Long-Term Impacts of Forest Management Practices under Climate Change on Structure, Composition, and Fragmentation of the Canadian Boreal Landscape
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Simulations of Succession after Fire and Harvesting under Different Scenarios of Climate Change
2.3. Successional Pathways after Fire and Forest Harvesting
2.4. Spatial Patterns and Landscape Metrics of the Study Area
3. Results
3.1. Post-Fire and Post-Harvest Successional Pathways
3.2. Spatial Changes in the Successional Pathways under Climate Change and Forest Management Scenarios
4. Discussion
4.1. Implications for Forest Management
4.2. Model Limitations and Uncertainties
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Bergeron, Y.; Leduc, A.; Harvey, B.D.; Gauthier, S. Natural fire regime: A guide for sustainable management of the canadian boreal forest. Silva Fenn. 2002, 36, 81–95. [Google Scholar] [CrossRef]
- Bergeron, Y.; Harvey, B.; Leduc, A.; Gauthier, S. Stratégies d’aménagement forestier qui s′inspirent de la dynamique des perturbations naturelles: Considérations à l’échelle du peuplement et de la forêt. For. Chron. 1999, 75, 55–61. [Google Scholar] [CrossRef]
- De Grandpré, L.; Waldron, K.; Bouchard, M.; Gauthier, S.; Beaudet, M.; Ruel, J.C.; Hébert, C.; Kneeshaw, D.D. Incorporating insect and wind disturbances in a natural disturbance-based management framework for the boreal forest. Forests 2018, 9, 471. [Google Scholar] [CrossRef]
- Boucher, Y.; Perrault-Hébert, M.; Fournier, R.; Drapeau, P.; Auger, I. Cumulative patterns of logging and fire (1940–2009): Consequences on the structure of the eastern canadian boreal forest. Landsc. Ecol. 2017, 32, 361–375. [Google Scholar] [CrossRef]
- Martin, M.; Boucher, Y.; Fenton, N.J.; Marchand, P.; Morin, H. Forest management has reduced the structural diversity of residual boreal old-growth forest landscapes in eastern canada. For. Ecol. Manag. 2020, 458, 117765. [Google Scholar] [CrossRef]
- Gauthier, S.V.; Leduc, M.A.; de Granpré, L.; Kneeshaw, D.; Morin, H.; Drapeau, P.; Bergeron, Y. Ecosystem Management in the Boreal Forest; Presses de l’Université du Québec: Quebec, QC, Canada, 2008. [Google Scholar]
- Kuuluvainen, T.; Grenfell, R. Natural disturbance emulation in boreal forest ecosystem management—Theories, strategies, and a comparison with conventional even-aged management. Can. J. For. Res. 2012, 42, 1185–1203. [Google Scholar] [CrossRef]
- Boucher, D.; de Grandpré, L.; Kneeshaw, D.; St-Onge, B.; Ruel, J.-C.; Waldron, K.; Lussier, J.-M. Effects of 80 years of forest management on landscape structure and pattern in the eastern canadian boreal forest. Landsc. Ecol. 2015, 30, 1913–1929. [Google Scholar] [CrossRef]
- Martin, M.; Girona, M.M.; Morin, H. Driving factors of conifer regeneration dynamics in eastern canadian boreal old-growth forests. PLoS ONE 2020, 15, e0230221. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.; Grondin, P.; Lambert, M.-C.; Bergeron, Y.; Morin, H. Compared to wildfire, management practices reduced old-growth forest diversity and functionality in primary boreal landscapes of eastern canada. Front. For. Glob. Chang. 2021, 4, 639397. [Google Scholar] [CrossRef]
- Kuuluvainen, T.; Gauthier, S. Young and old forest in the boreal: Critical stages of ecosystem dynamics and management under global change. For. Ecosyst. 2018, 5, 26. [Google Scholar] [CrossRef]
- Molina, E.; Valeria, O.; de Grandpre, L. Twenty-eight years of changes in landscape heterogeneity of mixedwood boreal forest under management in Quebec, Canada. Can. J. Remote Sens. 2018, 44, 26–39. [Google Scholar] [CrossRef]
- Boulanger, Y.; Arseneault, D.; Boucher, Y.; Gauthier, S.; Cyr, D.; Taylor, A.R.; Price, D.T.; Dupuis, S. Climate change will affect the ability of forest management to reduce gaps between current and presettlement forest composition in southeastern canada. Landsc. Ecol. 2019, 34, 159–174. [Google Scholar] [CrossRef]
