Eucalypt Recruitment and Invasion Potential in Protected Areas of the Iberian Peninsula under Current and Future Climate Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Species Distribution Models
2.2. Classifying Recruitment Potential
Variables | Classes | Details | Map Sources |
---|---|---|---|
Climatic suitability for recruitment | 0%; 1%–25%; 26%–50%; >50% | Retrieved from SDMs (Section 2.1). Highest classes (51%–75%; 76%–100%) were merged because they are scarcer and to reduce factorial combinations between variables, simplifying the classification of recruitment potential (Table 2). | SDMs |
Eucalypt presence | Absence; presence | Retrieved from the most recent and detailed land cover maps from both countries. Minimum mapping area (forests) = 1 ha. Eucalypt stands include different stand types in terms of structure, composition, or management, including monospecific industrial plantations, mixed stands (normally unmanaged) and open stands. | Spain: [59]; Portugal [60] |
Wildfires | Burnt; unburnt | Produced using MODIS satellite imagery at 250 m resolution. Period: January 2008–18 March 2022; minimum burnt area = 40 ha. | [61] |
Residence time | Low; high | Calculated using land cover maps from different time periods. If eucalypts persisted between maps, a minimum residence time was assured. Minimum residence time of: 15 years in Spain (maps from 1986 to 1996 and 2011 to 2012); 28 years in Portugal (maps from 1990 and 2018). | Spain: [59,62]; Portugal: [60,63] |
Slope | <30°; ≥30° | Retrieved from Digital Elevation Models. Spatial resolution = 25 m. Vertical resolution = 5 m. | [64] |
Eucalypt Presence | Climatic Suitability | Wildfire Occurrence 1 | 1 or 2 FF 2 | Recruitment/Invasion Potential |
---|---|---|---|---|
yes | >50% | Yes | Yes | Very High |
No | High | |||
No | Yes | High | ||
No | Moderate | |||
26%–50% | Yes | Yes | High | |
No | Moderate | |||
No | Yes | Low | ||
No | Low | |||
1%–25% | Yes | Yes | Low | |
No | Very low | |||
No | Yes | Very low | ||
No | Very low |
2.3. Classifying Invasion Potential
2.4. Testing Recruitment Potential Classification
2.5. Testing Invasion Potential Classification
2.6. Assessing the Recruitment/Invasion Potential of Sites and Habitats
3. Results
3.1. Current Recruitment Range
3.2. Recruitment and Invasion Potential by Site
3.3. Recruitment and Invasion Potential by Habitat
3.4. Future Climatic Scenarios
4. Discussion
4.1. Recruitment Potential inside Natura 2000
4.2. Invasion Potential inside Natura 2000
4.3. Future Range Dynamics
4.4. Potential Impacts and Recommendations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kirkpatrick, J.B. Natural distribution of Eucalyptus globulus Labill. Aust. Geogr. 1975, 13, 22–35. [Google Scholar] [CrossRef]
- Hui, C.; Richardson, D.M.; Visser, V.; Wilson, J.R.U. Macroecology meets invasion ecology: Performance of Australian acacias and eucalypts around the world revealed by features of their native ranges. Biol. Invasions 2014, 16, 565–576. [Google Scholar] [CrossRef]
- Jacobs, M.R. Eucalypts for Planting; Food and Agriculture Organization of the United Nations: Rome, Italy, 1979. [Google Scholar]
- Deus, E.; Silva, J.S.; Castro-Díez, P.; Lomba, A.; Ortiz, M.L.; Vicente, J. Current and future conflicts between eucalypt plantations and high biodiversity areas in the Iberian Peninsula. J. Nat. Conserv. 2018, 45, 107–117. [Google Scholar] [CrossRef]
- Silva-Pando, F.J. Eucalyptus in South Europe: Searching for the promised land-introduction and dissemination of Eucalyptus in Southwestern Europe. In Invasive Alien Species: Observations and Issues from Around the World; Pullaiah, T., Ielmini, M.R., Eds.; Volume 3-Issues and Invasions in Europe; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2021; pp. 278–316. [Google Scholar]
- EEA. Biogeographical Regions. Available online: https://www.eea.europa.eu/data-and-maps/data/biogeographical-regions-europe-3 (accessed on 2 May 2022).
