Gene Flow and Recruitment Patterns among Disjunct Populations of Allocasuarina verticillata (Lam.) L.A.S. Johnson
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Measures of Population Size and Density
2.2. Sampling
2.2.1. Samples Collected for DNA Extraction
2.2.2. Cultivation of Open-Pollinated Seedlings to Study Pollen Flow at Mt. Painter and Cooleman Ridge
2.2.3. Cone Collections for Study of Reproductive Success
2.3. Population Density, Sex Proportion, Reproductive Success Measures
2.4. DNA Extraction and SSR Marker Screening
2.5. PCR Amplification and Genotyping
2.6. Clonality
2.7. Genetic Diversity, Differentiation and Structure
2.8. Parentage Analysis of Cultivated Seedlings
2.9. General Statistics
3. Results
3.1. Population Density, Sex Proportion and Reproductive Success
3.2. Clonality
3.3. Genetic Diversity Indices of Different Populations
3.4. Pollen Flow and Paternity Assignation
3.5. Maternity Imputation and Seed Dispersal
3.6. Genetic Differentiation and Structure
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hedric, P.W. Conservation genetics: Where are we now? Trends Evol. 2001, 16, 629–636. [Google Scholar] [CrossRef]
- Lindborg, A.; Eriksson, O. Historical landscape connectivity affects present plant species diversity. Ecology 2004, 85, 1840–1845. [Google Scholar] [CrossRef]
- Sánchez, P.C.; Valerio, P.D.; Sáenz-Romero, C.; Diego, Y.H. Reproductive success and inbreeding differ in fragmented populations of Pinus rzedowskii and Pinus ayacahuite var. veitchii, two endemic Mexican pines under threat. Forests 2016, 7, 178. [Google Scholar] [CrossRef] [Green Version]
- Ellstrand, N.C.; Elam, D.R. Population genetic consequences of small population size: Implications for plant conservation. Annu. Rev. Ecol. Syst. 1993, 34, 217–242. [Google Scholar] [CrossRef]
- Frankham, R.; Briscoe, D.A.; Ballou, J.D. Introduction to Conservation Genetics; Cambridge University Press: New York, NY, USA, 2002. [Google Scholar]
- Aguilar, R.; Ashworth, L.; Galetto, L.; Aizen, M.A. Plant reproductive susceptibility to habitat fragmentation: Review and synthesis through a meta-analysis. Ecol. Lett. 2006, 9, 968–980. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, R.; Quesada, M.; Ashworth, L.; Herrerias-Diego, Y.; Loco, J. Genetic consequences of habitat fragmentation in plant populations: Susceptible signals in plant traits and methodological approaches. Mol. Ecol. 2008, 17, 5177–5188. [Google Scholar] [CrossRef]
- Viktora, M.; Savidge, R.A.; Rajora, O.P. Clonal and nonclonal genetic structure of subarctic black spruce (Picea mariana) populations in Yukon territory. Bot. Bot. 2011, 89, 133–140. [Google Scholar] [CrossRef]
- Aguiar, B.I.; Sebbenn, A.M.; Tarazi, R.; Vogado, N.O.; Kageyama, P.Y. Phenology, seed germination, and genetics explains the reproductive strategies of Diospyros lasiocalyx (mart.) b. wall. Trop. Plant Biol. 2020, 13, 23–35. [Google Scholar] [CrossRef]
- Scheepens, J.F.; Frei, E.S.; Armbruster, G.F.J.; Stöcklin, J. Pollen dispersal and gene flow within and into a population of the alpine monocarpic plant Campanula thyrsoides. Ann. Bot. 2012, 110, 1479–1488. [Google Scholar] [CrossRef] [Green Version]
- O’Connell, L.M.; Mosseler, A.; Rajora, O.P. Extensive long-distance pollen dispersal in a fragmented landscape maintains genetic diversity in white spruce. J. Hered. 2007, 98, 640–645. [Google Scholar] [CrossRef]
