Defining Conservation Priorities for Oak Forests in Central Mexico Based on Networks of Connectivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Modeling the Potential Distribution of Oak Forests
2.3. Oak Forest Connectivity
3. Results
3.1. Potential Distribution of Oak Forests
3.2. Oak Forests Connectivity and Conservation Priorities
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Czech, B.; Krausman, P.R.; Devers, P.K. Economic associations among causes of species endangerment in the United States: Associations among causes of species endangerment in the United States reflect the integration of economic sectors, supporting the theory and evidence that economic growth proceeds at the competitive exclusion of nonhuman species in the aggregate. Bioscience 2000, 50, 593–601. [Google Scholar]
- Kerr, J.T.; Deguise, I. Habitat loss and the limits to endangered species recovery. Ecol. Lett. 2004, 7, 1163–1169. [Google Scholar] [CrossRef]
- Santini, N.S.; Adame, M.F.; Nolan, R.H.; Miquelajauregui, Y.; Piñero, D.; Mastretta-Yañes, A.; Cuervo-Robayo, A.P.; Eamus, D. Storage of organic carbon in the soils of Mexican temperate forest. For. Ecol. Mange. 2019, 446, 115–125. [Google Scholar] [CrossRef]
- Prieto-Amparan, J.A.; Villarreal-Guerrero, F.; Martínez-Salvador, M.; Manjarrez-Domínguez, C.; Vázquez-Quintero, G.; Pinedo-Álvarez, A. Spatial near future modeling of land use and land cover changes in the temperate forests of Mexico. PeerJ 2019, 7, e6617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambin, F.E.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fisher, G.; Folke, C.; et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Chang. 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Thaden, J.V.; Binnquist-Cervantes, G.; Pérez-Maqueo, O.; Lithgow, D. Half-Century of Forest in a Neotropical Peri-Urban Landscape: Drivers and Trends. Land 2022, 11, 522. [Google Scholar] [CrossRef]
- Legarreta-Miranda, C.K.; Prieto-Amparán, J.A.; Villareal-Guerrero, F.; Morales-Nieto, C.R.; Pinedo-Alvarez, A. Long-Term Land-Use/Land-Cover Change Increased the Landscape Heterogeneity of a Fragmented Temperate Forest Mexico. Forest 2021, 12, 1099. [Google Scholar] [CrossRef]
- Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 487–515. [Google Scholar] [CrossRef] [Green Version]
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D.; et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 2015, 1, e6617. [Google Scholar] [CrossRef] [Green Version]
- Decocq, G.; Andrieu, E.; Brunet, J.; Chabrerie, O.; De Frenne, P.; De Smedt, P.; Deconchat, M.; Diekmann, M.; Ehrmann, S.; Giffard, B.; et al. Ecosystem services from small forest patches in agricultural landscapes. Curr. For. Rep. 2016, 2, 30–44. [Google Scholar] [CrossRef] [Green Version]
- Wilcove, D.S.; Rothstein, D.; Dubow, J.; Phillips, A.; Losos, E. Quantifying threats to Imperiled Species in the United States. Assessing the relative importance of habitat destruction, alien species, pollution, overexploitation, and disease. BioScience 1998, 48, 607–615. [Google Scholar] [CrossRef] [Green Version]
- Forman, R.T.T. Land Mosaics, the Ecology of Landscapes and Regions; Cambridge University Press: New York, NY, USA, 1995; p. 48. ISBN 978-0-521-47462-7. [Google Scholar]
- Taylor, P.D.; Fahrig, L.; Henein, K.; Merriam, G. Connectivity is a vital element of landscape structure. Oikos 1993, 68, 571–573. [Google Scholar] [CrossRef] [Green Version]
- Correa-Ayram, C.; Mendoza, M.; Pérez-Salicrup, D.; López-Granados, E. Identifying potential conservation areas in the Cuitzeo Lake basin, Mexico by multitemporal analysis of landscape connectivity. J. Nat. Conserv. 2014, 22, 424–435. [Google Scholar] [CrossRef]
