The Effect of Thinning Management on the Carbon Density of the Tree Layers in Larch–Birch Mixed Natural Secondary Forests of the Greater Khingan Range, Northeastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of Study Area
2.2. Selection of Thinning Sample Site
2.3. Field Measurement and Sampling
2.4. Carbon Content Based on Chemical Analysis
2.5. Aboveground Tree Biomass and Carbon Density
2.6. Statistical Analysis
3. Results
3.1. Effect of Thinning on Stand Growth
Effect of Thinning on DBH of the Tree
3.2. Effect of Thinning on Organ Carbon Concentration of the Tree Species
3.3. Effect of Thinning on the Biomass of Tree Layers
3.3.1. Effect of Thinning on the Biomass of Standard Individual Trees
3.3.2. Effect of Thinning on AGB of Tree Layers
3.4. Effect of Thinning on the Carbon Density of Tree Layers
3.4.1. Effect of Thinning on Carbon Density of Standard Individual Trees
3.4.2. Effect of Thinning on AGC of Tree Layers
4. Discussion
4.1. Effect of Thinning on Forest Growth
4.2. Effect of Thinning on Carbon Concentrations
4.3. Effect of Thinning on Biomass
4.4. Effect of Thinning on Carbon Density
4.5. Limitations of This Study and Suggestions for the Future
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Ghussain, L. Global warming: Review on driving forces and mitigation. Environ. Prog. Sustain. Energy 2019, 38, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Scheffer, M.; Brovkin, V.; Cox, P.M. Positive feedback between global warming and atmospheric CO2 concentration inferred from past climate change. Geophys. Res. Lett. 2006, 33, gl025044. [Google Scholar] [CrossRef]
- Wang, J.; Quan, Q.; Chen, W.; Tian, D.; Ciais, P.; Crowther, T.W.; Mack, M.C.; Poulter, B.; Tian, H.; Luo, Y.; et al. Increased CO2 emissions surpass reductions of non-CO2 emissions more under higher experimental warming in an alpine meadow. Sci. Total Env. 2021, 769, 144559. [Google Scholar] [CrossRef] [PubMed]
- Carvalhais, N.; Forkel, M.; Khomik, M.; Bellarby, J.; Jung, M.; Migliavacca, M.; Mu, M.; Saatchi, S.; Santoro, M.; Thurner, M.; et al. Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature 2014, 514, 213–217. [Google Scholar] [CrossRef] [Green Version]
- Węgiel, A.; Polowy, K. Aboveground Carbon Content and Storage in Mature Scots Pine Stands of Different Densities. Forests 2020, 11, 240. [Google Scholar] [CrossRef] [Green Version]
- Nölte, A.; Meilby, H.; Yousefpour, R. Multi-purpose forest management in the tropics: Incorporating values of carbon, biodiversity and timber in managing Tectona grandis (teak) plantations in Costa Rica. For. Ecol. Manag. 2018, 422, 345–357. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Zhou, M.; Lv, J.; Chen, K. Trends in global research in forest carbon sequestration: A bibliometric analysis. J. Clean. Prod. 2020, 252, 119908. [Google Scholar] [CrossRef]
- Jandl, R.; Lindner, M.; Vesterdal, L.; Bauwens, B.; Baritz, R.; Hagedorn, F.; Johnson, D.W.; Minkkinen, K.; Byrne, K.A. How strongly can forest management influence soil carbon sequestration? Geoderma 2007, 137, 253–268. [Google Scholar] [CrossRef]
