Modelling Soil Organic Carbon as a Function of Topography and Stand Variables
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Above Ground Tree Biomass and Soil Organic Carbon Analysis
2.4. Variable Selection
2.5. Data Split
2.6. Modelling
2.7. Data Transformation
2.8. Model Validation
- n = number of fitted points
- Oi = Actual value of soil organic carbon
- Fi = predicted value of soil organic carbon
- A
- = Accuracy of the model
3. Results
3.1. Distribution of Variables
3.2. Correlation of Variables
3.3. Effects of Topography and Stand Level Variables
- Estimated λ = 0.2 (It is an “optimal value” that results in the best approximation of a normal distribution).
3.4. Accuracy of the Model
4. Discussion
4.1. Distribution of SOC
4.2. Effect of Topographic and Stand Variables on SOC
4.3. Altitudinal Effect on SOC and Its Implication
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry; IPCC National Greenhouse Gas Inventory Program; Technical Support Unit: Hayama, Kanagawa, 2003. [Google Scholar]
- Neupane, P.R.; Gauli, A.; Maraseni, T.; Kübler, D.; Mundhenk, P.; Dang, M.V.; Kohl, M. A segregated assessment of total carbon stocks by the mode of origin and ecological functions of forests: Implication on restoration potential. Int. For. Rev. 2017, 19, 120–147. [Google Scholar]
- Shi, Y.; Baumann, F.; Ma, Y.; Song, C.; Kühn, P.; Scholten, T.; He, J.-S. Organic and inorganic carbon in the topsoil of the Mongolian and Tibetan grasslands: Pattern, control and implications. Biogeosciences 2012, 9, 2287–2299. [Google Scholar] [CrossRef]
- Song, B.; Niu, S.; Zhang, Z.; Yang, H.; Li, L.; Wan, S. Light and Heavy Fractions of Soil Organic Matter in Response to Climate Warming and Increased Precipitation in a Temperate Steppe. PLoS ONE 2012, 7, e33217. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.K. Soil Carbon Storage: Modulators, Mechanisms and Modeling; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Sedjo, R.A. The carbon cycle and global forest ecosystem. Water Air Soil Pollut. 1993, 70, 295–307. [Google Scholar] [CrossRef]
- Li, M.; Zhang, X.; Pang, G.; Han, F. The estimation of soil organic carbon distribution and storage in a small catchment area of the Loess Plateau. CATENA 2013, 101, 11–16. [Google Scholar] [CrossRef]
- Thompson, J.A.; Kolka, R.K. Soil Carbon Storage Estimation in a Forested Watershed using Quantitative Soil-Landscape Modeling. Soil Sci. Soc. Am. J. 2005, 69, 1086–1093. [Google Scholar] [CrossRef]
- Ontl, T.; Schulte, L.A. Soil Carbon Storage. Nat. Educ. Knowl. 2012, 3, 35. [Google Scholar]
- Garten, C.T. Soil Carbon Dynamics Along an Elevation Gradient in the Southern Appalachian Mountains; Environment Sciences Division-Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2004.
- Zhu, B.; Wang, X.; Fang, J.; Piao, S.; Shen, H.; Zhao, S.; Peng, C. Altitudinal changes in carbon storage of temperate forests on Mt Changbai, Northeast China. J. Plant Res. 2010, 123, 439–452. [Google Scholar] [CrossRef]
- Yoo, K.; Amundson, R.; Heimsath, A.M.; Dietrich, W.E. Spatial patterns of soil organic carbon on hillslopes: Integrating geomorphic processes and the biological C cycle. Geoderma 2006, 130, 47–65. [Google Scholar] [CrossRef]
- Chaturvedi, S.S.; Sun, K. Soil organic carbon and carbon stock in community forests with varying altitude and slope aspect in Meghalaya, India. Int. Res. J. Environ. Sci. 2018, 7, 1–6. [Google Scholar]
- Jakšić, S.; Ninkov, J.; Milić, S.; Vasin, J.; Živanov, M.; Jakšić, D.; Komlen, V. Influence of Slope Gradient and Aspect on Soil Organic Carbon Content in the Region of Niš, Serbia. Sustainability 2021, 13, 8332. [Google Scholar] [CrossRef]