- Saura, S. Métodos y herramientas para el análisis de la conectividad del paisaje y su integración en los planes de conservación. In Avances en el Análisis Espacial de Datos Ecológicos: Aspectos Metodológicos y Aplicados; De la Cruz, M., Maestre, F.T., Eds.; ECESPA-Asociación Española de Ecología Terrestre: Móstoles, Spain, 2013; pp. 1–46. ISBN 978-84-616-3448-4. [Google Scholar]
- Kindlmann, P.; Burel, F. Connectivity measures: A review. Landsc. Ecol. 2008, 23, 879–890. [Google Scholar] [CrossRef] [Green Version]
- Molina-Sanchez, A.; Delgado, P.; González-Rodríguez, A.; González, C.; Goméz-Tagle Rojas, A.F.; López-Toledo, L. Spatio-temporal approach for identification of critical conservation areas: A case study with two pine species from a threatened temperate forest in Mexico. Biodivers. Conserv. 2019, 28, 1863–1883. [Google Scholar] [CrossRef]
- Lookingbill, T.R.; Gardner, R.H.; Ferrari, J.R.; Keller, C.E. Combining a dispersal model with network theory to assess habitat connectivity. Ecol. Appl. 2010, 20, 427–441. [Google Scholar] [CrossRef] [PubMed]
- Damschen, E.I.; Haddad, N.M.; Orrock, J.L.; Tewksbury, J.J.; Levey, D.J. Corridors increase plant species richness at large scales. Science 2006, 313, 1284–1286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godínez-Gómez, O.; Cuervo-Robayo, A.P.; Ramírez-Mejía, D.; Tobón, W.; Alarcón, J.; Koleff, P.; Urquiza-Haas, T. Planning landscape connectivity in Mexico under global change. Biodivers. Inf. Sci. Stand. 2019, 3, e6617. [Google Scholar] [CrossRef]
- Bunn, A.G.; Urban, D.L.; Keitt, T.H. Landscape connectivity: A conservation application of graph theory. J. Environ. Manag. 2000, 59, 265–278. [Google Scholar] [CrossRef] [Green Version]
- Correa-Ayram, C.A.; Mendoza, M.E.; Etter, A.; Pérez-Salicrup, D.R. Habitat connectivity in biodiversity conservation: A review of recent studies and applications. Prog. Phys. Geogr. 2016, 40, 7–37. [Google Scholar] [CrossRef]
- Clauzel, C.; Foltête, J.C.; Girardet, X.; Vuidel, G. Graphab 2.0 user manual. Environ. Model. Softw. 2017, 38, 316–327. [Google Scholar]
- Urban, D.; Keitt, T. Landscape connectivity: A graph-theoretic perspective. Ecology 2001, 82, 1205–1218. [Google Scholar]
- Delmas, E.; Besson, M.; Marie-Helene, B.; Burkle, L.A.; Giulio, V.; Riva, D.; Marie-Joseé, F.; Gravel, D.; Guimaraes, P.L., Jr.; Hembry, D.H.; et al. Analyzing ecological networks of species interactions. Biol. Rev. 2019, 94, 16–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Applying Graph Theory in Ecological Research, 1st ed.; Cambridge University Press: Cambridge, UK, 2017; p. 328.
- Layeghifard, M.; Hwang, M.D.; Guttman, D.S. Disentangling Interactions in the Microbiome: A Network Perspective. Trend. Microbiol. 2017, 25, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Valencia-A, S. Diversidad del Género Quercus (Fagaceae) en México. Bol. Soc. Bot. Mex. 2004, 75, 33–53. [Google Scholar] [CrossRef] [Green Version]
- Nixon, K.C. Global Neotropical distribution and diversity of oak (genus Quercus) and oak forest. In Ecology and Conservation of Neotropical Montane Oak Forest; Kappelle, M., Ed.; Springer: Berlin, Germany, 2006; pp. 3–13. ISBN 978-3-540-28909-8. [Google Scholar]
- Morales-Saldaña, S.; De Luna-Bonilla, O.A.; Cadena-Rodríguez, Y.J.; Valencia-A, S. Species distribution of Quercus (Fagaceae) along an altitude gradient, reveals zonation in a hotspot. Bot. Sci. 2021, 99, 722–734. [Google Scholar] [CrossRef]
- Hipp, L.H.; Manos, P.S.; González-Rodríguez, A.; Hanh, M.; Kaproth, M.; McVay, J.D.; Valencia-Avalos, S.; Cavender-Bares, J. Sympatric parallel diversification of major oak clades in the Americas and the origins of Mexican species diversity. New Phytol. 2017, 217, 439–452. [Google Scholar] [CrossRef] [Green Version]
- Villaseñor, J.L. El bosque húmedo de montaña en México y sus plantas vasculares: Catalogo florístico-taxonómico; Comisión Nacional Para el Conocimiento y Uso de la Biodiversidad- Universidad Nacional Autónoma de México: México City, México, 2010; p. 42. ISBN 978-607-02-1557-5. [Google Scholar]