- Aldea, J.; Bravo, F.; Bravo-Oviedo, A.; Ruiz-Peinado, R.; Rodríguez, F.; del Río, M. Thinning enhances the species-specific radial increment response to drought in Mediterranean pine-oak stands. Agric. For. Meteorol. 2017, 237, 371–383. [Google Scholar] [CrossRef]
- Guan, H.; Dong, X.; Zhang, T.; Wang, Z.; Ruan, J. Comparing the Stand Structure of a Secondary Mixed Forest with Three Broad-Leaved Forests in China’s Greater Khingan Mountains. Pol. J. Environ. Stud. 2020, 29, 5. [Google Scholar] [CrossRef]
- Fantini, A.C.; Schuch, C.; Siminski, A.; Siddique, I. Small-scale Management of Secondary Forests in the Brazilian Atlantic Forest. Floresta Ambiente 2019, 26, 1–12. [Google Scholar] [CrossRef]
- Nicoll, B.C.; Connolly, T.; Gardiner, B.A. Changes in Spruce Growth and Biomass Allocation Following Thinning and Guying Treatments. Forests 2019, 10, 253. [Google Scholar] [CrossRef] [Green Version]
- Kumi, J.A.; Kyereh, B.; Ansong, M.; Asante, W. Influence of management practices on stand biomass, carbon stocks and soil nutrient variability of teak plantations in a dry semi-deciduous forest in Ghana. Trees For. People 2021, 3, 100049. [Google Scholar] [CrossRef]
- Babst, F.; Bouriaud, O.; Papale, D.; Gielen, B.; Janssens, I.A.; Nikinmaa, E.; Ibrom, A.; Wu, J.; Bernhofer, C.; Kostner, B.; et al. Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites. New Phytol. 2014, 201, 1289–1303. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.-F.; Shen, Y.-Y.; Jin, Y.-D.; Hong, Y.; Liu, Y.-Y.; Li, Y.-Q.; Liu, R.; Zhang, Z.-W.; Jiang, C.-Q.; Wang, Y.-J. Selective thinning and initial planting density management promote biomass and carbon storage in a chronosequence of evergreen conifer plantations in Southeast China. Glob. Ecol. Conserv. 2020, 24, e01216. [Google Scholar] [CrossRef]
- Bravo-Oviedo, A.; Ruiz-Peinado, R.; Modrego, P.; Alonso, R.; Montero, G. Forest thinning impact on carbon stock and soil condition in Southern European populations of P. sylvestris L. For. Ecol. Manag. 2015, 357, 259–267. [Google Scholar] [CrossRef]
- Griscom, B.W.; Busch, J.; Cook-Patton, S.C.; Ellis, P.W.; Funk, J.; Leavitt, S.M.; Lomax, G.; Turner, W.R.; Chapman, M.; Engelmann, J.; et al. National mitigation potential from natural climate solutions in the tropics. Philos. Trans. R Soc. Lond. B. Biol. Sci. 2020, 375, 20190126. [Google Scholar] [CrossRef] [Green Version]
- Poorter, L.; Bongers, F.; Aide, T.M.; Almeyda Zambrano, A.M.; Balvanera, P.; Becknell, J.M.; Boukili, V.; Brancalion, P.H.; Broadbent, E.N.; Chazdon, R.L.; et al. Biomass resilience of Neotropical secondary forests. Nature 2016, 530, 211–214. [Google Scholar] [CrossRef]
- Zhang, T.; Dong, X.; Guan, H.; Meng, Y.; Ruan, J.; Wang, Z. Effect of Thinning on the Spatial Structure of a Larix gmelinii Rupr. Secondary Forest in the Greater Khingan Mountains. Forests 2018, 9, 720. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Zhou, G.; Liu, S.; Sun, P.; Agathokleous, E. Impacts of forest management intensity on carbon accumulation of China’s forest plantations. For. Ecol. Manag. 2020, 472, 118252. [Google Scholar] [CrossRef]
