz, W.R.; Schebek, L. Anthropogenic carbon stock dynamics of pulp and paper products in Germany. J. Ind. Ecol. 2015, 19, 366–379. [Google Scholar] [CrossRef]
- Tomberlin, K.E.; Venditti, R.; Yao, Y. Life cycle carbon footprint analysis of pulp and paper grades in the united states using production-line-based data and integration. BioResources 2020, 15, 3899–3914. [Google Scholar] [CrossRef]
- Del Rio, D.D.F.; Sovacool, B.K.; Griffiths, S.; Bazilian, M.; Kim, J.; Foley, A.M.; Rooney, D. Decarbonizing the pulp and paper industry: A critical and systematic review of sociotechnical developments and policy options. Renew. Sustain. Energy Rev. 2022, 167, 112706. [Google Scholar] [CrossRef]
- Denison, R.A. Life-cycle assessment for paper products. In Wood in Our Future: The Role of Life-Cycle Analysis: Proceedings of a Symposium; National Academies Press: Washington, DC, USA, 1997; p. 54. [Google Scholar]
- Ingwersen, W.; Gausman, M.; Weisbrod, A.; Sengupta, D.; Lee, S.-J.; Bare, J.; Zanoli, E.; Bhander, G.S.; Ceja, M. Detailed life cycle assessment of Bounty® paper towel operations in the United States. J. Clean. Prod. 2016, 131, 509–522. [Google Scholar] [CrossRef]
- Sun, M.; Wang, Y.; Shi, L.; Klemeš, J.J. Uncovering energy use, carbon emissions and environmental burdens of pulp and paper industry: A systematic review and meta-analysis. Renew. Sustain. Energy Rev. 2018, 92, 823–833. [Google Scholar] [CrossRef]
- Echeverria, D.; Venditti, R.; Jameel, H.; Yao, Y. A general Life Cycle Assessment framework for sustainable bleaching: A case study of peracetic acid bleaching of wood pulp. J. Clean. Prod. 2021, 290, 125854. [Google Scholar]
- Sagues, W.; Jameel, H.; Sanchez, D.; Park, S. Prospects for bioenergy with carbon capture & storage (BECCS) in the United States pulp and paper industry. Energy Environ. Sci. 2020, 13, 2243–2261. [Google Scholar]
- Van Ewijk, S.; Stegemann, J.A.; Ekins, P. Global life cycle paper flows, recycling metrics, and material efficiency. J. Ind. Ecol. 2018, 22, 686–693. [Google Scholar] [CrossRef]
- Su, Y.; Yang, B.; Liu, J.; Sun, B.; Cao, C.; Zou, X.; Lutes, R.; He, Z. Prospects for replacement of some plastics in packaging with lignocellulose materials: A brief review. BioResources 2018, 13, 4550–4576. [Google Scholar] [CrossRef]
- Schenker, U.; Chardot, J.; Missoum, K.; Vishtal, A.; Bras, J. Short communication on the role of cellulosic fiber-based packaging in reduction of climate change impacts. Carbohydr. Polym. 2021, 254, 117248. [Google Scholar] [CrossRef]
- Rohit, K.; Dixit, S. A review-future aspect of natural fiber reinforced composite. Polym. Renew. Resour. 2016, 7, 43–59. [Google Scholar] [CrossRef]
- Lorang, E.; Lobianco, A.; Delacote, P. Increasing Paper and Cardboard Recycling: Impacts on the Forest Sector and Carbon Emissions. Environ. Modeling Assess. 2022, 1–12. [Google Scholar] [CrossRef]
- Manzardo, A.; Ren, J.; Piantella, A.; Mazzi, A.; Fedele, A.; Scipioni, A. Integration of water footprint accounting and costs for optimal chemical pulp supply mix in paper industry. J. Clean. Prod. 2014, 72, 167–173. [Google Scholar] [CrossRef]
- Dwivedi, P.; Khanna, M.; Fuller, M. Is wood pellet-based electricity less carbon-intensive than coal-based electricity? It depends on perspectives, baselines, feedstocks, and forest management practices. Environ. Res. Lett. 2019, 14, 024006. [Google Scholar] [CrossRef]
- Jonker, J.G.G.; Junginger, M.; Faaij, A. Carbon payback period and carbon offset parity point of wood pellet production in the South-eastern United States. Gcb Bioenergy 2014, 6, 371–389. [Google Scholar] [CrossRef]
- Sterman, J.D.; Siegel, L.; Rooney-Varga, J.N. Does replacing coal with wood lower CO2 emissions? Dynamic lifecycle analysis of wood bioenergy. Environ. Res. Lett. 2018, 13, 015007. [Google Scholar] [CrossRef]
- Miner, R.A.; Abt, R.C.; Bowyer, J.L.; Buford, M.A.; Malmsheimer, R.W.; O’Laughlin, J.; Oneil, E.E.; Sedjo, R.A.; Skog, K.E. Forest Carbon Accounting Considerations in US Bioenergy Policy. J. For. 2014, 112, 591–606. [Google Scholar] [CrossRef]
- Munsell, J.F.; Fox, T.R. An analysis of the feasibility for increasing woody biomass production from pine plantations in the southern United States. Biomass Bioenergy 2010, 34, 1631–1642. [Google Scholar] [CrossRef]
- Rolls, W.; Forster, P.M. Quantifying forest growth uncertainty on carbon payback times in a simple biomass carbon model. Environ. Res. Commun. 2020, 2, 045001. [Google Scholar] [CrossRef]
- Mitchell, S.R.; Harmon, M.E.; O’Connell, K.E. Carbon debt and carbon sequestration parity in forest bioenergy production. Gcb Bioenergy 2012, 4, 818–827. [Google Scholar] [CrossRef]
- Birdsey, R.; Duffy, P.; Smyth, C.; Kurz, W.A.; Dugan, A.J.; Houghton, R. Climate, economic, and environmental impacts of producing wood for bioenergy. Environ. Res. Lett. 2018, 13, 050201. [Google Scholar] [CrossRef]
- Bjarvin, C. Assessing the Carbon Balance for Mass Timbers Beyond the First Life; 2022; Available online: https://digital.lib.washington.edu/researchworks/handle/1773/49022 (accessed on 19 July 2022).