- Bangroo, S.; Najar, G.; Rasool, A. Effect of altitude and aspect on soil organic carbon and nitrogen stocks in the Himalayan Mawer Forest Range. CATENA 2017, 158, 63–68. [Google Scholar] [CrossRef]
- Mohammad, S.; Rasel, M. Effect of Elevation and Above Ground Biomass (AGB) on Soil Organic Carbon (SOC): A Remote Sensing Based Approach in Chitwan District. Nepal. Int. J. Sci. Eng. Res. 2013, 4, 1546–1553. [Google Scholar]
- Jevon, F.V.; D’Amato, A.W.; Woodall, C.W.; Evans, K.; Ayres, M.P.; Matthes, J.H. Tree basal area and conifer abundance predict soil carbon stocks and concentrations in an actively managed forest of northern New Hampshire, USA. For. Ecol. Manag. 2019, 451, 117534. [Google Scholar] [CrossRef]
- Kara, Ö.; Bolat, I.; Çakiroğlu, K.; Öztürk, M. Plant canopy effects on litter accumulation and soil microbial biomass in two temperate forests. Biol. Fertil. Soils. 2008, 45, 193–198. [Google Scholar] [CrossRef]
- Liu, Y.; Li, S.; Sun, X.; Yu, X. Variations of forest soil organic carbon and its influencing factors in east China. Ann. For. Sci. 2016, 73, 501–511. [Google Scholar] [CrossRef]
- Zinn, Y.L.; Andrade, A.; Araújo, M.A.; Lal, R. Soil organic carbon retention more affected by altitude than texture in a forested mountain range in Brazil. Soil Res. 2018, 56, 284. [Google Scholar] [CrossRef]
- Sah, S.P.; Brumme, R. Altitudinal gradients of natural abundance of stable isotopes of nitrogen and carbon in the needles and soil of a pine forest in Nepal. J. For. Sci. 2018, 49, 19–26. [Google Scholar] [CrossRef]
- Pradhan, B.M.; Awasthi, K.D.; Bajracharya, R.M. Soil organic carbon stocks under different forest types in Pokhare khola sub-watershed: A case study from Dhading district of Nepal. WIT Trans. Ecol. Environ. 2012, 157, 535–546. [Google Scholar] [CrossRef]
- Ghimire, P.; Bhatta, B.; Pokhrel, B.; Kafle, G.; Paudel, P. Soil organic carbon stocks under different land uses in Chure region of Makawanpur district, Nepal. SAARC J. Agric. 2019, 16, 13–23. [Google Scholar] [CrossRef]
- Sharma, M.; Kafle, G. Comparative assessment of profile storage of soil organic carbon and total nitrogen in forest and grassland in Jajarkot, Nepal. J. Agric. Nat. Resour. 2020, 3, 184–192. [Google Scholar] [CrossRef]
- Adhikari, B.M.; Ghimire, P. Assessment of Soil Organic Carbon Stock of Churia Broad Leaved Forest of Nawalpur District, Nepal. Grassroots J. Nat. Resour. 2019, 2, 45–52. [Google Scholar] [CrossRef]
- Bajracharya, R.M.; Sitaula, B.; Shrestha, B.M.; Awasthi, K.D. Soil organic carbon status and dynamics in the central Nepal middle mountains. Forestry 2004, 12, 28–44. [Google Scholar]
- Dalmolin, R.S.D.; Gonçalves, C.N.; Dick, D.P.; Knicker, H.; Klamt, E.; Kögel-Knabner, I. Organic matter characteristics and distribution in Ferralsol profiles of a climosequence in southern Brazil. Eur. J. Soil Sci. 2006, 57, 644–654. [Google Scholar] [CrossRef]
- Sousa Neto, E.; Carmo, J.B.; Keller, M.; Martins, S.C.; Alves, L.F.; Vieira, S.A.; Piccolo, M.D.; Camargo, P.; Couto, H.T.; Joly, C.A.; et al. Soil-atmosphere exchange of nitrous oxide, methane and carbon dioxide in a gradient of elevation in the coastal Brazilian Atlantic forest. Biogeosciences 2011, 8, 733–742. [Google Scholar] [CrossRef] [Green Version]
- Zech, M.; Hörold, C.; Leiber-Sauheitl, K.; Kühnel, A.; Hemp, A.; Zech, W. Buried black soils on the slopes of Mt. Kilimanjaro as a regional carbon storage hotspot. CATENA 2014, 112, 125–130. [Google Scholar] [CrossRef]
- Garten, C.T.; Hanson, P.J. Measured forest soil C stocks and estimated turnover times along an elevation gradient. Geoderma 2006, 136, 342–352. [Google Scholar] [CrossRef]