- Ruiz-Peinado, R.; Bravo-Oviedo, A.; Montero, G.; del Río, M. Carbon stocks in a Scots pine afforestation under different thinning intensities management. Mitig. Adapt. Strateg. Glob. Chang. 2014, 21, 1059–1072. [Google Scholar] [CrossRef]
- Yu, G.; Chen, Z.; Piao, S.; Peng, C.; Ciais, P.; Wang, Q.; Li, X.; Zhu, X. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proc. Natl. Acad. Sci. USA 2014, 111, 4910–4915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nave, L.E.; Vance, E.D.; Swanston, C.W.; Curtis, P.S. Harvest impacts on soil carbon storage in temperate forests. For. Ecol. Manag. 2010, 259, 857–866. [Google Scholar] [CrossRef]
- James, J.N.; Kates, N.; Kuhn, C.D.; Littlefield, C.E.; Miller, C.W.; Bakker, J.D.; Butman, D.E.; Haugo, R.D. The effects of forest restoration on ecosystem carbon in western North America: A systematic review. For. Ecol. Manag. 2018, 429, 625–641. [Google Scholar] [CrossRef]
- Hu, M.; Zou, B.; Huang, Z.; Wang, S.; Su, X.; Ding, X.; Zheng, G.; Chen, H.Y.H. Fine root biomass and necromass dynamics of Chinese fir plantations and natural secondary forests in subtropical China. For. Ecol. Manag. 2021, 496, 119413. [Google Scholar] [CrossRef]
- Yuan, Z.; Ali, A.; Sanaei, A.; Ruiz-Benito, P.; Jucker, T.; Fang, L.; Bai, E.; Ye, J.; Lin, F.; Fang, S.; et al. Few large trees, rather than plant diversity and composition, drive the above-ground biomass stock and dynamics of temperate forests in northeast China. For. Ecol. Manag. 2021, 481, 118698. [Google Scholar] [CrossRef]
- Huang, C.; Liang, Y.; He, H.S.; Wu, M.M.; Liu, B.; Ma, T. Sensitivity of aboveground biomass and species composition to climate change in boreal forests of Northeastern China. Ecol. Model. 2021, 445, 109472. [Google Scholar] [CrossRef]
- Mu, C.; Lu, H.; Wang, B.; Bao, X.; Cui, W. Short-term effects of harvesting on carbon storage of boreal Larix gmelinii–Carex schmidtii forested wetlands in Daxing’anling, northeast China. For. Ecol. Manag. 2013, 293, 140–148. [Google Scholar] [CrossRef]
- Roberts, S.D.; Harrington, C.A. Individual tree growth response to variable-density thinning in coastal Pacific Northwest forests. For. Ecol. Manag. 2008, 255, 2771–2781. [Google Scholar] [CrossRef]
- Vernon, M.J.; Sherriff, R.L.; van Mantgem, P.; Kane, J.M. Thinning, tree-growth, and resistance to multi-year drought in a mixed-conifer forest of northern California. For. Ecol. Manag. 2018, 422, 190–198. [Google Scholar] [CrossRef]
- Bosela, M.; Štefančík, I.; Marčiš, P.; Rubio-Cuadrado, Á.; Lukac, M. Thinning decreases above-ground biomass increment in central European beech forests but does not change individual tree resistance to climate events. Agric. For. Meteorol. 2021, 306, 108441. [Google Scholar] [CrossRef]