- Rejmánek, M.; Richardson, D.M. Trees and shrubs as invasive alien species–2013 update of the global database. Divers. Distrib. 2013, 19, 1093–1094. [Google Scholar] [CrossRef]
- Becerra, P.I. Invasión de árboles alóctonos en una cuenca pre-andina de Chile central. Gayana Botánica 2006, 63, 161–174. [Google Scholar] [CrossRef]
- Fork, S.; Woolfolk, A.; Akhavan, A.; Van Dyke, E.; Murphy, S.; Candiloro, B.; Newberry, T.; Schreibman, S.; Salisbury, J.; Wasson, K. Biodiversity effects and rates of spread of nonnative eucalypt woodlands in central California. Ecol. Appl. 2015, 25, 2306–2319. [Google Scholar] [CrossRef]
- Henderson, L. Invasive alien woody plants of the southern and southwestern Cape region, South Africa. Bothalia 1998, 28, 91–112. [Google Scholar] [CrossRef]
- Kirkpatrick, J.B. Eucalypt invasion in Southern California. Aust. Geogr. 1977, 13, 387–393. [Google Scholar] [CrossRef]
- Anjos, A.; Fernandes, P.; Marques, C.; Borralho, N.; Valente, C.; Correia, O.; Máguas, C.; Chozas, S. Management and fire, a critical combination for Eucalyptus globulus dispersal. For. Ecol. Manag. 2021, 490, 119086. [Google Scholar] [CrossRef]
- Costa, J.; Silva, J.S.; Deus, E.; Pinho, S.; Pinto, J.F.; Borralho, N. The genetics and ecology of post-fire Eucalyptus globulus Recruitment in an isolated stand in Central Portugal. Forests 2022, 13, 680. [Google Scholar] [CrossRef]
- Deus, E.; Silva, J.S.; Larcombe, M.J.; Catry Filipe, X.; Queirós, L.; dos Santos, P.; Matias, H.; Águas, A.; Rego, F. Investigating the invasiveness of Eucalyptus globulus in Portugal: Site-scale drivers, reproductive capacity and dispersal potential. Biol. Invasions 2019, 21, 2027–2044. [Google Scholar] [CrossRef]
- Fernandes, P.; Antunes, C.; Pinho, P.; Máguas, C.; Correia, O. Natural regeneration of Pinus pinaster and Eucalyptus globulus from plantation into adjacent natural habitats. For. Ecol. Manag. 2016, 378, 91–102. [Google Scholar] [CrossRef]
- Fernandes, P.; Máguas, C.; Correia, O.; González-Moreno, P. What drives Eucalyptus globulus natural establishment outside plantations? The relative importance of climate, plantation and site characteristics. Biol. Invasions 2018, 20, 1129–1146. [Google Scholar] [CrossRef]
- Calviño-Cancela, M.; Lorenzo, P.; González, L. Fire increases Eucalyptus globulus seedling recruitment in forested habitats: Effects of litter, shade and burnt soil on seedling emergence and survival. For. Ecol. Manag. 2018, 409, 826–834. [Google Scholar] [CrossRef]
- Calviño-Cancela, M.; Rubido-Bará, M. Invasive potential of Eucalyptus globulus: Seed dispersal, seedling recruitment and survival in habitats surrounding plantations. For. Ecol. Manag. 2013, 305, 129–137. [Google Scholar] [CrossRef]
- Nereu, M.; Silva, J.S.; Deus, E.; Nunes, M.; Potts, B. The effect of management operations on the demography of Eucalyptus globulus seedlings. For. Ecol. Manag. 2019, 453, 117630. [Google Scholar] [CrossRef]
- Cremer, K.W. Distance of seed dispersal in eucalypts estimated from seed weights. Aust. For. Res. 1977, 7, 225–228. [Google Scholar]
- Larcombe, M.J.; Silva, J.S.; Vaillancourt, R.E.; Potts, B.M. Assessing the invasive potential of Eucalyptus globulus in Australia: Quantification of wildling establishment from plantations. Biol. Invasions 2013, 15, 2763–2781. [Google Scholar] [CrossRef]
- Touza, J.; Pérez-Alonso, A.; Chas-Amil, M.L.; Dehnen-Schmutz, K. Explaining the rank order of invasive plants by stakeholder groups. Ecol. Econ. 2014, 105, 330–341. [Google Scholar] [CrossRef]