- Boucher, Y.; Arseneault, D.; Sirois, L.; Blais, L. Logging pattern and landscape changes over the last century at the boreal and deciduous forest transition in eastern canada. Landsc. Ecol. 2009, 24, 171–184. [Google Scholar] [CrossRef]
- Gauthier, S.; Bernier, P.Y.; Boulanger, Y.; Guo, J.; Guindon, L.; Beaudoin, A.; Boucher, D. Vulnerability of timber supply to projected changes in fire regime in canada’s managed forests. Can. J. For. Res. 2015, 45, 1439–1447. [Google Scholar] [CrossRef]
- Daniel, C.J.; Ter-Mikaelian, M.T.; Wotton, B.M.; Rayfield, B.; Fortin, M.-J. Incorporating uncertainty into forest management planning: Timber harvest, wildfire and climate change in the boreal forest. For. Ecol. Manag. 2017, 400, 542–554. [Google Scholar] [CrossRef]
- Yemshanov, D.; McKenney, D.W.; Hope, E.S. Comparing alternative biomass supply options for canada: What story do cost curves tell? BioResources 2018, 13, 8. [Google Scholar] [CrossRef]
- Brecka, A.F.J.; Boulanger, Y.; Searle, E.B.; Taylor, A.R.; Price, D.T.; Zhu, Y.; Shahi, C.; Chen, H.Y.H. Sustainability of canada’s forestry sector may be compromised by impending climate change. For. Ecol. Manag. 2020, 474, 118352. [Google Scholar] [CrossRef]
- Van Bellen, S.; Garneau, M.; Bergeron, Y. Impact of climate change on forest fire severity and consequences for carbon stocks in boreal forest stands of quebec, canada: A synthesis. Fire Ecol. 2010, 6, 16–44. [Google Scholar] [CrossRef]
- Price, D.T.; McKenney, D.W.; Caya, D.; Côté, H. Transient Climate Change Scenarios for High Resolution Assessment of Impacts on Canada’s Forest Ecosystems; CICS: Victoria, BC, Canada, 2001. [Google Scholar]
- Seidl, R.; Rammer, W.; Spies, T.A. Disturbance legacies increase the resilience of forest ecosystem structure, composition, and functioning. Ecol. Appl. A Publ. Ecol. Soc. Am. 2014, 24, 2063–2077. [Google Scholar] [CrossRef]
- Bergeron, Y.; Gauthier, S.; Flannigan, M.; Kafka, V. Fire regimes at the transition between mixedwood and conifer boreal forest in northwestern quebec. Ecology 2004, 85, 1916–1932. [Google Scholar] [CrossRef]
- Gauthier, S.; Bernier, P.; Kuuluvainen, T.; Shvidenko, A.Z.; Schepaschenko, D.G. Boreal forest health and global change. Science 2015, 349, 819–822. [Google Scholar] [CrossRef] [PubMed]
- Molina, E.C.; Valeria, O.; de Grandpre, L.; Ramirez, J.A.; Cyr, D.; Boulanger, Y. Projecting future aboveground biomass and productivity of managed eastern canadian mixedwood boreal forest in response to climate change. For. Ecol. Manag. 2021, 487, 119016. [Google Scholar] [CrossRef]
- Matthews, S.N.; Iverson, L.R.; Peters, M.P.; Prasad, A.M.; Subburayalu, S. Assessing and comparing risk to climate changes among forested locations: Implications for ecosystem services. Landsc. Ecol. 2014, 29, 213–228. [Google Scholar] [CrossRef]
- Cintas, O.; Berndes, G.; Hansson, J.; Poudel, B.C.; Bergh, J.; Börjesson, P.; Egnell, G.; Lundmark, T.; Nordin, A. The potential role of forest management in swedish scenarios towards climate neutrality by mid century. For. Ecol. Manag. 2017, 383, 73–84. [Google Scholar] [CrossRef]
- Ameray, A.; Bergeron, Y.; Valeria, O.; Girona, M.M.; Cavard, X. Forest carbon management: A review of silvicultural practices and management strategies across boreal, temperate and tropical forests. Curr. For. Rep. 2021, 7, 245–266. [Google Scholar] [CrossRef]
- Splawinski, T.B.; Cyr, D.; Gauthier, S.; Jetté, J.P.; Bergeron, Y. Analyzing risk of regeneration failure in the managed boreal forest of northwestern Quebec. Can. J. For. Res. 2019, 49, 680–691. [Google Scholar] [CrossRef]