- Pluess, A.R.; Sork, V.L.; Dolan, B. Short distance pollen movement in a wind-pollinated tree, Quercus lobata (Fagaceae). For. Ecol. Manag. 2009, 258, 735–744. [Google Scholar] [CrossRef]
- Lander, T.A.; Boshier, D.H.; Harris, S.A. Fragmented but not isolated: Contribution of single trees, small patches and long-distance pollen flow to genetic connectivity for Gomortega keule, an endangered Chilean tree. Biol. Conserv. 2010, 143, 2583–2590. [Google Scholar] [CrossRef]
- Williams, C.G. Long-distance pine pollen still germinates after meso-scale dispersal. Am. J. Bot. 2010, 97, 846–855. [Google Scholar] [CrossRef] [PubMed]
- Cain, M.L.; Milligan, B.G.; Strand, A.E. Long-distance seed dispersal in plant populations. Am. J. Bot. 2000, 87, 1217–1227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, T.; Krauss, S.L.; Lamont, B.B.; Miller, B.P.; Enright, N.J. Long-distance seed dispersal in a metapopulation of Banksia hookeriana inferred from a population allocation analysis of amplified fragment length polymorphism data. Mol. Ecol. 2004, 13, 1099–1109. [Google Scholar] [CrossRef] [PubMed]
- Howe, H.F.; Miriti, M.N. When seed dispersal matters. BioScience 2004, 54, 651–660. [Google Scholar] [CrossRef]
- Hampe, A.; Carcia-Castono, L.; Shupp, E.; Jordano, P. Spatio-temporal dynamics and local hotspots of initial recruitment in vertebrate-dispersed trees. J. Ecol. 2008, 96, 668–678. [Google Scholar] [CrossRef]
- Hoffmann, A.A.; Blows, M.W. Species borders-ecological and evolutionary perspectives. Trends Ecol. Evol. 1994, 9, 223–227. [Google Scholar] [CrossRef]
- Lesica, P.; Allendorf, F.W. When are peripheral populations valuable for conservation? Conserv. Biol. 1995, 9, 753–760. [Google Scholar] [CrossRef]
- Arnaud-Haond, S.; Teixeira, S.; Massa, S.I.; Billot, C.; Saenger, P.; Coupland, G.; Serrao, E.A. Genetic structure at range edge: Low diversity and high inbreeding in Southeast Asian mangrove (Avicennia marina) populations. Mol. Ecol. 2006, 15, 3515–3525. [Google Scholar] [CrossRef]
- Eckert, C.; Samis, K.; Lougheed, S. Genetic variation across species’ geographical ranges: The central-marginal hypothesis and beyond. Mol. Ecol. 2008, 17, 1170–1188. [Google Scholar] [CrossRef] [PubMed]
- Pironon, S.; Villellas, J.; Morris, W.F.; Doak, D.F.; García, M.B. Do geographic, climatic or historical ranges differentiate the performance of central versus peripheral populations? Glob. Ecol. Biogeogr. 2015, 24, 611–620. [Google Scholar] [CrossRef]
- Gapare, W.J.; Aitken, S.N. Strong spatial genetic structure in peripheral but not core populations of Sitka spruce [Picea sitchensis (Bong.) Carr.]. Mol. Ecol. 2005, 14, 2659–2667. [Google Scholar] [CrossRef]
- Ridley, M. Evolution, 3rd ed.; Blackwell Publishing: Oxford, UK, 2003; p. 751. [Google Scholar]
- Tarazi, R.; Moreno, M.A.; Gandara, F.B.; Feraz, E.M.; Moraes, M.L.T.; Vinson, C.C.; Ciampi, A.Y.; Vencovsky, R.; Kageyama, P.Y. High levels of genetic differentiation and selfing in the Brazilian cerrado fruit tree Dipteryx alata Vog. (Fabaceae). Genet. Mol. Biology. 2010, 33, 78–85. [Google Scholar] [CrossRef]
- Lázaro-Nogal, A.; Matesanz, S.; García-Fernández, A.; Traveset, A.; Valladares, F. Population size, center-periphery, and seed dispersers’s effects on the genetic diversity and population structure of the Mediterranean relict shrub Cneorum tricoccon. Ecol. Evol. 2017, 7, 7231–7242. [Google Scholar] [CrossRef]