- Uribe-Salas, D.; España-Boquera, M.L.; Torres-Miranda, A. Aspectos biogeográficos y ecológicos del género Quercus (Fagaceae) en Michoacán, México. Act. Bot. Mex. 2019, 126, e1342. [Google Scholar] [CrossRef] [Green Version]
- Chávez-Vergara, B.; García-Oliva, F. Consecuencias funcionales de la diferenciación taxonómica entre secciones del género Quercus: El caso de la reabsorción de nutrientes. Biológicas 2013, 1, 1–7. [Google Scholar]
- Cavender-Bares, J. Diversity, distribution, and ecosystem services of the North American oaks. Int. Oaks 2016, 27, 37–48. [Google Scholar]
- Cavender-Bares, J.; Arroyo, M.T.K.; Abell, R.; Ackerly, D.; Ackerman, D.; Arim, M.; Belnap, J.; Castañeda, M.F.; Dee, L.; Estrada-Carmona, N.; et al. Status and trends of biodiversity and ecosystem functions underpinning nature’s benefit to people. In IPBES the IPBES Regional Assessment Report on Biodiversity and Ecosystem Services for the Americas; Rice, J., Seixas, C.S., Zaccagnini, M.E., Bedoya-Gaitán, M., Valderrama, N., Eds.; Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services: Bonn, Germany, 2018; p. 159. [Google Scholar]
- Rzedowski, J. Vegetacion de Mexico, 1st ed. digital; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: México City, México, 2006; p. 504. [Google Scholar]
- Aguilar-Romero, R.; Ghilardi, A.; Vega, E.; Skutsch, M.; Oyama, K. Sprouting productivity and allometric relationships of two oak species managed for traditional charcoal making in central Mexico. Biomass Bioenergy 2012, 36, 192–207. [Google Scholar] [CrossRef]
- Castillo-Santiago, M.A.; Ghilardi, A.; Oyama, K.; Hernández-Stefanoni, J.L.; Torres, I.; Flamenco-Sandoval, A.; Fernández, A.; Mas, J.F. Estimating the spatial distribution of woody biomass suitable for charcoal making from remote sensing and geostatistics in central Mexico. Energy Sustain. Dev. 2013, 17, 177–188. [Google Scholar] [CrossRef]
- De la Paz, P.O.; Davalos, S.R.; Cuacuil, G.E. Aprovechamiento de la madera de Encino en Mexico. Madera y Bosques 2000, 6, 3–13. [Google Scholar] [CrossRef] [Green Version]
- INEGI (2005) Uso de suelo y vegetación, escala 1:250,000, serie III (continuo nacional).Dirección General de Geografía. Instituto Nacional de Estadística y Geografía. Available online: http://www.conabio.gob.mx/informacion/metadata/gis/usv250ks3gw.xml?_httpcache=yes&_xsl=/db/metadata/xsl/fgdc_html.xsl&_indent=no (accessed on 7 May 2022).
- Asbjornsen, H.; Vogt, K.A.; Ashton, M.S. Synergistic responses of oak, pine and shrub seedlings to edge environments and drought in a fragmented tropical highland oak forest, Oaxaca, Mexico. Ecol. Manag. 2004, 192, 313–334. [Google Scholar] [CrossRef]
- Aguilar-Romero, R.; García-Oliva, F.; Pineda-García, F.; Torres, I.; Peña-Vega, E.; Ghilardi, A.; Oyama, K. Patterns of distribution of nine Quercus species along an environmental gradient in a fragmented landscape in central Mexico. Bot. Sci. 2016, 94, 471–482. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Santelisses, R.; del castillo, R.F. Factor affecting wood plant species diversity of fragmented seasonally dry oak forest in the Mixteca Alta, Oaxaca, Mexico. Rev. Mex. Biodivers. 2013, 84, 575–590. [Google Scholar] [CrossRef] [Green Version]
- Asbjornsen, H.; Ashton, M.S.; Vogt, D.J.; Palacios, S. Effects of habitat fragmentation on the buffering capacity of edge environments in a seasonally dry tropical oak forest ecosystem in Oaxaca, Mexico. Agric. Ecosyst. Environ. 2004, 103, 481–495. [Google Scholar] [CrossRef]
- Maldonado-López, Y.; Reyes-Cuevas, P.; Stone, G.N.; Nieves-Aldrey, J.L.; Oyama, K. Gall wasp community response to fragmentation of oak tree species: Importance of fragment size and isolated trees. Ecosphere 2015, 6, art31. [Google Scholar] [CrossRef] [Green Version]