- Rodriguez-Baca, G.; Raulier, F.; Leduc, A. Rating a wildfire mitigation strategy with an insurance premium: A boreal forest case study. Forests 2016, 7, 107. [Google Scholar] [CrossRef]
- Millar, C.I.; Stephenson, N.L.; Stephens, S.L. Climate change and forests of the future: Managing in the face of uncertainty. Ecol. Appl. A Publ. Ecol. Soc. Am. 2007, 17, 2145–2151. [Google Scholar] [CrossRef]
- Landry, G.; Thiffault, E.; Cyr, D.; Moreau, L.; Boulanger, Y.; Dymond, C. Mitigation potential of ecosystem-based forest management under climate change: A case study in the boreal-temperate forest ecotone. Forests 2021, 12, 1667. [Google Scholar] [CrossRef]
- Pohjanmies, T.; Eyvindson, K.; Triviño, M.; Bengtsson, J.; Mönkkönen, M. Forest multifunctionality is not resilient to intensive forestry. Eur. J. For. Res. 2021, 140, 537–549. [Google Scholar] [CrossRef]
- Bartels, S.F.; Chen, H.Y.H.; Wulder, M.A.; White, J.C. Trends in post-disturbance recovery rates of canada’s forests following wildfire and harvest. For. Ecol. Manag. 2016, 361, 194–207. [Google Scholar] [CrossRef]
- Sturtevant, B.R.; Miranda, B.R.; Wolter, P.T.; James, P.M.A.; Fortin, M.-J.; Townsend, P.A. Forest recovery patterns in response to divergent disturbance regimes in the border lakes region of Minnesota (USA) and Ontario (Canada). For. Ecol. Manag. 2014, 313, 199–211. [Google Scholar] [CrossRef]
- He, H.S.; Mladenoff, D.J.; Gustafson, E.J. Study of landscape change under forest harvesting and climate warming-induced fire disturbance. For. Ecol. Manag. 2002, 155, 257–270. [Google Scholar] [CrossRef]
- Girardin, M.P.; Tardif, J.; Flannigan, M.D.; Bergeron, Y. Multicentury reconstruction of the canadian drought code from eastern canada and its relationship with paleoclimatic indices of atmospheric circulation. Clim. Dyn. 2004, 23, 99–115. [Google Scholar] [CrossRef]
- Saucier, J.P.; Robitaille, A.; Grondin, P.; Bergeron, J.F.; Gosselin, J. Les Régions Écologiques du Québec Méridional (4 Version). CARTE À L’échelle de 1/1 250,000; Ministère des Ressources Naturelles et de la Faune du Québec: Quebec, QC, Canada, 2011.
- Canada, E. Historical Climate Data; Government of Canada: Ottowa, ON, Canada, 2016.
- Saucier, J.P.; Bergeron, J.F.; Grondin, P.; Robitaille, A. Les Régions Écologiques du Québec Méridional: Un des Eléments du Système Hiérarchique de Classification Écologique du Territoire Mis au Point Par le Ministère des Ressources Naturelles du Québec; Supplément 1–12; Ministère des Ressources Naturelles du Québec: Quebec, QC, Canada, 1998.
- Forestier_en_chef. Intégration des Changements Climatiques et Développement de la Capacité D’adaptation Dans la Détermination des Niveaux de Récolte au Québec; Bureau du forestier en Chef, Gouvernement du Québec: Roberval, QC, Canada, 2020; Volume 60.
- Bergeron, Y.; Cyr, D.; Drever, C.R.; Flannigan, M.; Gauthier, S.; Kneeshaw, D.; Lauzon, È.; Leduc, A.; le Goff, H.; Lesieur, D.; et al. Past, current, and future fire frequencies in quebec’s commercial forests: Implications for the cumulative effects of harvesting and fire on age-class structure and natural disturbance-based management. Can. J. For. Res. 2006, 36, 2737–2744. [Google Scholar] [CrossRef]
- Scheller, R.M.; Domingo, J.B.; Sturtevant, B.R.; Williams, J.S.; Rudy, A.; Gustafson, E.J.; Mladenoff, D.J. Design, development, and application of landis-ii, a spatial landscape simulation model with flexible temporal and spatial resolution. Ecol. Model. 2007, 201, 409–419. [Google Scholar] [CrossRef]
- Gustafson, E.J. When relationships estimated in the past cannot be used to predict the future: Using mechanistic models to predict landscape ecological dynamics in a changing world. Landsc. Ecol. 2013, 28, 1429–1437. [Google Scholar] [CrossRef]