- Mallen-Cooper, M.; Atkinson, J.; Xirocostas, Z.A.; Wijas, B.; Chiarenza, G.M.; Dadzie, F.A.; Eldridge, D.J. Global synthesis reveals strong multifaceted effects of eucalypts on soils. Glob. Ecol. Biogeogr. 2022, 31, 1667–1678. [Google Scholar] [CrossRef]
- Shi, Z.; Xu, D.; Yang, X.; Jia, Z.; Guo, H.; Zhang, N. Ecohydrological impacts of eucalypt plantations: A review. J. Food Agric. Environ. 2012, 10, 1419–1426. [Google Scholar]
- Tomé, M.; Almeida, M.H.; Barreiro, S.; Branco, M.R.; Deus, E.; Pinto, G.; Silva, J.S.; Soares, P.; Rodríguez-Soalleiro, R. Opportunities and challenges of Eucalyptus plantations in Europe: The Iberian Peninsula experience. Eur. J. For. Res. 2021, 140, 489–510. [Google Scholar] [CrossRef]
- Teixido, A.L.; Quintanilla, L.G.; Carreño, F.; Gutiérrez, D. Impacts of changes in land use and fragmentation patterns on Atlantic coastal forests in northern Spain. J. Environ. Manag. 2010, 91, 879–886. [Google Scholar] [CrossRef] [PubMed]
- Andreu, J.; Vilà, M.; Hulme, P.E. An assessment of stakeholder perceptions and management of noxious alien plants in Spain. Environ. Manag. 2009, 43, 1244–1255. [Google Scholar] [CrossRef] [PubMed]
- Goded, S.; Ekroos, J.; Domínguez, J.; Azcárate, J.G.; Guitián, J.A.; Smith, H.G. Effects of eucalyptus plantations on avian and herb species richness and composition in North-West Spain. Glob. Ecol. Conserv. 2019, 19, e00690. [Google Scholar] [CrossRef]
- Larrañaga, A.; Basaguren, A.; Elosegi, A.; Pozo, J. Impacts of Eucalyptus globulus plantations on Atlantic streams: Changes in invertebrate density and shredder traits. Fundam. Appl. Limnol. Arch. Für Hydrobiol. 2009, 175, 151–160. [Google Scholar] [CrossRef]
- Lara, A.; Jones, J.; Little, C.; Vergara, N. Streamflow response to native forest restoration in former Eucalyptus plantations in south central Chile. Authorea 2021, 35, e14270. [Google Scholar] [CrossRef]
- Calviño-Cancela, M.; Rubido-Bará, M.; van Etten, E.J.B. Do eucalypt plantations provide habitat for native forest biodiversity? For. Ecol. Manag. 2012, 270, 153–162. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Loureiro, C.; Palheiro, P.; Vale-Gonçalves, H.; Fernandes, M.M.; Cruz, M.G. Fuels and fire hazard in blue gum (Eucalyptus globulus) stands in Portugal. Boletín Del CIDEU 2011, 10, 53–61. [Google Scholar]
- Vihervaara, P.; Marjokorpi, A.; Kumpula, T.; Walls, M.; Kamppinen, M. Ecosystem services of fast-growing tree plantations: A case study on integrating social valuations with land-use changes in Uruguay. For. Policy Econ. 2012, 14, 58–68. [Google Scholar] [CrossRef]
- Cunha, J.; Campos, F.S.; David, J.; Padmanaban, R.; Cabral, P. Carbon sequestration scenarios in Portugal: Which way to go forward? Environ. Monit. Assess. 2021, 193, 547. [Google Scholar] [CrossRef] [PubMed]
- Castro-Díez, P.; Alonso, Á.; Saldaña-López, A.; Granda, E. Effects of widespread non-native trees on regulating ecosystem services. Sci. Total Environ. 2021, 778, 146141. [Google Scholar] [CrossRef] [PubMed]
- Acácio, V.; Dias Filipe, S.; Catry Filipe, X.; Rocha, M.; Moreira, F. Landscape dynamics in Mediterranean oak forests under global change: Understanding the role of anthropogenic and environmental drivers across forest types. Glob. Change Biol. 2016, 23, 1199–1217. [Google Scholar] [CrossRef]
- EEA. Natura 2000 Data-the European Network of Protected Sites. Available online: https://www.eea.europa.eu/data-and-maps/data/natura-13 (accessed on 2 May 2022).