- Monterrubio-Rico, T.C.; Charre-Medellin, J.F. López-Ortiz, E.I. Wild felids in temperature forest remnants in an avocado plantation landscape in Michoacán, Mexico. Southwest Nat. 2018, 63, 137–142. [Google Scholar] [CrossRef]
- Mas, J.F.; Velázquez, A.; Díaz-Gallegos, J.R.; Mayorga-Saucedo, R.; Alcántara, C.; Bocco, G.; Castro, R.; Fernández, T.; Pérez-Vega, A. Assessing land use/cover changes: A nationwide multidate spatial database for Mexico. Int. J. Appl. Earth. Obs. Geoinf. 2004, 5, 249–261. [Google Scholar] [CrossRef]
- Mas, J.F.; Lemoine-Rodríguez, R.; González, R.; López-Sánchez, J.; Piña-Garduño, A.; Herrera-Flores, E. Evaluación de las tasas de deforestación en Michoacán a escala detallada mediante un método híbrido de clasificación de imagines SPOT. Madera y Bosques 2017, 23, 119–131. [Google Scholar] [CrossRef]
- Maya-Elizarrarás, E.; Schondube, J.E. Birds, charcoal and cattle: Bird community responses to human activities in an oak forest landscape shaped by charcoal extraction. For. Ecol. Manag. 2015, 335, 118–128. [Google Scholar] [CrossRef]
- Herrera-Arroyo, M.L.; Sork, V.L.; González-Rodríguez, A.; Rocha-Ramírez, V.; Vega, E.; Oyama, K. Seed-mediated connectivity among fragmented populations of Quercus castanea (Fagaceae) in a Mexican landscape. Am. J. Bot. 2013, 100, 1663–1671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oyama, K.; Herrera-Arroyo, M.L.; Rocha-Ramírez, V.; Benítez-Malvido, J.; Ruiz-Sánchez, E.; González-Rodríguez, A. Gene flow interruption in a recently human-modified landscape: The value of isolated trees for the maintenance of genetic diversity in a Mexican endemic red oak. For. Ecol. Manag. 2017, 390, 27–35. [Google Scholar] [CrossRef]
- Ferrusquia-Villafranca, I. Geology of Mexico: A synopsis. In Biological Diversity of Mexico: Origins and Distribution, 1st ed.; Ramamoorthy, T.P., Bye, R., Lot, A., Fa, J., Eds.; Oxford University Press: New York, NY, USA, 1993; pp. 3–107. ISBN 978-0195066746. [Google Scholar]
- Bravo-Espinoza, M.; García-Oliva, F.; Patrón, E.; Mendoza, M.; Camacho, G.; López-Granados, E. La Cuenca del Lago de Cuitzeo: Problemática, Perspectiva y Retos Hacia el Desarrollo Sostenible; Consejo Estatal de Ciencia y Tecnología-Fondo Editorial Morevallado: Morelia, México, 2008; pp. 3–31. ISBN 9789707035782. [Google Scholar]
- Leal-Nares, O.A.; Mendoza, M.E.; Carranza-González, E. Análisis y modelamiento espacial de información climática en la cuenca de Cuitzeo, México. Investig. Geogr. 2010, 72, 49–67. [Google Scholar]
- Morales-Manilla, L.M. Área de Estudio. In Atlas de la Cuenca del Lago de Cuitzeo: Análisis de su Geografía y su Entorno Socioambiental, 1st ed.; Cram, S., Galicia, L., Israde-Alcantara, I., Eds.; Instituto de Geografía-UNAM/Universidad Michoacana de San Nicolás de Hidalgo: México City, México, 2010; pp. 20–23. ISBN 978-607-02-1830-9. [Google Scholar]
- Mendoza, M.; Bocco, G.; López-Granados, E.; Bravo, M. Implicaciones hidrológicas del cambio de la cobertura vegetal y uso del suelo: Una propuesta de análisis espacial a nivel regional en la cuenca cerrada del lago de Cuitzeo, Michoacán. Investig. Geogr. 2002, 49, 92–117. [Google Scholar]
- Maza-Villalobos, S.; Macedo-Santana, F.; Rodríguez-Velázquez, J.; Oyama, K.; Martínez-Ramos, M. Variación de la estructura y composición de comunidades de árboles y arbustos entre tipos de vegetación en la Cuenca de Cuitzeo, Michoacán. Bot. Sci. 2014, 92, 243–258. [Google Scholar] [CrossRef] [Green Version]
- Ramirez-Mejia, D.; Gómez-Tagle, A.; Ghilardi, A. Using aerial photography to estimate wood suitable for charcoal in managed oak forests. Environ. Res. Lett. 2018, 13, 025006. [Google Scholar] [CrossRef] [Green Version]