- Boulanger, Y.; Pascual, J.; Bouchard, M.; D’Orangeville, L.; Périé, C.; Girardin, M.P. Multi-model projections of tree species performance in Quebec, Canada under future climate change. Glob. Chang. Biol. 2022, 28, 1884–1902. [Google Scholar] [CrossRef]
- Boulanger, Y.; Taylor, A.R.; Price, D.T.; Cyr, D.; Sainte-Marie, G. Stand-level drivers most important in determining boreal forest response to climate change. J. Ecol. 2018, 106, 977–990. [Google Scholar] [CrossRef]
- Boulanger, Y.; Pascual, J. Boreal forests will be more severely affected by projected anthropogenic climate forcing than mixedwood and northern hardwood forests in eastern canada. Landsc. Ecol. 2021, 36, 1725–1740. [Google Scholar] [CrossRef]
- Boulanger, Y.; Taylor, A.R.; Price, D.T.; Cyr, D.; McGarrigle, E.; Rammer, W.; Sainte-Marie, G.; Beaudoin, A.; Guindon, L.; Mansuy, N. Climate change impacts on forest landscapes along the canadian southern boreal forest transition zone. Landsc. Ecol. 2017, 32, 1415–1431. [Google Scholar] [CrossRef]
- Gustafson, E.J.; Shifley, S.R.; Mladenoff, D.J.; Nimerfro, K.K.; He, H.S. Spatial simulation of forest succession and timber harvesting using landis. Can. J. For. Res. 2000, 30, 32–43. [Google Scholar] [CrossRef]
- Scheller, R.M.; Domingo, J.B. Landis-ii Model v6.0 User Guide; Portland State University and Green Code, LLC: Portland, OR, USA, 2011. [Google Scholar]
- Qualtiere, E. Climate Change Impacts and Adaptation Options for the Island Forests of Saskatchewan; Saskatchewan Research Council: Saskatoon, SK, Canada, 2012. [Google Scholar]
- Xu, C.; Gertner, G.Z.; Scheller, R.M. Uncertainties in the response of a forest landscape to global climatic change. Glob. Chang. Biol. 2009, 15, 116–131. [Google Scholar] [CrossRef]
- Scheller, R.M.; van Tuyl, S.; Clark, K.; Hayden, N.G.; Hom, J.; Mladenoff, D.J. Simulation of forest change in the new jersey pine barrens under current and pre-colonial conditions. For. Ecol. Manag. 2008, 255, 1489–1500. [Google Scholar] [CrossRef]
- USDA. The Plants Database; National Plant Data Team, U.S. Department of Agriculture: Greensboro, CA, USA, 2015.
- MRNQ. Norme de Stratification Écoforestière Quatrième Inventaire Écoforestier du Québec Méridional; Ministère des Ressources Naturelles du Québec, Gouvernement du Québec: Quebec, QC, Canada, 2013.
- Scheller, R.M.; Mladenoff, D.J. A forest growth and biomass module for a landscape simulation model, landis: Design, validation, and application. Ecol. Model. 2004, 180, 211–229. [Google Scholar] [CrossRef]
- Taylor, A.R.; Boulanger, Y.; Price, D.T.; Cyr, D.; McGarrigle, E.; Rammer, W.; Kershaw, J.A. Rapid 21st century climate change projected to shift composition and growth of canada’s acadian forest region. For. Ecol. Manag. 2017, 405, 284–294. [Google Scholar] [CrossRef]
- Bureau_du_Forestier_en_Chef. Manuel de Détermination des Possibilités Forestières 2013–2018; Bureau_du_Forestier_en_Chef: Roberval, QC, Canada, 2013.
- He, H.S.; Mladenoff, D.J. Spatially explicit and stochastic simulation of forest -landscape fire disturbance and succesion. Ecology 1999, 80, 81–99. [Google Scholar] [CrossRef]
- Boulanger, Y.; Gauthier, S.; Burton, P.J. A refinement of models projecting future canadian fire regimes using homogeneous fire regime zones. Can. J. For. Res. 2014, 44, 365–376. [Google Scholar] [CrossRef]
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. Rcp 8.5—A scenario of comparatively high greenhouse gas emissions. Clim. Chang. 2011, 109, 33. [Google Scholar] [CrossRef]
- Bergeron, Y.; Cyr, D.; Girardin, M.P.; Carcaillet, C. Will climate change drive 21st century burn rates in canadian boreal forest outside of its natural variability: Collating global climate model experiments with sedimentary charcoal data. Int. J. Wildland Fire 2010, 19, 1127–1139. [Google Scholar] [CrossRef]
- MRNF. Unités D’aménagement; Ministère des Ressources Naturelles et de la Faune: Quebec, QC, Canada, 2012.