- Harmon, M.E. Have product substitution carbon benefits been overestimated? A sensitivity analysis of key assumptions. Environ. Res. Lett. 2019, 14, 065008. [Google Scholar] [CrossRef]
- Leturcq, P. GHG displacement factors of harvested wood products: The myth of substitution. Sci. Rep. 2020, 10, 20752. [Google Scholar] [CrossRef] [PubMed]
- Howard, C.; Dymond, C.C.; Griess, V.C.; Tolkien-Spurr, D.; van Kooten, G.C. Wood product carbon substitution benefits: A critical review of assumptions. Carbon Balance Manag. 2021, 16, 9. [Google Scholar] [CrossRef] [PubMed]
- Skytt, T.; Englund, G.; Jonsson, B.-G. Climate mitigation forestry—Temporal trade-offs. Environ. Res. Lett. 2021, 16, 114037. [Google Scholar] [CrossRef]
- Gustavsson, L.; Sathre, R.; Leskinen, P.; Nabuurs, G.-J.; Kraxner, F. Comment on ‘Climate mitigation forestry—temporal trade-offs’. Environ. Res. Lett. 2022, 17, 048001. [Google Scholar] [CrossRef]
- Galik, C.S.; Murray, B.C.; Mercer, D.E. Where is the carbon? Carbon sequestration potential from private forestland in the Southern United States. J. For. 2013, 111, 17–25. [Google Scholar] [CrossRef]
- Coops, N.C.; Tompalski, P.; Goodbody, T.R.; Queinnec, M.; Luther, J.E.; Bolton, D.K.; White, J.C.; Wulder, M.A.; van Lier, O.R.; Hermosilla, T. Modelling lidar-derived estimates of forest attributes over space and time: A review of approaches and future trends. Remote Sens. Environ. 2021, 260, 112477. [Google Scholar] [CrossRef]
- Fagan, M.E.; Morton, D.C.; Cook, B.D.; Masek, J.; Zhao, F.; Nelson, R.F.; Huang, C. Mapping pine plantations in the southeastern U.S. using structural, spectral, and temporal remote sensing data. Remote Sens. Environ. 2018, 216, 415–426. [Google Scholar] [CrossRef]
- Garcia, M.; Saatchi, S.; Casas, A.; Koltunov, A.; Ustin, S.; Ramirez, C.; Garcia-Gutierrez, J.; Balzter, H. Quantifying biomass consumption and carbon release from the California Rim fire by integrating airborne LiDAR and Landsat OLI data. J. Geophys. Res. Biogeosci. 2017, 122, 340–353. [Google Scholar] [CrossRef]
- Badgley, G.; Freeman, J.; Hamman, J.J.; Haya, B.; Trugman, A.T.; Anderegg, W.R.; Cullenward, D. Systematic over-crediting in California’s forest carbon offsets program. Glob. Chang. Biol. 2022, 28, 1433–1445. [Google Scholar] [CrossRef]
- Anderson-Teixeira, K.J.; Belair, E.P. Effective forest-based climate change mitigation requires our best science. Glob. Chang. Biol. 2022, 28, 1200–1203. [Google Scholar] [CrossRef] [PubMed]
- Yousefpour, R.; Augustynczik, A.L.D.; Reyer, C.P.; Lasch-Born, P.; Suckow, F.; Hanewinkel, M. Realizing mitigation efficiency of European commercial forests by climate smart forestry. Sci. Rep. 2018, 8, 345. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shephard, N.T.; Narine, L.; Peng, Y.; Maggard, A. Climate Smart Forestry in the Southern United States. Forests 2022, 13, 1460. https://doi.org/10.3390/f13091460
Shephard NT, Narine L, Peng Y, Maggard A. Climate Smart Forestry in the Southern United States. Forests. 2022; 13(9):1460. https://doi.org/10.3390/f13091460
Chicago/Turabian StyleShephard, Noah T., Lana Narine, Yucheng Peng, and Adam Maggard. 2022. "Climate Smart Forestry in the Southern United States" Forests 13, no. 9: 1460. https://doi.org/10.3390/f13091460
APA StyleShephard, N. T., Narine, L., Peng, Y., & Maggard, A. (2022). Climate Smart Forestry in the Southern United States. Forests, 13(9), 1460. https://doi.org/10.3390/f13091460