- Joseph, L. The glossy black-cockatoo on Kangaroo Island. Emu–Austral Omithology 1982, 82, 46–49. [Google Scholar] [CrossRef]
- Marcar, N.E.; Crawford, D.F. Tree for Saline Landscapes; RIRDC: Canberra, Australia, 2004. [Google Scholar]
- Broadhurst, L. Genetic diversity and population genetic structure in fragmented Allocasuarina verticillata (Allocasuarinaceae)—Implications for restoration. Aus. J. Bot. 2011, 59, 770–780. [Google Scholar] [CrossRef]
- Broadhurst, L. Pollen dispersal in fragmented populations of the dioecious wind-pollinated tree, Allocasuarina verticillata (Drooping Sheoak, Drooping She-oak, Allocasuarinaceae). PLoS ONE 2015, 10, e0119498. [Google Scholar] [CrossRef] [Green Version]
- Burbidge, N.; Gray, M. Flora of the Australian Capital Territory; Australian National University Press: Canberra, ACT, Australia, 1970. [Google Scholar]
- Hueneke, K. Aspects of the Autecglogy and Secondary Succession of Casuarina Stricta on Canberra’s Hills; Australian National University: Canberra, ACT, Australia, 1976. [Google Scholar]
- Turnbull, J.W.; Martenz, P.N. Seed production, collection and germination in Casuarinaceae. In Proceedings of the International Workshop on Casuarina Ecology, Management and Utilization, Canberra, Australia, 17–21 August 1981; Midgley, S.J., Turnbull, J.W., Johnston, R.D., Eds.; CSIRO: Canberra, Australia, 1983; p. 286. [Google Scholar]
- SAS Institute Incorporated. SAS Software Release 8.2; SAS Cirle; SAS Institute Incorporated: Cary, NC, USA, 1999. [Google Scholar]
- Zhang, Y.; Zhong, C.L.; Han, Q.; Jiang, Q.B.; Chen, Y.; Chen, Z.; Pinyopusarerk, K.; Bush, D. Reproductive biology and breeding system in Casuarina equisetifolia (Casuarinaceae)—Implication for genetic improvement. Aus. J. Bot. 2016, 64, 120–128. [Google Scholar] [CrossRef]
- Xu, X.Y.; Zhou, C.P.; Zhang, Y.; Zhang, W.Q.; Gan, X.H.; Zhang, H.X.; Guo, Y.; Gan, S.M. A novel set of 223 EST-SSR markers in Casuarina L. ex Adans: Polymorphisms, cross-species transferability, and utility for commercial clone genotyping. Tree Genet. Genomes 2018, 14, 30. [Google Scholar] [CrossRef]
- Arruda, M.P.D.; Goncalves, E.C.; Schneider, M.P.C.; Silva, A.L.D.C.; Morielle-Versute, E. An alternative genotyping method using dye-labeled universal primer to reduce unspecific amplifications. Mol. Biol. Rep. 2010, 37, 2031–2036. [Google Scholar] [CrossRef] [PubMed]
- Peakall, R.; Smouse, P.E. Gen Al Ex 6.5: Genetic analysis in Excel, population genetic software for teaching and research: An update. Bioinformatics 2006, 28, 2537–2539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goudet, J. FSTAT (Version 2.9.4), a Program (for Windows 95 and above) to Estimate Population Genetics Parameters; Lausanne University: Lausanne, Switzerland, 2003. [Google Scholar]
- Kalinowski, S.T.; Taper, M.L.; Marshall, T.C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 2007, 16, 1099. [Google Scholar] [CrossRef] [PubMed]
- Bohonak, A.J. IBD (Isolation by Distance): A program for analyses of isolation by distance. J. Hered. 2002, 93, 153–154. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetic 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Earl, D.; Vonholdt, B.M. Structure Harvester: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conser. Genet. Resour. 2011, 4, 359–361. [Google Scholar] [CrossRef]