- Albrich, K.; Rammer, W.; Thom, D.; Seidl, R. Trade-offs between temporal stability and level of forest ecosystem services provisioning under climate change. Ecol. Appl. 2018, 28, 1884–1896. [Google Scholar] [CrossRef] [PubMed]
- McGarigal, K.; Cushman, S.A.; Ene, E. Fragstats v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps; University of Massachusetts: Amherst, MA, USA, 2012. [Google Scholar]
- Beaudoin, A.; Bernier, P.Y.; Guindon, L.; Villemaire, P.; Guo, X.J.; Stinson, G.; Bergeron, T.; Magnussen, S.; Hall, R.J. Mapping attributes of canada’s forests at moderate resolution through knn and modis imagery. Can. J. For. Res. 2014, 44, 521–532. [Google Scholar] [CrossRef]
- Bergeron, Y.; Chen, H.Y.; Kenkel, N.C.; Leduc, A.L.; Macdonald, S.E. Boreal mixedwood stand dynamics: Ecological processes underlying multiple pathways. For. Chron. 2014, 90, 202–213. [Google Scholar] [CrossRef]
- Bergeron, Y.; Fenton, N.J. Boreal forests of eastern canada revisited: Old growth, nonfire disturbances, forest succession, and biodiversity. Botany 2012, 90, 509–523. [Google Scholar] [CrossRef]
- Harvey, B.D.; Leduc, A.; Gauthier, S.; Bergeron, Y. Stand-landscape integration in natural disturbance-based management of the southern boreal forest. For. Ecol. Manag. 2002, 155, 369–385. [Google Scholar] [CrossRef]
- Sánchez-Pinillos, M.; Leduc, A.; Ameztegui, A.; Kneeshaw, D.; Lloret, F.; Coll, L. Resistance, resilience or change: Post-disturbance dynamics of boreal forests after insect outbreaks. Ecosystems 2019, 22, 1886–1901. [Google Scholar] [CrossRef]
- Bergeron, Y. Species and stand dynamics in the mixed woods of quebec’s southern boreal forest. Ecology 2000, 81, 1500–1516. [Google Scholar] [CrossRef]
- Martin, M.; Morin, H.; Fenton, N.J. Secondary disturbances of low and moderate severity drive the dynamics of eastern canadian boreal old-growth forests. Ann. For. Sci. 2019, 76, 108. [Google Scholar] [CrossRef]
- Martin, M.; Krause, C.; Fenton, N.J.; Morin, H. Unveiling the diversity of tree growth patterns in boreal old-growth forests reveals the richness of their dynamics. Forests 2020, 11, 252. [Google Scholar] [CrossRef]
- Wei, X.; Larsen, C.P.S. Methods to detect edge effected reductions in fire frequency in simulated forest landscapes. ISPRS Int. J. Geo-Inf. 2019, 8, 277. [Google Scholar] [CrossRef]
- Wei, X.; Larsen, C.P.S. Assessing the minimum number of time since last fire sample-points required to estimate the fire cycle: Influences of fire rotation length and study area scale. Forests 2018, 9, 708. [Google Scholar] [CrossRef]
- Groot, A.; Lussier, J.M.; Mitchell, A.K.; MacIsaac, D. A silvicultural systems perspective on changing canadian forestry practices. For. Chron. 2005, 81, 50–55. [Google Scholar] [CrossRef]
- Cimon-Morin, J.; Ruel, J.-C.; Darveau, M. Short term effects of alternative silvicultural treatments on stand attributes in irregular balsam fir-black spruce stands. For. Ecol. Manag. 2010, 260, 907–914. [Google Scholar] [CrossRef]
- Girona, M.M.; Morin, H.; Lussier, J.-M.; Walsh, D. Radial growth response of black spruce stands ten years after experimental shelterwoods and seed-tree cuttings in boreal forest. Forests 2016, 7, 240. [Google Scholar] [CrossRef]
- Vepakomma, U.; St-Onge, B.; Kneeshaw, D. Response of a boreal forest to canopy opening: Assessing vertical and lateral tree growth with multi-temporal lidar data. Ecol. Appl. 2011, 21, 99–121. [Google Scholar] [CrossRef]