- De la Cruz, M.C.; Gamboa, J.H.; Sanchez, O.I.A.; Rios, S.J.C.; Rosales, S.R.; Carrillo-Parra, A. Energy characterization of charcoal produced in North Central México. Madera y Bosques 2020, 26, 025006. [Google Scholar] [CrossRef]
- Nygren, A. Community-based forest management within the context of institutional decentralization in Honduras. World Dev. 2005, 33, 639–655. [Google Scholar] [CrossRef]
- Herrera, B.; Chave, A. Criteria and indicators for sustainable management of Central American Montane oak forests. In Ecology and Conservation of Neotropical Montane Oak Forests; Kappelle, M., Ed.; Springer: Berlin, Germany, 2006; pp. 421–434. ISBN 978-3-540-28909-8. [Google Scholar]
- Devia, C.A.; Arenas, H. Evaluacion del estatus ecosistemico y de manejo de los bosques de fagáceas (Quercus humboldtii y Trigomobalanus excelsa) en el norte de la cordillera oriental (Cundinamarca, Santander y Bogota). In Desarrollo Sostenible de Los Andes; Cardenas, F., Ed.; Universidad Javeriana: Colombia, Spain, 1997; pp. 63–77. [Google Scholar]
- Wampamba, T.H.; Ghilardi, A.; Sander, K.; Chaix, K.J. Dispelling common misconceptions to improve attitudes and policy outlook on charcoal in developing countries. Energy Sustain. Dev. 2013, 17, 75–85. [Google Scholar] [CrossRef]
- Camou-Guerrero, A.; Ghilardi, A.; Mwampamba, T.; Serrano, M.; Ortiz-Ávila, T.; Vega, E.; Oyama, K.; Masera, O. Análisis de la producción de carbón vegetal en la Cuenca del Lago de Cuitzeo, Michoacán, México: Implicaciones para una producción sustentable. Investig. Ambient. 2016, 6, 127–138. [Google Scholar]
- Mendoza, M.E.; López-Granados, E.; Geneletti, D.; Pérez-Salicrup, D.R.; Salinas, V. Analyzing land cover and land use change processes at watershed level: A multitemporal study in the Lake Cuitzeo Watershed, Mexico (1975–2003). Appl. Geogr. 2011, 31, 237–250. [Google Scholar] [CrossRef]
- López-Granados, E.; Bocco, G.; Mendoza, M.; Velázquez, A.; Aguirre-Rivera, J.R. Peasant emigration and land-use change at the watershed level: A GIS-based approach in Central Mexico. Agric. Syst. 2006, 90, 62–78. [Google Scholar] [CrossRef]
- Cuervo-Robayo, A.P.; Téllez-Valdés, O.; Gómez-Albores, M.A.; Venegas-Barrera, C.S.; Manjarrez, J.; Martínez-Meyer, E. An update of high resolution monthly climate surfaces for Mexico. Int. J. Climatol. 2014, 34, 2427–2437. [Google Scholar] [CrossRef]
- Correa-Ayram, C.A.; Mendoza, M.E.; Etter, A.; Pérez-Salicrup, D.R. Potential distribution of mountain cloud forest in Michoacán, Mexico: Prioritization for conservation in the context of landscape connectivity. Environ. Manag. 2017, 60, 86–103. [Google Scholar] [CrossRef]
- ESRI, ArcGIS 10.5, Environmental Systems Research Institute: Redlands, CA, USA, 2006.
- Beaumont, L.J.; Hughes, L.; Poulsen, M. Predicting species distributions: Use of climatic parameters in BIOCLIM and its impact on predictions of species´current and future. Ecol. Modell. 2005, 186, 251–270. [Google Scholar] [CrossRef]
- Vasquez-Morales, S.G.; Téllez-Valdés, O.; Pineda-López, R.; Sanchéz-Velásquez, L.R.; Flores-Estevez, N.; Viveros-Viveros, H. Effect of climate change on the distribution of Magnolia schiedeana: A threatened species. Bot. Sci. 2014, 92, 575–585. [Google Scholar] [CrossRef] [Green Version]
- Arenas-Navarro, M.; García-Oliva, F.; Torres-Miranda, A.; Téllez-Valdés, O.; Oyama, K. Environmental filters determine the distribution of tree species in a threatened biodiversity hotspot in western Mexico. Bot. Sci. 2020, 98, 219–237. [Google Scholar] [CrossRef]
- Cobos, M.E.; Townsend-Peterson, A.; Osorio-Olvera, L.; Jiménez-García, G. An exhaustive analysis of heuristic methods for variable selection in ecological niche modeling and species distribution modeling. Ecol. Inform. 2019, 53, 100–983. [Google Scholar] [CrossRef]