- Dieleman, W.I.; Venter, M.; Ramachandra, A.; Krockenberger, A.; Bird, M. Soil carbon stocks vary predictably with altitude in tropical forests: Implications for soil carbon storage. Geoderma 2013, 204–205, 59–67. [Google Scholar] [CrossRef]
- Badía, D.; Ruiz, A.; Girona, A.; Martí, C.; Casanova, J.; Ibarra, P.; Zufiaurre, R. The influence of elevation on soil properties and forest litter in the Siliceous Moncayo Massif, SW Europe. J. Mt. Sci. 2016, 13, 2155–2169. [Google Scholar] [CrossRef]
- Sheikh, M.A.; Kumar, M.; Bussmann, R.W. Altitudinal variation in soil organic carbon stock in coniferous subtropical and broadleaf temperate forests in Garhwal Himalaya. Carbon Balance Manag. 2009, 4, 6. [Google Scholar] [CrossRef]
- Liu, N.; Nan, H. Carbon stocks of three secondary coniferous forests along an altitudinal gradient on Loess Plateau in inland China. PLoS ONE 2018, 13, e0196927. [Google Scholar] [CrossRef] [PubMed]
- HMGN/MFSC. Nepal Biodiversity Strategy; HMGN/MFSC: Kathmandu, Nepal, 2002; pp. 1–117. [Google Scholar]
- Jha, P.K. Environment and Man in Nepal; Craftsman Press: Bangkok, Thailand, 1992. [Google Scholar]
- Hanawalt, R.B.; Whittaker, R.H. Altitudinally coordinated patterns of soils and vegetation in the San Jacinto mountains, California. Soil Sci. 1976, 121, 114–124. [Google Scholar] [CrossRef]
- LRMP. Summary Report. Kathmandu; Land Resources Mapping Project: Kathmandu, Nepal, 1986. [Google Scholar]
- Stainton, J.D.A. Forests of Nepal; Taxon. John Murray: London, UK, 1972. [Google Scholar]
- DFRS. State of Nepal’s Forests; Forest Resource Assessment (FRA) Nepal, Department of Forest Research and Survey (DFRS): Kathmandu, Nepal, 2015.
- Jackson, J. Manual of Afforestation in Nepal; Nepal-United Kingdom Forestry Research Project; Forest Survey and Research Officel; Department of Forests: Kathmandu, Nepal, 1994. [Google Scholar]
- DFRS/FRA. Terai Forests of Nepal; Forest Resource Assessment (FRA) Nepal Project, Department of Forest Research and Survey: Kathmandu, Nepal, 2014; p. 160.
- DFRS. Middle Mountains Forests of Nepal; Forest Resource Assessment (FRA), Department of Forest Research and Survey (DFRS): Kathmandu, Nepal, 2015.
- DFRS. High Mountains and High Himal Forests of Nepal; Department of Forest Research and Survey: Kathmandu, Nepal, 2015.
- Sharma, E.; Pukkala, T. Volume Tables for Forest Trees of Nepal; Forest Survey and Statistics Division: Kathmandu, Nepal, 1990.
- Sharma, E.R.; Pukkala, T. Volume Equations and Biomass Prediction of Forest Trees of Nepal; Forest Research and Statistics Division: Kathmandu, Nepal, 1990.
- MPFS. Master Plan for Forestry Sector; Ministry of Forests and Soil Conservation: Kathmandu, Nepal, 1988.
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An {R} Companion to Applied Regression, 2nd ed.; Thousand Oaks Sage: California, CA, USA, 2011. [Google Scholar]
- Akinwande, M.O.; Dikko, H.G.; Samson, A. Variance Inflation Factor: As a Condition for the Inclusion of Suppressor Variable(s) in Regression Analysis. Open J. Stat. 2015, 5, 754–767. [Google Scholar] [CrossRef]
- Yachen, Y. MLmetrics: Machine LearningEvaluation Metrics. R Package Version 1.1.1. 2016. Available online: https://CRAN.R-project.org/package=MLmetrics (accessed on 4 November 2020).
- R Core Team. R. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2012; Available online: http://www.R-project.org (accessed on 8 September 2020).
- Zeileis, A.; Hothorn, T. Diagnostic Checking in Regression Relationships. R News 2002, 2, 7–10. [Google Scholar]
- Meyer, D.; Dimitriadou, E.; Hornik, K.; Leisch, F.; Meyer, D.; Weingessel, A. e1071: Misc Functions of the Department of Statistics (e1071), TU Wien. R Package Version 1.7-4. 2020. Available online: https://CRAN.R-project.org/package=e1071 (accessed on 10 November 2020).