- EEA. State of Nature in the EU: Results from Reporting under the Nature Directives 2013–2018; European Environment Agency: Luxembourg, 2020. [Google Scholar]
- López-Sánchez, C.A.; Castedo-Dorado, F.; Cámara-Obregón, A.; Barrio-Anta, M. Distribution of Eucalyptus globulus Labill. in northern Spain: Contemporary cover, suitable habitat and potential expansion under climate change. For. Ecol. Manag. 2021, 481, 118723. [Google Scholar] [CrossRef]
- Forstmaier, A.; Shekhar, A.; Chen, J. Mapping of Eucalyptus in Natura 2000 areas using Sentinel 2 imagery and artificial neural networks. Remote Sens. 2020, 12, 2176. [Google Scholar] [CrossRef]
- Costa, R.; Fraga, H.; Fernandes, P.M.; Santos, J.A. Implications of future bioclimatic shifts on Portuguese forests. Reg. Environ. Change 2017, 17, 117–127. [Google Scholar] [CrossRef]
- Garzón, M.B.; de Dios, R.S.; Ollero, H.S. Effects of climate change on the distribution of Iberian tree species. Appl. Veg. Sci. 2008, 11, 169–178. [Google Scholar] [CrossRef]
- Booth, T.H.; Broadhurst, L.M.; Pinkard, E.; Prober, S.M.; Dillon, S.K.; Bush, D.; Pinyopusarerk, K.; Doran, J.C.; Ivkovich, M.; Young, A.G. Native forests and climate change: Lessons from eucalypts. For. Ecol. Manag. 2015, 347, 18–29. [Google Scholar] [CrossRef]
- Queirós, L.; Deus, E.; Silva, J.S.; Vicente, J.; Ortiz, L.; Fernandes, P.M.; Castro-Díez, P. Assessing the drivers and the recruitment potential of Eucalyptus globulus in the Iberian Peninsula. For. Ecol. Manag. 2020, 466, 118147. [Google Scholar] [CrossRef]
- Vicente, J.; Alves, P.; Randin, C.; Guisan, A.; Honrado, J. What drives invasibility? A multi-model inference test and spatial modelling of alien plant species richness patterns in northern Portugal. Ecography 2010, 33, 1081–1092. [Google Scholar] [CrossRef]
- Vicente, J.; Randin, C.F.; Gonçalves, J.; Metzger, M.J.; Lomba, Â.; Honrado, J.; Guisan, A. Where will conflicts between alien and rare species occur after climate and land-use change? A test with a novel combined modelling approach. Biol. Invasions 2011, 13, 1209–1227. [Google Scholar] [CrossRef]
- Guisan, A.; Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 2005, 8, 993–1009. [Google Scholar] [CrossRef] [PubMed]
- Bradley, B.A.; Mustard, J.F. Characterizing the landscape dynamics of an invasive plant and risk of invasion using remote sensing. Ecol. Appl. 2006, 16, 1132–1147. [Google Scholar] [CrossRef]
- R Core Team. R: A language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available online: http://www.R-project.org (accessed on 30 June 2022).
- Thuiller, W.; Georges, D.; Engler, R.; Breiner, F. R Package Biomod2: Ensemble Platform for Species Distribution Modeling, v. 3.3-7. Available online: http://cran.r-project.org/web/packages/biomod2/biomod2.pdf (accessed on 2 January 2017).