- Guisan, A.; Zimmermann, N.E.; Elith, J.; Graham, C.H.; Phillips, S.; Peterson, A.T. What matters for predicting the occurrence of trees: Techniques, data, or species’ characteristics? Ecol. Monogr. 2007, 77, 615–630. [Google Scholar] [CrossRef] [Green Version]
- Maher, S.P.; Randin, C.F.; Guisan, A.; Drake, H.J. Pattern-recognition ecological niche models fit to presence-only and presence-absence data. Methods Ecol. Evol. 2014, 5, 761–770. [Google Scholar] [CrossRef]
- Hallfors, M.H.; Liao, J.; Dzurisin, J.; Grundel, R.; Hyvarinen, M.; Towle, K.; Wu, G.C.; Hellmann, J.J. Addressing potential local adaptation in species distribution models: Implications for conservation under climate change. Ecol. Appl. 2016, 26, 1154–1169. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudik, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Wollan, A.K.; Bakkestuen, V.; Kauserud, H.; Gulden, G.; Halvorsen, R. Modelling and predicting fungal distribution patterns using herbarium data. J. Biogeogr. 2008, 35, 2298–2310. [Google Scholar] [CrossRef]
- Maya-García, R.; Torres-Miranda, A.; Cuevas-Reyes, P.; Oyama, K. Morphological differentiation among populations of Quercus elliptica Née (FAGACEAE) along and environmental gradient in Mexico and Central America. Bot. Sci. 2020, 98, 50–65. [Google Scholar] [CrossRef]
- Hirzel, H.A.; Le Lay, G.; Helfer, V.; Randi, C.; Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Modell. 2006, 199, 142–152. [Google Scholar] [CrossRef]
- Webber, M.M.; Stevensen, R.D.; Diniz-Filho, J.A.F.; Grelle, C.E. Is there a correlation between abundance and environmental suitability derived from ecological niche modelling? A meta-analysis. Ecography 2016, 40, 817–828. [Google Scholar] [CrossRef]
- Gomes, H.F.V.; IJFF, D.S.; Raes, N.; Amaral, L.I.; Salomao, P.R.; Cohelo, L.S.; de Almeida Matos, F.D.; Castilho, C.V.; Lima Filho, D.A.; Cardenas, L.D.; et al. Species Distribution Modelling: Contrasting presence-only models with plot abundance data. Sci. Rep. 2018, 8, 1003. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: http://cran.r-project.org (accessed on 26 October 2019).
- Roy, A.; Bhattacharya, S.; Ramprakash, M.; Kumar, A.S. Modelling critical patches of connectivity for invasive Maling bamboo (Yushania maling) in Darjeelin Himalayas using graph theoretic approach. Ecol. Model. 2016, 329, 77–85. [Google Scholar] [CrossRef]
- Shanthala Devi, B.S.; Murthy, M.S.R.; Debnath, B.; Jha, C.S. Forest patch connectivity diagnostics and priorization using graph theory. Ecol. Model. 2013, 251, 279–287. [Google Scholar] [CrossRef]
- Correa-Ayram, C.A.; Mendoza, M.E.; Etter, A.; Pérez-Salicrup, D.R. Anthropogenic impact on habitat connectivity: A multidimensional human footprint index evaluated in a highly biodiverse landscape of Mexico. Ecol. Indic. 2017, 72, 895–909. [Google Scholar] [CrossRef]
- Sutherland, G.D.; Harestad, A.S.; Price, K.; Lertzman, K.P. Roedores Scaling of Natal Dispersal Distances in Terrestrial Birds and Mammals. Conserv. Ecol. 2000, 4, 16. [Google Scholar]
- Brown, J.L. The Mexican Jay a Model System for the Study of Large Group Size and Its Social Correlates in a Territorial Bird. In Model Systems in Behavioral Ecology Integrating Conceptual, Theoretical, and Empirical Approaches; Dugatkin, L.A., Ed.; Princeton University Press: Oxford, UK, 2001; Volume 70, pp. 338–358. ISBN 0-691-00652-0. [Google Scholar]
- Pesendorfer, M.B.; Sillet, T.S.; Koening, W.D.; Morrison, A.A. Scatter-hoarding corvids as seed dispersers for oaks and pines: A review of widely distributed mutualism and its utility to habitat restoration. Ornithol. Appl. 2016, 118, 215–237. [Google Scholar] [CrossRef]
- Ramos-Palacios, C.R.; Badano, E.I.; Flores, J.; Flores-Cano, J.A.; Flores-Flores, J.L. Distribution patterns of acorns after primary dispersión in a fragmented oak forest and their consequences on predators and dispersers. Eur. J. For. Res. 2014, 133, 391–404. [Google Scholar] [CrossRef]