- Bose, A.K.; Harvey, B.D.; Brais, S.; Beaudet, M.; Leduc, A. Constraints to partial cutting in the boreal forest of canada in the context of natural disturbance-based management: A review. For. Int. J. For. Res. 2013, 87, 11–28. [Google Scholar] [CrossRef]
- Madoui, A.; Gauthier, S.; Leduc, A.; Bergeron, Y.; Valeria, O. Monitoring forest recovery following wildfire and harvest in boreal forests using satellite imagery. Forests 2015, 6, 4105–4134. [Google Scholar] [CrossRef]
- Bergeron, Y.; Harvey, B. Basing silviculture on natural ecosystem dynamics: An approach applied to the southern boreal mixedwood forest of Quebec. For. Ecol. Manag. 1997, 92, 235–242. [Google Scholar] [CrossRef]
- Bergeron, Y.; Dubue, M. Succession in the southern part of the canadian boreal forest. Vegetatio 1988, 79, 51–63. [Google Scholar] [CrossRef]
- Li, X.; He, H.S.; Wu, Z.; Liang, Y.; Schneiderman, J.E. Comparing effects of climate warming, fire, and timber harvesting on a boreal forest landscape in northeastern china. PLoS ONE 2013, 8, e59747. [Google Scholar] [CrossRef] [PubMed]
- Bouchard, M.; Aquilué, N.; Périé, C.; Lambert, M.-C. Tree species persistence under warming conditions: A key driver of forest response to climate change. For. Ecol. Manag. 2019, 442, 96–104. [Google Scholar] [CrossRef]
- D’Orangeville, L.; Houle, D.; Duchesne, L.; Phillips, R.P.; Bergeron, Y.; Kneeshaw, D. Beneficial effects of climate warming on boreal tree growth may be transitory. Nat. Commun. 2018, 9, 3213. [Google Scholar] [CrossRef]
- Bergeron, Y.; Vijayakumar, D.B.I.P.; Ouzennou, H.; Raulier, F.; Leduc, A.; Gauthier, S. Projections of future forest age class structure under the influence of fire and harvesting: Implications for forest management in the boreal forest of eastern canada. For. Int. J. For. Res. 2017, 90, 485–495. [Google Scholar] [CrossRef]
- Barrette, M.; Dumais, D.; Auger, I.; Boucher, Y.; Bouchard, M.; Bouliane, J. Naturalness assessment performed using forestry maps to validate forest management sustainability. Ecol. Indic. 2020, 119, 106832. [Google Scholar] [CrossRef]
- Tremblay, J.A.; Boulanger, Y.; Cyr, D.; Taylor, A.R.; Price, D.T.; St-Laurent, M.-H. Harvesting interacts with climate change to affect future habitat quality of a focal species in eastern canada’s boreal forest. PLoS ONE 2018, 13, e0191645. [Google Scholar] [CrossRef] [PubMed]
- MFFP. Ressources et Industries Forestières du Québec—Portrait Statistique Édition 2017; Ministère des Forêts, de la Faune et des Parcs: Québec, QC, Canada, 2017.
- Kruhlov, I.; Thom, D.; Chaskovskyy, O.; Keeton, W.S.; Scheller, R.M. Future forest landscapes of the carpathians: Vegetation and carbon dynamics under climate change. Reg. Environ. Chang. 2018, 18, 1555–1567. [Google Scholar] [CrossRef]
- Montoro Girona, M.; Lussier, J.-M.; Morin, H.; Thiffault, N. Conifer regeneration after experimental shelterwood and seed-tree treatments in boreal forests: Finding silvicultural alternatives. Front. Plant Sci. 2018, 9, 1145. [Google Scholar] [CrossRef] [PubMed]
- Montoro Girona, M.; Rossi, S.; Lussier, J.-M.; Walsh, D.; Morin, H. Understanding tree growth responses after partial cuttings: A new approach. PLoS ONE 2017, 12, e0172653. [Google Scholar] [CrossRef] [PubMed]
- Girardin, M.P.; Ali, A.A.; Carcaillet, C.; Gauthier, S.; Hély, C.; le Goff, H.; Terrier, A.; Bergeron, Y. Fire in managed forests of eastern canada: Risks and options. For. Ecol. Manag. 2013, 294, 238–249. [Google Scholar] [CrossRef]
- Neilson, R.P.; Pitelka, L.F.; Solomon, A.M.; Nathan, R.; Midgley, G.F.; Fragoso, J.M.V.; Lischke, H.; Thompson, K. Forecasting regional to global plant migration in response to climate change. BioScience 2005, 55, 749–759. [Google Scholar] [CrossRef]