- Wang, J. Triadic IBD coefficients and applications to estimating pairwise relatedness. Genet. Res. 2007, 89, 135–153. [Google Scholar] [CrossRef]
- Han, L.; Love, K.; Peace, B.; Broadhurst, L.; England, N.; Li, L.; Bush, D. Origin of planted Eucalyptus benthamii trees in Camden NSW: Checking the effectiveness of circa situm conservation measures using molecular markers. Biodivers. Conserv. 2020, 29, 1301–1322. [Google Scholar] [CrossRef]
- Broadhurst, L.; Bush, D.; Begley, J. Managing genetic diversity and representation in Banksia marginata (Proteaceae) seed production areas used for conservation and restoration. Diversity 2021, 13, 39. [Google Scholar] [CrossRef]
- Wang, J. Coancestry: A program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol. Ecol. Resour. 2010, 11, 141–145. [Google Scholar] [CrossRef]
- Botstein, D.; White, R.L.; Skolnick, M.; Ronald, W.D. Construction of a genetic linkage map in man using rec striction fragment length polymorphisms. Am. J. Hum. Genet. 1980, 32, 314–331. [Google Scholar] [PubMed]
- Sathyanarayana, N.; Pittala, R.K.; Tripathi, P.K.; Chopra, R.; Singh, H.R.; Belamkar, V.; Bhardwaj, P.K.; Doyle, J.J.; Egan, A.N. Transcriptomic resources for the medicinal legume Mucuna pruriens: De novo transcriptome assembly, annotation, identification and validation of EST-SSR markers. BMC Genom. 2017, 18, 409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Q.; Li, X.Y.; Yang, S.H.; Yang, Z.H.; Sun, Y.H.; Zhang, J.T.; Cao, S.; Dong, L.; Uddin, S.; Li, Y. Evaluation of the genetic diversity and differerntiation of Black Locust (Robinia pseudoacacia L.) based on genomic and expressed sequence tag-simple sequence repeats. Int. J. Mol. Sci. 2018, 19, 2492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- KlimeŠ, L.; LlieŠova, J.; Hendriks, R.; Van, G.J. Clonal plant architecture: A comparative analysis of form and function. In The Ecology and Evolution of Clonal Plants; de Kroon, H., van Groenendael, J., Eds.; Backhuys: Leiden, The Netherlands, 1997. [Google Scholar]
- Doran, J.C.; Hall, N. Notes on fifteen Australian Casuarina species. In Casuarina Ecology, Management and Utilization; Midgely, S.J., Turnbull, J.W., Johnson, R.D., Eds.; CSIRO: Melbourne, Australia, 1983; pp. 19–25. [Google Scholar]
- Benzing, D.H. Bromeliaceae: Profile of an Adaptive Radiation; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Rogalski, J.M.; Reis, A.D.; Reis, M.S.; Hmeljevski, K.V. Biologia reproductive da reófita Dyckia brevifolia Baker (Bromeliaceae), do Rio Itajai-Acu, Santa Catarina Brasil. Rev. Bras. Bot. 2009, 32, 691–702. [Google Scholar] [CrossRef] [Green Version]
- Pellergrino, G.; Bellusci, F.; Palermo, A.M. Effects of population structure on pollen flow, clonality rates and reproductive success in fragmented Serapias lingua populations. BMC Plant Biol. 2015, 15, 222. [Google Scholar] [CrossRef] [Green Version]
- Garcia, A.S.; Bressan, E.A.; Ballester, M.V.R.; Figueira, A.; Sebbenn, A.M. High rates of pollen and seed flow in Hymenaea stigonocarpa on a highly fragmented savanna landscape in Brazil. New For. 2019, 50, 991–1006. [Google Scholar] [CrossRef]