- Koenig, W.D.; Vuren, D.V.; Hooge, P.N. Detectability, philopatry, and the distribution of dispersal distance in vertebrates. Trends Ecol. Evol. 1996, 11, 514–517. [Google Scholar] [CrossRef]
- López-Barrera, F.; Manson, R.H.; González-Espinoza, M.; Newton, A.C. Effects of the type of montane forest edge on oak seedling establishment along forest-edge-exterior gradients. For. Ecol. Manag. 2006, 225, 234–244. [Google Scholar] [CrossRef]
- Saura, S.; Rubio, L. A common currency for the different ways in which patches and links can contribute to habitat availability and connectivity in the landscape. Ecography 2010, 33, 523–537. [Google Scholar] [CrossRef]
- Saura, S.; Torne, J. Conefor Sensinode 2.2: A software package for quantifying the importance of habitat patches for landscape connectivity. Environ. Model. Softw. 2009, 24, 135–139. [Google Scholar] [CrossRef]
- Saura, S.; Pascual-Hortal, L. A new habitat availability index to integrate connectivity in landscape conservation planning: Comparison with existing indices and application to a case study. Lands Urban. Plan. 2007, 83, 91–103. [Google Scholar] [CrossRef]
- Bodin, Ö.; Saura, S. Ranking individual habitat patches as connectivity providers: Integrating network analysis and patch removal experiments. Ecol. Modell. 2010, 221, 2393–2405. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics 1977, 33, 363–374. [Google Scholar] [CrossRef]
- Aguilar-Romero, A.; Pineda-Garcia, F.; Paz, H.; González-Rodríguez, A.; Oyama, K. Differentiation in the water-use strategies among oak species from central Mexico. Tree Physiol. 2017, 37, 915–925. [Google Scholar] [CrossRef]
- Arenas-Navarro, M.; García-Oliva, F.; Terrazas, T.; Torres-Miranda, A.; Oyama, K. Leaf habit and stem hydraulic traits determine functional segregation of multiple oak species along a water availability gradient. Forest 2020, 11, 894. [Google Scholar] [CrossRef]
- Herrera-Fernández, A.C.; Carrillo-Parra, A.; Bucio-Pedraza, F.E.; Correa-Méndez, F.; Herrera-Bucio, R.; López-Albarrán, P.; Rutiaga-Quiñones, J.G. Densidad, composición química y poder calorífico de la madera de tres especies de encinos (Quercus candicans, Q. laurina y Q. rugosa). Cienc. Nicolaita 2017, 72, 136–154. [Google Scholar] [CrossRef]
- Correa-Ayram, C.A.; Mendoza, M.E.; Etter, A.; Pérez-Salicrup, D.R. Effect of the landscape matrix condition for prioritizing multispecies connectivity conservation in a highly biodiverse landscape of Central Mexico. Reg. Environ. Chang. 2019, 19, 149–163. [Google Scholar] [CrossRef]
- Saura, S.; Bodin, Ö.; Fortin, M.J. Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. J. Appl. Ecol. 2014, 51, 171–182. [Google Scholar] [CrossRef]
- Tulloch, A.I.; Barnes, M.D.; Ringma, J.; Fuller, R.A.; Watson, J.E. Understanding the importance of small patches of habitat for conservation. J. Appl. Ecol. 2016, 53, 418–429. [Google Scholar] [CrossRef] [Green Version]
- Lindenmayer, D. Small patches make critical contributions to biodiversity conservation. Proc. Natl. Acad. Sci. USA 2019, 116, 717–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cazetta, E.; Fahrig, L. The effects of human-altered habitat spatial pattern on frugivory and seed dispersal: A global meta-analysis. Oikos 2021, 2022, 1–13. [Google Scholar] [CrossRef]
- Fischer, J.; Lindenmayer, D.B. Small patches can be valuable for biodiversity conservation: Two case studies on birds in southeastern Australia. Biol. Conserv. 2002, 106, 129–136. [Google Scholar] [CrossRef]
- Herrera, P.L.; Sabatino, C.M.; Jaimes, R.F.; Saura, S. Landscape connectivity and the role of small habitat patches as stepping stones: An assessment of the grassland biome in South America. Biodivers. Conserv. 2017, 26, 3465–3479. [Google Scholar] [CrossRef]