- Box, G.E.P.; Cox, D.R. An Analysis of Transformations. J. R. Stat. Soc. Ser. B 1964, 26, 211–243. [Google Scholar] [CrossRef]
- Schimel, D.S.; Braswell, B.; Holland, E.A.; McKeown, R.; Ojima, D.S.; Painter, T.H.; Parton, W.J.; Townsend, A.R. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Glob. Biogeochem. Cycles 1994, 8, 279–293. [Google Scholar] [CrossRef]
- Zhu, M.; Feng, Q.; Zhang, M.; Liu, W.; Qin, Y.; Deo, R.C.; Zhang, C. Effects of topography on soil organic carbon stocks in grasslands of a semiarid alpine region, northwestern China. J. Soils Sediments 2018, 19, 1640–1650. [Google Scholar] [CrossRef]
- Patton, N.R.; Lohse, K.A.; Seyfried, M.S.; Godsey, S.E.; Parsons, S.B. Topographic controls of soil organic carbon on soil-mantled landscapes. Sci. Rep. 2019, 9, 6390. [Google Scholar] [CrossRef]
- Garten, C.T., Jr. Relationships among forest soil C isotopic composition, partitioning, and turnover times. Can. J. For. Res. 2006, 36, 2157–2167. [Google Scholar] [CrossRef]
- Deng, L.; Liu, G.-b.; Shangguan, Z. Land-use conversion and changing soil carbon stocks in China’s “Grain-for-Green” Program: A synthesis. Glob. Chang. Biol. 2014, 20, 3544–3556. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ai, J.; Sun, Q.; Li, Z.; Hou, L.; Song, L.; Tang, G.; Li, L.; Shao, G. Soil organic carbon and total nitrogen stocks as affected by vegetation types and altitude across the mountainous regions in the Yunnan Province, south-western China. CATENA 2020, 196, 104872. [Google Scholar] [CrossRef]
- Baral, S.K.; Katzensteiner, K. Impact of biomass extraction on soil properties and foliar nitrogen content in a community forest and a semi-protected natural forest in the central mid-hills of Nepal. Trop. Ecol. 2015, 56, 323–333. [Google Scholar]
- Mehta, V.K.; Sullivan, P.J.; Walter, M.T.; Krishnaswamy, J.; DeGloria, S.D. Impacts of disturbance on soil properties in a dry tropical forest in Southern India. Ecohydrology 2008, 1, 161–175. [Google Scholar] [CrossRef]
- Yimer, F.; Ledin, S.; Abdelkadir, A. Soil organic carbon and total nitrogen stocks as affected by topographic aspect and vegetation in the Bale Mountains, Ethiopia. Geoderma 2006, 135, 335–344. [Google Scholar] [CrossRef]
- Lozano-García, B.; Parras-Alcántara, L.; Brevik, E.C. Impact of topographic aspect and vegetation (native and reforested areas) on soil organic carbon and nitrogen budgets in Mediterranean natural areas. Sci. Total Environ. 2016, 544, 963–970. [Google Scholar] [CrossRef]
- Chen, L.-F.; He, Z.-B.; Du, J.; Yang, J.-J.; Zhu, X. Patterns and environmental controls of soil organic carbon and total nitrogen in alpine ecosystems of northwestern China. CATENA 2016, 137, 37–43. [Google Scholar] [CrossRef]
- Hancock, G.; Murphy, D.; Evans, K. Hillslope and catchment scale soil organic carbon concentration: An assessment of the role of geomorphology and soil erosion in an undisturbed environment. Geoderma 2010, 155, 36–45. [Google Scholar] [CrossRef]
- Zhu, M.; Feng, Q.; Qin, Y.; Cao, J.; Li, H.; Zhao, Y. Soil organic carbon as functions of slope aspects and soil depths in a semiarid alpine region of Northwest China. CATENA 2017, 152, 94–102. [Google Scholar] [CrossRef]
- Gebeyehu, G.; Soromessa, T.; Bekele, T.; Teketay, D. Carbon stocks and factors affecting their storage in dry Afromontane forests of Awi Zone, northwestern Ethiopia. J. Ecol. Environ. 2019, 43, 7. [Google Scholar] [CrossRef]
- Schindlbacher, A.; De Gonzalo, C.; Díaz-Pines, E.; Gorría, P.; Matthews, B.; Inclán, R.; Zechmeister-Boltenstern, S.; Rubio, A.; Jandl, R. Temperature sensitivity of forest soil organic matter decomposition along two elevation gradients. J. Geophys. Res. Biogeosciences 2010, 115, G03018. [Google Scholar] [CrossRef]