- Wiberg, R.A.W.; Scobie, A.R.; A’Hare, S.W.; Ennos, R.A.; Cottrell, J.E. The genetic consequences of long-term habitat fragmentation on a self-incompatible clonal plant, Linnaea borealis L. Biol. Conserv. 2016, 201, 405–413. [Google Scholar] [CrossRef] [Green Version]
- Sork, V.L. Gene flow and natural selection shape spatial patterns of genes in tree populations: Implications for evolutionary processes and applications. Evol. Appl. 2016, 9, 291–310. [Google Scholar] [CrossRef]
- Franklin, I.A. Evolutionary change in small populations. In Conservation Biology: An Evolutionary-Ecological Perspective; Soulé, M.E., Wilcox, B.A., Eds.; Sinauer Associates: Sunderland, MA, USA, 1980; pp. 135–150. [Google Scholar]
- Holderegger, R.; Buehler, D.; Gugerli, F.; Manel, S. Landscape genetics of plants. Trends Plants Sci. 2010, 15, 675–683. [Google Scholar] [CrossRef]
- Sampson, J.F.; Byrne, M.; Gibson, N.; Yates, C. Limiting inbreeding in disjunct and isolated populations of a woody shrub. Ecol. Evol. 2016, 6, 5867–5880. [Google Scholar] [CrossRef] [Green Version]
- Streiff, R.; Ducousso, A.; Lexer, C.; Steinkellner, H.; Gloess, J.; Kremer, A. Pollen dispersal inferred from paternity analysis in a mixed oak stand of Quercus robur L. and Q. petraea (Matt.) Liebl. Mol. Ecol. 1999, 8, 831–841. [Google Scholar] [CrossRef]
- Rieseberg, L.H.; Burke, J.M. The biological reality of species: Gene flow, selection, and collective evolution. Taxon 2001, 50, 47–67. [Google Scholar] [CrossRef]
- Lenormand, T. Gene flow and the limits to natural selection. Trends. Ecol. Evol. 2002, 17, 183–189. [Google Scholar] [CrossRef]
- Sork, V.L.; Smouse, P.E. Gene analysis of landscape connectivity in tree populations. Landsc. Ecol. 2006, 21, 821–836. [Google Scholar] [CrossRef]
- Dow, B.D.; Ashley, M.V. Factors influencing male mating success in bur oak, Quercus macrocarpa. New For. 1998, 15, 161–180. [Google Scholar] [CrossRef]
- Smouse, P.E.; Sork, V.K. Measuring pollen flow in forest trees: An exposition of alternative approaches. For. Ecol. Manag. 2004, 197, 21–38. [Google Scholar] [CrossRef]
- Deacon, N.J.; Cavender-Bares, J. Limited pollen dispersal contributes to population genetic structure but not local adaptation in Qercus oleoides forests of Costa Rica. PLoS ONE 2015, 10, e138783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smouse, P.E.; Dyer, R.J.; Westfall, R.D.; Sork, V.L. Two-generation analysis of pollen flow across a landscape. I. Male gamete heterogeneity among females. Evolution 2001, 55, 260–271. [Google Scholar] [CrossRef]
- Hampe, A.; Pemonge, M.-H.; Petit, R.J. Efficient mitigation of founder effects during the establishment of leading-edge oak population. Proc. Roy. Soc. B 2013, 280, 20131070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Troupin, D.; Nathan, R.; Vendramin, G. Analysis of spatial genetic structure in an expanding Pinus halepensis population reveals development of fine-scale genetic clustering over time. Mol. Ecol. 2006, 15, 317–3630. [Google Scholar] [CrossRef]
- Chapman, T.F.; Paton, D.C. Casuarina ecology: Factors limiting cone production in the drooping sheoak, Allocasua rina verticillata. Aus. J. Bot. 2007, 55, 171–177. [Google Scholar] [CrossRef]
- Young, A.G.; Boyle, T.J.B.; Brown, T. The population genetic consequences of habitat fragmentation for plants. Trends. Ecol. Evol. 1996, 11, 413–417. [Google Scholar] [CrossRef]