- Girardin, M.P.; Bernier, P.Y.; Gauthier, S. Increasing potential nep of eastern boreal north american forests constrained by decreasing wildfire activity. Ecosphere 2011, 2, art25. [Google Scholar] [CrossRef]
- Thornton, P.E.; Lamarque, J.-F.; Rosenbloom, N.A.; Mahowald, N.M. Influence of carbon-nitrogen cycle coupling on land model response to co2 fertilization and climate variability. Glob. Biogeochem. Cycles 2007, 21, GB4018. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Logan, K.A.; Amiro, B.D.; Skinner, W.R.; Stocks, B.J. Future area burned in canada. Clim. Chang. 2005, 72, 1–16. [Google Scholar] [CrossRef]
- Fleming, R.A.; Volney, W.J.A. Effects of climate change on insect defoliator population processes in canada’s boreal forest: Some plausible scenarios. Water Air Soil Pollut. 1995, 82, 445–454. [Google Scholar] [CrossRef]
- Kimball, J.S.; Keyser, A.R.; Running, S.W.; Saatchi, S.S. Regional assessment of boreal forest productivity using an ecological process model and remote sensing parameter maps. Tree Physiol. 2000, 20, 761–775. [Google Scholar] [CrossRef] [PubMed]
- Petter, G.; Mairota, P.; Albrich, K.; Bebi, P.; Brůna, J.; Bugmann, H.; Haffenden, A.; Scheller, R.M.; Schmatz, D.R.; Seidl, R.; et al. How robust are future projections of forest landscape dynamics? Insights from a systematic comparison of four forest landscape models. Environ. Model. Softw. 2020, 134, 104844. [Google Scholar] [CrossRef]
- Fleming, R.A.; Candau, J.-N.; McAlpine, R.S. Landscape-scale analysis of interactions between insect defoliation and forest fire in central canada. Clim. Chang. 2002, 55, 251–272. [Google Scholar] [CrossRef]
- Dymond, C.C.; Beukema, S.; Nitschke, C.R.; Coates, K.D.; Scheller, R.M. Carbon sequestration in managed temperate coniferous forests under climate change. Biogeosciences 2016, 13, 1933–1947. [Google Scholar] [CrossRef]
- Simons-Legaard, E.; Legaard, K.; Weiskittel, A. Predicting aboveground biomass with landis-ii: A global and temporal analysis of parameter sensitivity. Ecol. Model. 2015, 313, 325–332. [Google Scholar] [CrossRef]
Bioclimatic Subdomain | Ecological Region | Dominant Forest Cover | Mean Annual Temperature (°C) | Mean Annual Precipitation (mm) | Growth Season (Days) | Area (km²) | Studied Area (%) | Current Burn Rate (%) | Fire Return Interval—k | |
---|---|---|---|---|---|---|---|---|---|---|
Balsam fir–yellow birch domain | 4a | Simard Lake plains and hills | Mixed stands of yellow birch and conifers | 2.5 | 800–1000 | 160–170 | 5943 | 79 | 0.048 | 2083 |
4b | Cabonga watershed slopes | 0–2.5 | 1000–1100 | 160–170 | 27,429 | 52 | 0.036 | 2778 | ||
Balsam fir–white birch domain | 5a | Abitibi plains | Hardwood species or mixed stands with shade-intolerant hardwood species (trembling aspen, white birch) and jack pine | 2.5 | 800–900 | 160 | 26,842 | 89 | 0.258 | 388 |
5b | Gouin watershed slopes | Balsam fir and white spruce stands mixed with white birch | 2.5 | 900–1100 | 150–160 | 15,758 | 51 | 0.048 | 2083 | |
Spruce-moss domain | 6a | Matagami Lake plains | Black spruce with scattered balsam fir | −2.5 to 0 | 700–900 | 140–160 | 48,842 | 18 | 0.239 | 418 |
Specie | Longevity (Years) | Sexual Maturity (Years) | ST | FT | ED (m) | MD (m) | VRP | VRP Min Age (Years) | VRP Max Age (Years) | RPF | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Mean | Max | Min | Mean | Max | Min | Max | Min | Max | |||||||
Gray birch | 20 | 20 | 20 | 8 | 8 | 8 | 1 | 1 | 60 | 60 | 80 | 100 | 0.5 | 2 | 16 | Sprout |