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Marmion, M.; Parviainen, M.; Luoto, M.; Heikkinen, R.K.; Thuiller, W. Evaluation of consensus methods in predictive species distribution modelling. Divers. Distrib. 2009, 15, 59–69. [Google Scholar] [CrossRef]
- Silva, J.S.; Nereu, M.; Pinho, S.; Queirós, L.; Jesús, C.; Deus, E. Post-fire demography, growth, and control of Eucalyptus globulus wildlings. Forests 2021, 12, 156. [Google Scholar] [CrossRef]
- Águas, A.; Ferreira, A.; Maia, P.; Fernandes, P.M.; Roxo, L.; Keizer, J.; Silva, J.S.; Rego, F.C.; Moreira, F. Natural establishment of Eucalyptus globulus Labill. in burnt stands in Portugal. For. Ecol. Manag. 2014, 323, 47–56. [Google Scholar] [CrossRef]
- Silva, J.S.; dos Santos, P.; Sério, A.; Gomes, F. Effects of heat on dehiscence and germination in Eucalyptus globulus Labill. Int. J. Wildland Fire 2016, 25, 478–483. [Google Scholar] [CrossRef]
- Águas, A.; Larcombe, M.J.; Matias, H.; Deus, E.; Potts, B.M.; Rego, F.C.; Silva, J.S. Understanding the naturalization of Eucalyptus globulus in Portugal: A comparison with Australian plantations. Eur. J. For. Res. 2017, 136, 433–446. [Google Scholar] [CrossRef]
- Silva, J.S.; Tomé, M. Tasmanian blue gum in Portugal-opportunities and risks of a widely cultivated species. In Introduced Tree Species in European Forests: Opportunities and Challenges; Krumm, F., Vítková, L., Eds.; European Forest Institute: Freiburg, Germany, 2016; pp. 352–361. [Google Scholar]
- Catry, F.X.; Moreira, F.; Deus, E.; Silva, J.S.; Águas, A. Assessing the extent and the environmental drivers of Eucalyptus globulus wildling establishment in Portugal: Results from a countrywide survey. Biol. Invasions 2015, 17, 3163–3181. [Google Scholar] [CrossRef]
- MITERD. Mapa Forestal de España (MFE25) [Spanish Forest Map]. Available online: https://www.miteco.gob.es/es/cartografia-y-sig/ide/descargas/biodiversidad/mfe.aspx (accessed on 2 May 2022).
- DGT. Carta de Uso e Ocupação do Solo-2018 [Portuguese Land-Cover and Land-Use Cartography from 2018]. Available online: https://snig.dgterritorio.gov.pt/ (accessed on 2 May 2022).
- San-Miguel-Ayanz, J.; Schulte, E.; Schmuck, G.; Camia, A.; Strobl, P.; Libertà, G.; Giovando, C.; Boca, R.; Sedano, F.; Kempeneers, P.; et al. Comprehensive monitoring of wildfires in europe: The European Forest Fire Information System (EFFIS). In Approaches to Managing Disaster-Assessing Hazards, Emergencies and Disaster Impacts; Tiefenbacher, J., Ed.; InTech: London, UK, 2012; pp. 87–105. [Google Scholar]
- MITERD. Segundo Inventario Forestal Nacional (IFN2) [Second National Forest Inventory]. Available online: https://www.miteco.gob.es/es/biodiversidad/servicios/banco-datos-naturaleza/informacion-disponible/ifn2_descargas.aspx (accessed on 2 May 2022).
- IGP. Carta de Ocupação do Solo de 1990 [Portuguese Land-Cover Cartography from 1990]. Available online: http://ftp.igeo.pt/produtos/Inf_cartografica.htm (no longer available) (accessed on 1 June 2017).
- EEA. Copernicus Land Monitoring Service-EU-DEM. Available online: https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-eu-dem (accessed on 1 June 2022).
- EEA. Copernicus Land Monitoring Service 2018 (CORINE Land Cover 2018). Available online: https://land.copernicus.eu/pan-european/corine-land-cover (accessed on 2 May 2022).
- Deus, E.; Silva, J.S.; Catry, F.X.; Rocha, M.; Moreira, F. Google Street View as an alternative method to car surveys in large-scale vegetation assessments. Environ. Monit. Assess. 2016, 188, 1–14. [Google Scholar] [CrossRef] [PubMed]
- DG Environment. Reporting under Article 17 of the Habitats Directive: Explanatory Notes and Guidelines for the Period 2013–2018; Directorate-General for Environment-European Commission: Brussels, Belgium, 2017. [Google Scholar]
- Catry, F.X.; Moreira, F.; Tujeira, R.; Silva, J.S. Post-fire survival and regeneration of Eucalyptus globulus in forest plantations in Portugal. For. Ecol. Manag. 2013, 310, 194–203. [Google Scholar] [CrossRef]
- ICNF. Maps of Burnt Areas between 1990–2020. Available online: https://www.icnf.pt/florestas/gfr/gfrgestaoinformacao/dfciinformacaocartografica (accessed on 1 June 2022).