- Lowe, A.J.; Boshier, D.; Ward, M.; Bacles, C.F.E.; Navarro, C. Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory of neotropical trees. Heredity 2005, 95, 255–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oyama, K.; Herrera-Arroyo, M.L.; Rocha-Ramírez, V.; Benítez-Malvido, J.; Ruiz-Sánchez, E.; González-Rodríguez, A. Gene flow interruption in a recently human-modified landscape: The value of isolated trees for the maintenance of genetic diversity in a Mexican endemic red oak. For. Ecol. Manag. 2017, 390, 27–35. [Google Scholar] [CrossRef]
- Blanco, G.; Bravo, C.; Chamorro, D.; Lovas-Kiss, Á.; Hiraldo, F.; Tella, J.L. Herb endozoochory by cockatoos: Is ‘foliage the fruit’? Aust. Ecol. 2020, 45, 122–126. [Google Scholar] [CrossRef]
- He, T.; Lamont, B.B.; Krauss, S.L.; Enright, N.J.; Miller, B.P. Long-distance dispersal of seeds in the fire-tolerant shrub Banksia attenuata. Ecography 2009, 32, 571–580. [Google Scholar] [CrossRef]
- Landguth, E.L.; Cushman, S.A.; Schwartz, M.K.; McKelvey, K.S.; Murphy, M.; Luikart, G. Quantifying the lag time to detect barriers in landscape genetics. Mol. Ecol. 2010, 19, 4179–4191. [Google Scholar] [CrossRef]
Population | GPS Coordinate | Individual | Total | |||||
---|---|---|---|---|---|---|---|---|
Latitude S | Longitude E | Female Trees | Male Trees | Seedling | Gender Unknown (Adult) | Monoecious | ||
Cooleman Ridge | 35°21′16.61″ | 149°01′49.69″ | 45 | 45 | 55 | 29 | 1 | 175 |
Mt. Painter | 35°15′53.41″ | 149°03′49.17″ | 17 | 26 | 56 | 8 | 107 | |
Isaacs Ridge | 35°21′21.75″ | 149°06′57.52″ | 9 | 17 | 167 | 0 | 193 | |
Mt. Ainslie | 35°16′36.88″ | 149°09′20.54″ | -- | -- | 49 | -- |
Locus | Repeat Motif | Primer Sequences (5′-3′) | Fluorescent Dye | Expected Product Size Range (bp) | GenBank Accession Number |
---|---|---|---|---|---|
EST-C15 | (AG)13 | F: CTTCGCCGTTTCCTCAGA | Vic | 170–220 | FQ365696 |
R: ATATTTGCTTCGCAGGTCA | |||||
EST-C20 | (TC)9 | F: ACACGCCCTGTGATAGTT | Fam | 240–305 | FQ376339 |
R: GAGGAATTGAGCTTGCTG | |||||
EST-C26 | (AG)8 | F:ACTGTCGGATCGAGAAGCC R:AGCCAGCCATTGAAGCCC | Pet | 193–264 | FQ326101 |
EST-C27 | (CTC)8 | F:TTGACACTCTGGGCGGAAG R:AGCATTGATGAGAAACGCTGG | Pet | 190–250 | FQ327961 |
EST-C31 | (CT)9 | F:GCCTCCCACATCACAGGAG R:TCGGAAAGGCAACCGGAAG | Ned | 170–195 | FQ363031 |
EST-C36 | (AG)6 | F:TGCTTGGACGGGTGGAAAG R:GAGGCAACTGGGAACAGC | Fam | 190–260 | FQ326412 |
EST-C41 | (CT)6 | F:GTCAGATGCTGGCGTTTGG R:CCACAGTCCCGATGAAAGC | Vic | 344–391 | FQ328541 |
Ge-AV43 | (GAA)8 | F: TGGAGCCGCACTCAA R: AATCTTCCGAAATAGGTCCC | Pet | 165–183 | FJ589775 |
Ge-AV44 | (TCT)6 | F: CCAGGGACAAAATTAGGAACC R: CAGAGACCAAATACAAGAGCG | Ned | 153–195 | FJ589776 |
Ge-AV46 | (GA)12 | F: CATTTGGATTAGACGCCTGC R: AAAGCGGGTGGATTGTCA | Ned | 296–338 | FJ589778 |
Ge-AV47 | (TC)12 | F: TTGAGTTGGGCCGTCTGG R: TTAGATCAGAGCCGGATGGA | Vic | 161–184 | FJ589779 |
Ge-AV48 | (CT)17 | F: AAAGAGGTTTATAGTGCTCG R: GGCCTTGAAGTCAATCC | Fam | 141–186 | FJ589780 |
Population | Pop. Size | Pop. Density (Individual/ha) | Sex Proportion (Male/Female) | Seed Numberper Cone | Viable Seed (%) | No. of Pairwise Clonal Individuals |
---|---|---|---|---|---|---|
Cooleman Ridge | 175 | 1450 | 1.00 (45/45) * | 86.37 ± 32.72 ab | 66.67 ± 9.81b | 3 |
Mt. Painter | 107 | 177 | 1.53 (26/17) | 88.76 ± 21.97 ab | 36.00 ± 9.00 c | 8 |
Isaacs Ridge | 193 | 3628 | 1.89 (17/9) | 81.23 ± 20.62bc | 32.33 ± 6.43 c | 12 |