- Wintle, B.A.; Kujala, H.; Whitehead, A.; Veloz, S.; Kikkala, A.; Moilanen, A.; Gordon, A.; Lentini, P.E.; Cadenhead, N.C.R.; Bekessy, S.A. Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proc. Natl. Acad. Sci. USA 2019, 116, 909–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arroyo-Rodríguez, V.; Fahrig, L.; Tabarelli, M.; Watling, J.I.; Tischendorf, L.; Benchimol, M.; Cazetta, E.; Faria, D.; Leal, I.R.; Melo, F.P.L.; et al. Designing optimal human-modified landscapes for forest biodiversity conservation. Ecol. Lett. 2020, 23, 1404–1420. [Google Scholar] [CrossRef]
Section | Species | Number of Records | Abundance | Number of Absences |
---|---|---|---|---|
Lobatae | Q. castanea Née | 58 | 2147 | 20 |
Quercus | Q. deserticola Trel. | 33 | 1720 | 45 |
Quercus | Q. laeta Liebm. | 33 | 841 | 45 |
Quercus | Q. rugosa Née | 16 | 724 | 62 |
Quercus | Q. magnoliifolia Née | 18 | 412 | 60 |
Lobatae | Q. calophylla Schltdl. & Cham. | 9 | 186 | 69 |
Lobatae | Q. crassipes Humb. et Bonpl. | 9 | 77 | 69 |
Species | Potential Distribution (ha) | AUC | Kappa Index | Jackknife |
---|---|---|---|---|
Q. rugosa | 29,332 | 0.927 | 0.75 | Bio6 |
Q. crassipes | 53,159 | 0.915 | 0.72 | Bio6, Bio3 |
Q. calophylla | 26,107 | 0.953 | 0.82 | Bio17, Bio 3 |
Q. castanea | 131,235 | 0.944 | 0.62 | Bio17, Bio13, Bio6 |
Q. magnoliifolia | 23,756 | 0.938 | 0.6 | Bio17, Bio12 |
Q. deserticola | 112,626 | 0.971 | 0.54 | Bio17, Bio12 |
Q. laeta | 112,857 | 0.933 | 0.5 | Bio17, Bio15, Bio3 |
Id | Area (ha) | dPCk | dPCintrak | dPCfluxk | dPCconnectk |
---|---|---|---|---|---|
260 | 10872.24 | 41.65181 | 3.212065 | 26.60075 | 11.83899 |
68 | 4307.75 | 18.12301 | 0.5042506 | 12.18701 | 5.431743 |
169 | 3946.53 | 15.38346 | 0.4232306 | 10.98903 | 3.9712 |
340 | 3990.40 | 14.11789 | 0.4326927 | 10.85583 | 2.829373 |
305 | 2160.77 | 10.28708 | 0.1268711 | 6.240596 | 3.91961 |
467 | 3374.96 | 8.892004 | 0.3095168 | 8.125087 | 0.457401 |
364 | 1940.08 | 8.467266 | 0.1022791 | 5.423489 | 2.941498 |
52 | 2424.15 | 8.360247 | 0.159686 | 6.863414 | 1.337147 |
325 | 2687.29 | 7.601075 | 0.1962339 | 7.324643 | 0.0801979 |
428 | 2595.72 | 7.559555 | 0.1830894 | 7.12894 | 0.2475255 |
482 | 2842.12 | 6.465653 | 0.2194982 | 5.553323 | 0.6928327 |
99 | 1742.56 | 6.214962 | 0.0825126 | 5.168018 | 0.9644318 |
323 | 1192.02 | 5.345492 | 0.0386115 | 3.375878 | 1.931003 |
154 | 1396.93 | 4.274069 | 0.0530271 | 4.108141 | 0.1129007 |
29 | 925.97 | 3.834555 | 0.0232992 | 2.700102 | 1.111154 |
430 | 941.82 | 3.665096 | 0.0241038 | 2.53982 | 1.101172 |
491 | 3067.54 | 3.606312 | 0.2556975 | 3.049304 | 0.3013105 |
277 | 589.30 | 3.257719 | 0.0094368 | 1.701629 | 1.546653 |
201 | 924.20 | 2.691946 | 0.0232101 | 2.613213 | 0.0555231 |
181 | 706.88 | 2.683202 | 0.013578 | 2.073332 | 0.5962927 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Mendoza, A.; Oyama, K.; Pineda-García, F.; Aguilar-Romero, R. Defining Conservation Priorities for Oak Forests in Central Mexico Based on Networks of Connectivity. Forests 2022, 13, 1085. https://doi.org/10.3390/f13071085
López-Mendoza A, Oyama K, Pineda-García F, Aguilar-Romero R. Defining Conservation Priorities for Oak Forests in Central Mexico Based on Networks of Connectivity. Forests. 2022; 13(7):1085. https://doi.org/10.3390/f13071085
Chicago/Turabian StyleLópez-Mendoza, Alejandro, Ken Oyama, Fernando Pineda-García, and Rafael Aguilar-Romero. 2022. "Defining Conservation Priorities for Oak Forests in Central Mexico Based on Networks of Connectivity" Forests 13, no. 7: 1085. https://doi.org/10.3390/f13071085
APA StyleLópez-Mendoza, A., Oyama, K., Pineda-García, F., & Aguilar-Romero, R. (2022). Defining Conservation Priorities for Oak Forests in Central Mexico Based on Networks of Connectivity. Forests, 13(7), 1085. https://doi.org/10.3390/f13071085