- Richardson, D.M.; Pyšek, P.; Rejmánek, M.; Barbour, M.G.; Panetta, F.D.; West, C.J. Naturalization and invasion of alien plants: Concepts and definitions. Divers. Distrib. 2000, 6, 93–107. [Google Scholar] [CrossRef]
- Santos, P.; Matias, H.; Deus, E.; Águas, A.; Silva, J.S. Fire effects on capsules and encapsulated seeds from Eucalyptus globulus in Portugal. Plant Ecol. 2015, 216, 1611–1621. [Google Scholar] [CrossRef]
- Cremer, K.W. How Eucalypt fruits release their seed. Aust. J. Bot. 1965, 13, 11–16. [Google Scholar] [CrossRef]
- Mount, A.B. Eucalypt ecology as related to fire. In Proceedings of the 9th Tall Timbers Fire Ecology Conference, Tallahassee, FL, USA, 10–11 April 1969; pp. 75–108. [Google Scholar]
- Gill, A.M. Eucalypts and fires: Interdependent or independent? In Eucalypt Ecology: Individuals to Ecosystems; Williams, J.E., Woinarski, J.C.Z., Eds.; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- San-Miguel-Ayanz, J.; Durrant, T.; Boca, R.; Maianti, P.; Libertá, G.; Artes Vivancos, T.; Jacome Felix Oom, D.; Branco, A.; De Rigo, D.; Ferrari, D.; et al. Forest Fires in Europe Middle East and North Africa 2019; Joint Research Centre: Luxembourg, 2020. [Google Scholar]
- Amatulli, G.; Camia, A.; San-Miguel-Ayanz, J. Estimating future burned areas under changing climate in the EU-Mediterranean countries. Sci. Total Environ. 2013, 450–451, 209–222. [Google Scholar] [CrossRef] [PubMed]
- EFFIS. Burnt Areas. Available online: https://effis.jrc.ec.europa.eu/applications/data-and-services (accessed on 18 March 2022).
- Keenan, T.; Maria Serra, J.; Lloret, F.; Ninyerola, M.; Sabate, S. Predicting the future of forests in the Mediterranean under climate change, with niche- and process-based models: CO2 matters! Glob. Change Biol. 2011, 17, 565–579. [Google Scholar] [CrossRef]
- Vessella, F.; López-Tirado, J.; Simeone, M.C.; Schirone, B.; Hidalgo, P.J. A tree species range in the face of climate change: Cork oak as a study case for the Mediterranean biome. Eur. J. For. Res. 2017, 136, 555–569. [Google Scholar] [CrossRef]
- Almeida, A.M.; Martins, M.J.; Campagnolo, M.L.; Fernandez, P.; Albuquerque, T.; Gerassis, S.; Gonçalves, J.C.; Ribeiro, M.M. Prediction scenarios of past, present, and future environmental suitability for the Mediterranean species Arbutus unedo L. Sci. Rep. 2022, 12, 84. [Google Scholar] [CrossRef]
- Booth, T.H.; Nix, H.A.; Hutchinson, M.F.; Jovanic, T. Niche analysis and tree species introduction. For. Ecol. Manag. 1988, 23, 47–59. [Google Scholar] [CrossRef]
- Hughes, L. Biological consequences of global warming: Is the signal already apparent? Trends Ecol. Evol. 2000, 15, 56–61. [Google Scholar] [CrossRef]
- Pinkard, E.; Wardlaw, T.; Kriticos, D.; Ireland, K.; Bruce, J. Climate change and pest risk in temperate eucalypt and radiata pine plantations: A review. Aust. For. 2017, 80, 228–241. [Google Scholar] [CrossRef]
- Gonçalves, J.L.M.; Alvares, C.A.; Rocha, J.H.T.; Brandani, C.B.; Hakamada, R. Eucalypt plantation management in regions with water stress. South. For. A J. For. Sci. 2017, 79, 169–183. [Google Scholar] [CrossRef]