- Molina, E.; Valeria, O.; De Grandpre, L.; Ramirez, J.A.; Cyr, D.; Boulanger, Y. Projecting future aboveground biomass and productivity of managed eastern Canadian mixed wood boreal forest in response to climate change. For. Ecol. Manag. 2021, 487, 119016. [Google Scholar] [CrossRef]
- Gao, B.; Taylor, A.R.; Chen, H.Y.H.; Wang, J. Variation in total and volatile carbon concentration among the major tree species of the boreal forest. For. Ecol. Manag. 2016, 375, 191–199. [Google Scholar] [CrossRef]
- Pompa-García, M.; Sigala-Rodríguez, J.; Jurado, E.; Flores, J. Tissue carbon concentration of 175 Mexican forest species. Iforest Biogeosci. For. 2017, 10, 754. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Wang, C.; Wang, X.; Quan, X. Carbon concentration variability of 10 Chinese temperate tree species. For. Ecol. Manag. 2009, 258, 722–727. [Google Scholar] [CrossRef]
- Ahmad, B.; Wang, Y.; Hao, J.; Liu, Y.; Bohnett, E.; Zhang, K. Variation of carbon density components with overstory structure of larch plantations in northwest China and its implication for optimal forest management. For. Ecol. Manag. 2021, 496, 119399. [Google Scholar] [CrossRef]
- Moreau, G.; Auty, D.; Pothier, D.; Shi, J.; Lu, J.; Achim, A.; Xiang, W. Long-term tree and stand growth dynamics after thinning of various intensities in a temperate mixed forest. For. Ecol. Manag. 2020, 473, 118311. [Google Scholar] [CrossRef]
- Schwartz, G.; Falkowski, V.; Peña-Claros, M. Natural regeneration of tree species in the Eastern Amazon: Short-term responses after reduced-impact logging. For. Ecol. Manag. 2017, 385, 97–103. [Google Scholar] [CrossRef]
- Aragón, S.; Salinas, N.; Nina-Quispe, A.; Qquellon, V.H.; Paucar, G.R.; Huaman, W.; Porroa, P.C.; Olarte, J.C.; Cruz, R.; Muñiz, J.G.; et al. Aboveground biomass in secondary montane forests in Peru: Slow carbon recovery in agroforestry legacies. Glob. Ecol. Conserv. 2021, 28, e01696. [Google Scholar] [CrossRef]
- Hotta, W.; Morimoto, J.; Inoue, T.; Suzuki, S.N.; Umebayashi, T.; Owari, T.; Shibata, H.; Ishibashi, S.; Hara, T.; Nakamura, F. Recovery and allocation of carbon stocks in boreal forests 64 years after catastrophic windthrow and salvage logging in northern Japan. For. Ecol. Manag. 2020, 468, 118169. [Google Scholar] [CrossRef]
Thinning Intensity | Longitude (E) | Latitude (N) | Stem-Number (ha−1) | 12 Years after Thinning | The Year after Thinning | ||
---|---|---|---|---|---|---|---|
DBH (cm) | H (m) | DBH (cm) | H (m) | ||||
CK | 124°30′00.8″ | 51°38′14.4″ | 1575 | 14.08 | 13.1 | 8.34 | 9.15 |
16.7% | 124°28′12.3″ | 51°38′47.0″ | 1125 | 13.78 | 13.1 | 6.96 | 10.33 |
25.5% | 124°26′30.1″ | 51°39′14.8″ | 1475 | 11.91 | 11.6 | 6.19 | 7.78 |
34.4% | 124°29′40.4″ | 51°38′19.3″ | 1950 | 11.31 | 10.09 | 7.06 | 9.69 |
49.6% | 124°28′00.2″ | 51°38′49.0″ | 950 | 15.54 | 13.85 | 7.61 | 10.48 |
59.9% | 124°26′37.2″ | 51°39′12.0″ | 1175 | 12.17 | 11.7 | 7.06 | 9.35 |
Species | Organs | a | b | R2 | SE |
---|---|---|---|---|---|
Larch | Stem | 0.0317 | 2.6930 | 0.9927 | 0.1555 |
Branch | 0.0054 | 2.8282 | 0.9547 | 0.5615 | |
Leaf | 0.0141 | 1.9130 | 0.9593 | 0.8542 | |