- Tashi, S.; Singh, B.; Keitel, C.; Adams, M. Soil carbon and nitrogen stocks in forests along an altitudinal gradient in the eastern Himalayas and a meta-analysis of global data. Glob. Chang. Biol. 2016, 22, 2255–2268. [Google Scholar] [CrossRef] [PubMed]
- Parras-Alcántara, L.; Lozano-García, B.; Galán-Espejo, A. Soil organic carbon along an altitudinal gradient in the Despenaperros Natural Park, southern Spain. Solid Earth 2015, 6, 125–134. [Google Scholar] [CrossRef]
- Devi, A.S. Influence of trees and associated variables on soil organic carbon: A review. J. Ecol. Environ. 2021, 45, 5. [Google Scholar] [CrossRef]
- Saimun, M.R.; Karim, R.; Sultana, F.; Arfin-Khan, M.A. Multiple drivers of tree and soil carbon stock in the tropical forest ecosystems of Bangladesh. Trees For. People 2021, 5, 100108. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Ouyang, Z. Effects of land use, climate, topography and soil properties on regional soil organic carbon and total nitrogen in the Upstream Watershed of Miyun Reservoir, North China. J. Environ. Sci. 2012, 24, 387–395. [Google Scholar] [CrossRef]
- Liu, M.; Yu, R.; Li, L.; Xu, L.; Mu, R.; Zhang, G. Distribution Characteristics of SOC, STN, and STP Contents Along a Slope Aspect Gradient of Loess Plateau in China. Front. Soil Sci. 2021, 1, 1–12. [Google Scholar] [CrossRef]
- Peng, X.; Wu, W.; Zheng, Y.; Sun, J.; Hu, T.; Wang, P. Correlation analysis of land surface temperature and topographic elements in Hangzhou, China. Sci. Rep. 2020, 10, 10451. [Google Scholar] [CrossRef]
- Kobler, J.; Zehetgruber, B.; Dirnböck, T.; Jandl, R.; Mirtl, M.; Schindlbacher, A. Effects of aspect and altitude on carbon cycling processes in a temperate mountain forest catchment. Landsc. Ecol. 2019, 34, 325–340. [Google Scholar] [CrossRef]
- Lozano-Parra, J.; Pulido, M.; Lozano-Fondón, C.; Schnabel, S. How do soil moisture and vegetation covers influence soil temperature in drylands of Mediterranean regions? Water 2018, 10, 1747. [Google Scholar] [CrossRef]
- Agena, A. Effects of three tree species on microclimate and soil amelioration in the central rift valley of Ethiopia. J. Soil Sci Environ. Manag. 2014, 5, 62–71. [Google Scholar]
- Fissore, C.; Giardin, C.P.; Kolka, R.K.; Trettin, C.C.; King, G.M.; Jurgensen, M.F.; Barton, C.D.; Mcdowell, S.D. Temperature and vegetation effects on soil organic carbon quality along a forested mean annual temperature gradient in North America. Glob. Chang. Biol. 2008, 14, 193–205. [Google Scholar] [CrossRef]
- Pandey, H.P.; Pandey, P.; Pokhrel, S.; Mandal, R.A. Relationship between soil properties and forests carbon: Case of three community forests from Far Western Nepal. Banko Janakari 2019, 29, 43–52. [Google Scholar] [CrossRef]
- Labaz, B.; Galka, B.; Bogacz, A.; Waroszewski, J.; Kabala, C. Factors influencing humus forms and forest litter properties in the mid-mountains under temperate climate of southwestern Poland. Geoderma 2014, 230–231, 265–273. [Google Scholar] [CrossRef]
- FAO; ITPS. Status of the World’s Soil Resources (SWSR)—Main Report; Intergovernmental Technical Panel on Soils: Rome, Italy, 2015. [Google Scholar]
- Walter, K.; Don, A.; Tiemeyer, B.; Freibauer, A. Determining Soil Bulk Density for Carbon Stock Calculations: A Systematic Method Comparison. Soil Sci. Soc. Am. J. 2016, 80, 579–591. [Google Scholar] [CrossRef] [Green Version]
- GoN/MoFE. NepalsThird National Communication to the United Nations Framework Convention on Climate Change; Ministry of Forests and Environment: Kathmandu, Nepal, 2021.