Mt. Ainslie | -- | -- | -- | 94.43 ± 21.63 a | 78.67 ± 9.07 a | -- |
Population | N | Na | Ne | I | Ho | He | Pa | AR | FIS |
---|---|---|---|---|---|---|---|---|---|
Cooleman Ridge | 55 | 87 | 41.55 | 1.27 | 0.38 | 0.57 | 10 | 6.48 | 0.38 |
Mt. Painter | 55 | 67 | 31.65 | 0.99 | 0.28 | 0.48 | 4 | 4.39 | 0.43 |
Isaacs Ridge | 56 | 98 | 41.98 | 1.33 | 0.41 | 0.59 | 22 | 6.89 | 0.36 |
Mt. Ainslie | 49 | 110 | 46.25 | 1.42 | 0.42 | 0.62 | 33 | 7.38 | 0.29 |
Overall/Mean | 215 | 90.5 | 40.35 | 1.25 | 0.37 | 0.57 | 17.25 | 6.29 | 0.36 |
Cooleman Ridge (44 Potential Mothers, 88 Offspring) | Mt. Painter (22 Potential Mothers, 55 Offspring) | ||||
---|---|---|---|---|---|
Female Parent | No. of Offspring | Dispersal Distance (m) | Female Parent | No. of Offspring | Dispersal Distance (m) |
725 | 1 | 120 m | 899 | 3 | 136–149 m |
733 | 4 | 18–30 m | 900 | 5 | 149–165 m |
734 | 8 | 15–58 m | 901 | 1 | 149 m |
735 | 2 | 23–63 m | 902 | 6 | 2–157 m |
737 | 2 | 6–45 m | 908 | 6 | 60–64 m |
741 | 2 | 27–32 m | 913 | 10 | 48–67 m |
742 | 3 | 27–33 m | 914 | 1 | 52 m |
743 | 6 | 24–39 m | 921 | 6 | 8–51 m |
746 | 1 | 9 m | 923 | 3 | 51–60 m |
748 | 3 | 6–131 m | 926 | 3 | 22–38 m |
749 | 5 | 12–54 m | 927 | 6 | 7–35 m |
750 | 10 | 13–46 m | 928 | 4 | 12–13 m |
753 | 2 | 17–18 m | 930 | 3 | 5–6 m |
762 | 1 | 7 m | 933 | 4 | 6–55 m |
772 | 1 | 62 m | 937 | 11 | 6–51 m |
779 | 1 | 176 m | 938 | 5 | 3–28 m |
782 | 7 | 14–51 m | 942 | 7 | 15–21 m |
783 | 1 | 43 m | 944 | 10 | 7–43 m |
784 | 2 | 172–173 m | |||
785 | 3 | 171–173 m | |||
786 | 3 | 48–175 m | |||
788 | 1 | 42 m | |||
791 | 3 | 24–33 m | |||
797 | 1 | 92 m | |||
798 | 1 | 115 m | |||
806 | 3 | 119–228 m | |||
810 | 4 | 1–129 m | |||
811 | 1 | 117 m | |||
815 | 6 | 13–131 m | |||
Mothers with ≥1 offspring | 29 | 18 | |||
Mothers with no offspring | 15 | 4 | |||
Offspring with determinate mothers | 64 | 22 | |||
Offspring with indeterminate mothers | 24 | 33 | |||
Offspring not closely related to any adult male or female | 1 | 0 |
Population | Cooleman Ridge | Mt. Painter | Isaacs Ridge | Mt. Ainslie |
---|---|---|---|---|
Cooleman Ridge | 0.083 | 0.062 | 0.065 | |
Mt. Painter | 1.736 | 0.122 | 0.165 | |
Isaacs Ridge | 3.311 | 1.702 | 0.057 | |
Mt. Ainslie | 2.652 | 1.336 | 4.378 |
Source | df | SS | MS | Est. Var. | % |
---|---|---|---|---|---|
Among Populationss | 3 | 3,926,803 | 1,308,934 | 9949 | 8% |
Among Individuals | 212 | 49,935,452 | 235,545 | 117,669 | 92% |
Within Individuals | 216 | 44,635 | 207 | 2071 | |
Total | 431 | 53,906,889 | 127,824 | 100% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; England, N.; Broadhurst, L.; Li, L.; Zhong, C.; Bush, D. Gene Flow and Recruitment Patterns among Disjunct Populations of Allocasuarina verticillata (Lam.) L.A.S. Johnson. Forests 2022, 13, 1152. https://doi.org/10.3390/f13071152
Zhang Y, England N, Broadhurst L, Li L, Zhong C, Bush D. Gene Flow and Recruitment Patterns among Disjunct Populations of Allocasuarina verticillata (Lam.) L.A.S. Johnson. Forests. 2022; 13(7):1152. https://doi.org/10.3390/f13071152
Chicago/Turabian StyleZhang, Yong, Nigel England, Linda Broadhurst, Lan Li, Chonglu Zhong, and David Bush. 2022. "Gene Flow and Recruitment Patterns among Disjunct Populations of Allocasuarina verticillata (Lam.) L.A.S. Johnson" Forests 13, no. 7: 1152. https://doi.org/10.3390/f13071152