Yellow birch | 150 | 225 | 300 | 20 | 40 | 70 | 2 | 1 | 213 | 250 | 400 | 400 | 0 | 0 | 0 | None |
White birch | 80 | 110 | 140 | 15 | 15 | 40 | 1 | 2 | 60 | 100 | 5000 | 5000 | 1 | 40 | 125 | Sprout |
White spruce | 100 | 211 | 250 | 15 | 30 | 40 | 3 | 3 | 64 | 100 | 200 | 400 | 0 | 0 | 0 | None |
Black spruce | 150 | 180 | 250 | 10 | 20 | 30 | 4 | 2 | 50 | 80 | 150 | 300 | 0 | 0 | 0 | Serotiny |
Red spruce | 250 | 350 | 400 | 20 | 30 | 40 | 4 | 1 | 50 | 50 | 61 | 100 | 0 | 0 | 0 | None |
Tamarack | 150 | 180 | 230 | 15 | 30 | 40 | 1 | 3 | 14 | 21 | 40 | 60 | 0 | 0 | 0 | None |
Eastern white pine | 200 | 200 | 450 | 10 | 20 | 30 | 4 | 3 | 60 | 60 | 210 | 210 | 0 | 0 | 0 | None |
Jack pine | 75 | 140 | 200 | 5 | 10 | 15 | 1 | 4 | 20 | 40 | 60 | 100 | 0 | 0 | 0 | Serotiny |
Red pine | 200 | 300 | 400 | 15 | 25 | 50 | 2 | 4 | 12 | 12 | 275 | 300 | 0 | 0 | 0 | None |
Balsam fir | 80 | 150 | 200 | 20 | 25 | 30 | 5 | 1 | 25 | 60 | 100 | 160 | 0 | 0 | 0 | None |
Red maple | 80 | 100 | 150 | 4 | 10 | 10 | 4 | 1 | 100 | 100 | 200 | 1000 | 1 | 10 | 150 | Sprout |
Sugar maple | 300 | 400 | 500 | 30 | 40 | 60 | 4 | 1 | 15 | 15 | 100 | 200 | 0.5 | 40 | 240 | Sprout |
Balsam poplar | 120 | 140 | 150 | 8 | 10 | 20 | 1 | 2 | 200 | 1000 | 5000 | 5000 | 1 | 0 | 100 | Sprout |
Largetooth aspen | 50 | 70 | 100 | 10 | 15 | 20 | 1 | 1 | 200 | 200 | 5000 | 10,000 | 1 | 7 | 56 | Sprout |
Trembling aspen | 60 | 130 | 200 | 10 | 15 | 20 | 1 | 2 | 500 | 1000 | 5000 | 10,000 | 1 | 0 | 100 | Sprout |
Eastern white-cedar | 300 | 350 | 400 | 6 | 30 | 35 | 4 | 1 | 45 | 45 | 60 | 60 | 0 | 0 | 0 | None |
Specie | Ecoregion | |||||
---|---|---|---|---|---|---|
4a | 4b | 5a | 5b | 6a | 6c | |
Gray birch | 1.73 | 0.54 | 1.45 | 1.47 | 7.40 | 0.84 |
Yellow birch | 2.88 | 14.17 | 0.08 | 0.87 | 0.00 | 0.00 |
White birch | 36.93 | 59.67 | 27.09 | 43.83 | 15.40 | 12.13 |
White spruce | 2.00 | 1.60 | 1.50 | 0.54 | 1.91 | 2.78 |
Black spruce | 36.13 | 37.25 | 52.35 | 57.14 | 57.41 | 80.71 |
Red spruce | 21.30 | 25.48 | 0.14 | 5.87 | 0.03 | 0.01 |
Tamarack | 2.76 | 1.24 | 5.56 | 1.99 | 0.44 | 0.17 |
Eastern white pine | 2.37 | 2.13 | 0.03 | 0.00 | 0.00 | 0.00 |
Jack pine | 15.11 | 14.04 | 21.65 | 27.24 | 30.30 | 30.29 |
Red pine | 0.90 | 0.16 | 0.01 | 0.00 | 0.00 | 0.00 |
Balsam fir | 24.93 | 17.78 | 15.68 | 19.25 | 11.11 | 12.77 |
Red maple | 4.85 | 12.54 | 0.42 | 1.49 | 1.30 | 0.05 |
Sugar maple | 0.20 | 2.02 | 0.01 | 0.02 | 0.00 | 0.01 |
Balsam poplar | 24.59 | 9.66 | 21.68 | 8.53 | 18.08 | 4.65 |
Largetooth aspen | 24.32 | 9.65 | 21.67 | 8.53 | 18.08 | 4.65 |
Trembling aspen | 35.17 | 14.09 | 32.08 | 12.53 | 28.74 | 8.46 |
Eastern white cedar | 1.64 | 4.37 | 0.17 | 0.03 | 0.00 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molina, E.; Valeria, O.; Martin, M.; Montoro Girona, M.; Ramirez, J.A. Long-Term Impacts of Forest Management Practices under Climate Change on Structure, Composition, and Fragmentation of the Canadian Boreal Landscape. Forests 2022, 13, 1292. https://doi.org/10.3390/f13081292
Molina E, Valeria O, Martin M, Montoro Girona M, Ramirez JA. Long-Term Impacts of Forest Management Practices under Climate Change on Structure, Composition, and Fragmentation of the Canadian Boreal Landscape. Forests. 2022; 13(8):1292. https://doi.org/10.3390/f13081292
Chicago/Turabian StyleMolina, Eliana, Osvaldo Valeria, Maxence Martin, Miguel Montoro Girona, and Jorge Andrés Ramirez. 2022. "Long-Term Impacts of Forest Management Practices under Climate Change on Structure, Composition, and Fragmentation of the Canadian Boreal Landscape" Forests 13, no. 8: 1292. https://doi.org/10.3390/f13081292