Descriptions | Physiographic Zones | Remarks | |||
---|---|---|---|---|---|
Terai | Siwalik | Middle Mountain | High Mountain and High Himal | ||
Major forest types | Shorea robusta forest, Terai mixed hardwood | Shorea robusta, Terai mixed hardwood | Lower mixed hardwood, Pinus roxburghii, Terai mixed hardwood | Upper mixed hardwood, Quercus, Lower mixed hardwood | |
Biomass (Mg ha−1) | 190.02 | 172.21 | 143.26 | 271.46 | Total above-ground airdried biomass |
Stem volume (m3 ha−1) | 161.66 | 147.49 | 124.26 | 225.24 | |
Altitude (m) | 63–330 | 93–1955 | 110–3300 | 543–8848 | Forest cover lies below 4000 m |
Soil | Alluvial deposit | Shallow droughty with low surface infiltration | Glacial deposits | Stony and rocky | |
Temperature (°C) | 14 to 40 | 12 to 30 | −3 to 40 | −18 to 36 | Jackson 1994 |
Annual rainfall (mm) | 1138–2680 | 1138–2671 | 1091–1898 | 379–2185 |
Variables | Min. | Mean | Max. |
---|---|---|---|
SOC (Mg ha−1) * | 6.54 | 62.79 | 231.72 |
Altitude (m) | 88 | 1233 | 3993 |
Crown cover (%) | 4 | 63.6 | 99 |
Slope (%) | 0 | 48 | 100 |
Aspect (degree) | 0 | 151 | 360 |
Basal area (m2/ha) | 0.46 | 22.1 | 113.4 |
AGTB (Mg ha−1) ** | 1.4 | 190.02 | 1306.49 |
Models | Regression Equations |
---|---|
TM1 | SOC = 3.88 *** − 0.0000027(AGTB) + 0.0045(BA) − 0.0006(asp) + 0.0059(slp) *** + 0.0063(cc) *** + 0.0011(alt) ***, where, Adj. R2 = 0.602 and p < 2.2 × 10−16 |
TM2 | SOC = 3.88 *** − 0.0045(BA) − 0.00063(asp) + 0.0059(slp) *** + 0.0063(cc) *** + 0.0014(alt)***, where, Adj. R2 = 0.602 and p < 2.2 × 10−16 |
TM3 | SOC = 3.87 *** − 0.00062(asp) + 0.0056(slp) *** + 0.0075(cc) *** + 0.0011(alt) ***, where, Adj. R2 = 0.601 and p < 2.2 × 10−16 |
TM4 | SOC = 3.77 *** + 0.0056(slp) *** +0.0073(cc) *** + 0.0011(alt) ***, where Adj. R2 = 0.599 and p < 2.2 × 10−16 |
TM5 | SOC = 4.03 *** + 0.0076(cc) *** + 0.0012(alt) ***, where, Adj. R2 = 0.592 and p < 2.2 × 10−16 |
TM6 | SOC = 4.53 *** + 0.0012 alt ***, where, Adj. R2 = 0.582 and p < 2.2 × 10−16 |
Models | MAPE (%) | Accuracy (%) |
---|---|---|
TM1 | 31.06 | 68.94 |
TM2 | 31.05 | 68.95 |
TM3 | 31.36 | 68.64 |
TM4 | 31.73 | 68.27 |
TM5 | 31.85 | 68.15 |
TM6 | 32.67 | 67.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malla, R.; Neupane, P.R.; Köhl, M. Modelling Soil Organic Carbon as a Function of Topography and Stand Variables. Forests 2022, 13, 1391. https://doi.org/10.3390/f13091391
Malla R, Neupane PR, Köhl M. Modelling Soil Organic Carbon as a Function of Topography and Stand Variables. Forests. 2022; 13(9):1391. https://doi.org/10.3390/f13091391
Chicago/Turabian StyleMalla, Rajesh, Prem Raj Neupane, and Michael Köhl. 2022. "Modelling Soil Organic Carbon as a Function of Topography and Stand Variables" Forests 13, no. 9: 1391. https://doi.org/10.3390/f13091391
APA StyleMalla, R., Neupane, P. R., & Köhl, M. (2022). Modelling Soil Organic Carbon as a Function of Topography and Stand Variables. Forests, 13(9), 1391. https://doi.org/10.3390/f13091391