- Sánchez, F.G. Las plantaciones de eucalipto en espacios de valor ambiental en Cantabria. In La Conflictividad de las Plantaciones de Eucalipto en España (y Portugal); Veiras, X., Soto, M.Á., Eds.; Greenpeace: Madrid, Spain, 2011. (In Spanish) [Google Scholar]
- Moreira, F.; Vaz, P.; Catry, F.X.; Silva, J.S. Regional variations in wildfire susceptibility of land-cover types in Portugal: Implications for landscape management to minimize fire hazard. Int. J. Wildland Fire 2009, 18, 563–574. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Guiomar, N.; Rossa, C.G. Analysing eucalypt expansion in Portugal as a fire-regime modifier. Sci. Total Environ. 2019, 666, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Alberdi, I.; Nunes, L.; Kovac, M.; Bonheme, I.; Cañellas, I.; Rego, F.C.; Dias, S.; Duarte, I.; Notarangelo, M.; Rizzo, M.; et al. The conservation status assessment of Natura 2000 forest habitats in Europe: Capabilities, potentials and challenges of national forest inventories data. Ann. For. Sci. 2019, 76, 34. [Google Scholar] [CrossRef]
- Lomba, A.; Guerra, C.; Alonso, J.; Honrado, J.P.; Jongman, R.; McCracken, D. Mapping and monitoring High Nature Value farmlands: Challenges in European landscapes. J. Environ. Manag. 2014, 143, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, P.; Máguas, C.; Correia, O. Combined effects of climate, habitat, and disturbance on seedling establishment of Pinus pinaster and Eucalyptus globulus. Plant Ecol. 2017, 218, 201–515. [Google Scholar] [CrossRef]
- De Rigo, D.; Libertà, G.; Houston Durrant, T.; Vivancos, T.A.; San-Miguel-Ayanz, J. Forest Fire Danger Extremes in Europe under Climate Change: Variability and Uncertainty; Publications Office of the European Union: Luxembourg, 2017; ISBN 978-92-79-77046-3. [Google Scholar]
Area | Climatic Suitability | Current | RCP2.6-2050 | RCP2.6-2070 | RCP8.5-2050 | RCP8.5-2070 |
---|---|---|---|---|---|---|
Iberia | 0% | 498,993 | 524,182 | 521,449 | 527,287 | 539,590 |
1%–25% | 21,771 | 15,243 | 15,943 | 14,601 | 10,856 | |
26%–50% | 21,707 | 14,770 | 15,566 | 13,539 | 10,700 | |
51%–75% | 19,895 | 14,233 | 14,699 | 13,341 | 10,104 | |
76%–100% | 19,902 | 13,840 | 14,611 | 13,500 | 11,018 | |
Total ≥ 1% | 83,275 | 58,086 | 60,819 | 54,981 | 42,678 | |
Natura 2000 | 0% | 140,929 | 146,930 | 146,507 | 146,816 | 148,407 |
1%–25% | 5149 | 1311 | 1569 | 1636 | 873 | |
26%–50% | 3083 | 1748 | 1644 | 1475 | 1189 | |
51%–75% | 1717 | 1090 | 1361 | 1179 | 1040 | |
76%–100% | 1354 | 1151 | 1149 | 1125 | 720 | |
Total ≥ 1% (n sites) | 11,303 (206) | 5300 (175) | 5723 (180) | 5415 (177) | 3822 (156) |
Recruitment Potential | Invasion Potential | Invasion Potential (Outside Only) | |||||
---|---|---|---|---|---|---|---|
Class | Area (km2) | Sites (n) | Area (km2) | Sites (n) | Area (km2) | Sites (n) | Sites (n, no Eg 1) |
Very Low | 241 | 40 | 226 | 52 | 6 | 46 | 5 |
Low | 321 | 55 | 247 | 66 | 12 | 63 | 3 |