Bark | 0.3354 | 1.1251 | 0.9893 | 0.0948 | |
birch | Stem | 0.0529 | 2.5638 | 0.9085 | 0.2641 |
Branch | 0.0002 | 3.7282 | 0.9297 | 0.3114 | |
Leaf | 0.0002 | 3.5840 | 0.9041 | 0.3358 | |
Bark | 0.0013 | 2.7120 | 0.9930 | 0.1740 |
Thinning Intensity | Mean ± SD/cm | Skewness | Kurtosis | Max./cm | Min./cm |
---|---|---|---|---|---|
CK | 14.08 ± 4.53b | 0.46 | −0.20 | 27.00 | 5.90 |
16.7% | 13.78 ± 4.82b | 0.49 | −0.24 | 28.20 | 5.20 |
25.5% | 11.91 ± 4.01c | 0.75 | 1.55 | 28.90 | 3.10 |
34.4% | 11.31 ± 3.66c | 0.50 | −0.49 | 23.10 | 5.60 |
49.6% | 15.54 ± 4.51a | 0.16 | −0.07 | 26.80 | 5.50 |
59.9% | 12.17 ± 4.00c | 0.49 | −0.38 | 24.00 | 5.70 |
Species | Organs | Thinning Intensity | |||||
---|---|---|---|---|---|---|---|
0% | 16.7% | 25.5% | 34.4% | 49.6% | 59.9% | ||
Larch | stem | 0.4695 ± 0.0135a | 0.4545 ± 0.0172a | 0.4630 ± 0.0303a | 0.4530 ± 0.0262a | 0.4524 ± 0.0198a | 0.4405 ± 0.0066a |
leaf | 0.4559 ± 0.0162ab | 0.4610 ± 0.0120a | 0.4445 ± 0.0115bc | 0.4392 ± 0.0140c | 0.4621 ± 0.0132a | 0.4482 ± 0.0087bc | |
branch | 0.4561 ± 0.0714a | 0.4392 ± 0.0074a | 0.4579 ± 0.0100a | 0.4397 ± 0.0182a | 0.4345 ± 0.0174a | 0.4602 ± 0.0370a | |
bark | 0.4741 ± 0.0064a | 0.4701 ± 0.0120a | 0.4620 ± 0.0083a | 0.4686 ± 0.0253a | 0.4708 ± 0.0106a | 0.4740 ± 0.0093a | |
Birch | stem | 0.4206 ± 0.0180ab | 0.4155 ± 0.0233b | 0.4500 ± 0.0267ab | 0.4272 ± 0.0113ab | 0.4425 ± 0.0140ab | 0.4575 ± 0.0342a |
leaf | 0.4308 ± 0.0154c | 0.4457 ± 0.0102a | 0.4447 ± 0.0072a | 0.4447 ± 0.0087a | 0.4426 ± 0.0111ab | 0.4342 ± 0.0092bc | |
branch | 0.4297 ± 0.0151b | 0.4412 ± 0.0172ab | 0.4462 ± 0.0129b | 0.4278 ± 0.0238ab | 0.4522 ± 0.0228a | 0.4416 ± 0.0195ab | |
bark | 0.7434 ± 0.0404a | 0.7632 ± 0.0554a | 0.7311 ± 0.0387a | 0.7681 ± 0.0584a | 0.7656 ± 0.0254a | 0.7415 ± 0.0689a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Y.; Zhang, Y.; Li, C.; Wang, Z.; Li, Y. The Effect of Thinning Management on the Carbon Density of the Tree Layers in Larch–Birch Mixed Natural Secondary Forests of the Greater Khingan Range, Northeastern China. Forests 2022, 13, 1035. https://doi.org/10.3390/f13071035
Meng Y, Zhang Y, Li C, Wang Z, Li Y. The Effect of Thinning Management on the Carbon Density of the Tree Layers in Larch–Birch Mixed Natural Secondary Forests of the Greater Khingan Range, Northeastern China. Forests. 2022; 13(7):1035. https://doi.org/10.3390/f13071035
Chicago/Turabian StyleMeng, Yongbin, Yuanyuan Zhang, Chunxu Li, Zichun Wang, and Yaoxiang Li. 2022. "The Effect of Thinning Management on the Carbon Density of the Tree Layers in Larch–Birch Mixed Natural Secondary Forests of the Greater Khingan Range, Northeastern China" Forests 13, no. 7: 1035. https://doi.org/10.3390/f13071035
APA StyleMeng, Y., Zhang, Y., Li, C., Wang, Z., & Li, Y. (2022). The Effect of Thinning Management on the Carbon Density of the Tree Layers in Larch–Birch Mixed Natural Secondary Forests of the Greater Khingan Range, Northeastern China. Forests, 13(7), 1035. https://doi.org/10.3390/f13071035