Moderate | 273 | 127 | 281 | 135 | 53 | 128 | 5 |
High a | 134 | 96 | 109 | 113 | 12 | 102 | 1 |
Very high b | 21 | 18 | 15 | 21 | 1 | 17 | 0 |
All classes | 990 | 157 | 878 | 175 | 83 | 168 | 11 |
Total (a + b) | 154 | 96 | 124 | 112 | 12 | 102 | 1 |
Recruitment Potential | Number of Observations | |
---|---|---|
Recruitment Absence (%) | Recruitment Presence (%) | |
Very low | 48% | 52% |
Low | 18% | 82% |
Moderate | 32% | 68% |
High | 10% | 90% |
Very high | 2% | 98% |
Total | 22% | 78% |
Invasion Potential Levels | Invaded (n = 9) (% ± SD) | Non-Invaded (n = 5) (% ± SD) | W Value | p Value |
---|---|---|---|---|
Very low | 0.62 (±1.18) | 1.60 (±2.13) | 13 | ns |
Low | 1.92 (±4.24) | 1.60 (±2.67) | 21 | ns |
Moderate | 8.69 (±8.50) | 1.66 (±3.12) | 40 | * |
High | 5.96 (±3.51) | 0.37 (±0.54) | 45 | ** |
Very high | 2.01 (±2.61) | 0.04 (±0.06) | 31 | ns |
High + very high | 7.97 (±5.91) | 0.41 (±0.59) | 45 | ** |
Total | 19.22 (±5.85) | 5.28 (±3.63) | 45 | *** |
Area | Climatic Suitability for R and P | Current | RCP2.6-2050 | RCP2.6-2070 | RCP8.5-2050 | RCP8.5-2070 |
---|---|---|---|---|---|---|
Iberia | No R; with P | 25,027 | 35,234 | 34,674 | 16,589 | 16,342 |
Low R; with P a | 35,124 | 28,634 | 28,779 | 26,355 | 18,341 | |
High R; with P b | 39,798 | 28,074 | 29,277 | 26,841 | 21,123 | |
No R; no P | 473,967 | 488,948 | 486,776 | 510,698 | 523,249 | |
Low R; no P | 8355 | 1381 | 2730 | 1787 | 3216 | |
High R; no P | 0 | 0 | 35 | 46 | 0 | |
Total (a + b) | 74,922 | 56,708 | 58,056 | 53,196 | 39,464 | |
Natura 2000 | No R; with P | 6268 | 7040 | 7388 | 2599 | 2160 |
Low R; with P a | 6677 | 2771 | 2588 | 2859 | 1858 | |
High R; with P b | 3068 | 2239 | 2474 | 2301 | 1760 | |
No R; no P | 134,642 | 139,871 | 139,100 | 144,198 | 146,229 | |
Low R; no P | 1555 | 288 | 624 | 251 | 202 | |
High R; no P | 0 | 0 | 33 | 0 | 0 | |
Total (a + b) (n sites) | 9745 (186) | 5009 (175) | 5063 (169) | 5160 (173) | 3618 (144) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deus, E.; Silva, J.S.; Vicente, J.R.; Catry, F.X. Eucalypt Recruitment and Invasion Potential in Protected Areas of the Iberian Peninsula under Current and Future Climate Conditions. Forests 2022, 13, 1199. https://doi.org/10.3390/f13081199
Deus E, Silva JS, Vicente JR, Catry FX. Eucalypt Recruitment and Invasion Potential in Protected Areas of the Iberian Peninsula under Current and Future Climate Conditions. Forests. 2022; 13(8):1199. https://doi.org/10.3390/f13081199
Chicago/Turabian StyleDeus, Ernesto, Joaquim S. Silva, Joana R. Vicente, and Filipe X. Catry. 2022. "Eucalypt Recruitment and Invasion Potential in Protected Areas of the Iberian Peninsula under Current and Future Climate Conditions" Forests 13, no. 8: 1199. https://doi.org/10.3390/f13081199
APA StyleDeus, E., Silva, J. S., Vicente, J. R., & Catry, F. X. (2022). Eucalypt Recruitment and Invasion Potential in Protected Areas of the Iberian Peninsula under Current and Future Climate Conditions. Forests, 13(8), 1199. https://doi.org/10.3390/f13081199