Management or Climate and Which One Has the Greatest Impact on Forest Soil’s Protective Value? A Case Study in Romanian Mountains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Developing Protective Value Index (PVI)
2.3. LandClim Model
2.4. Climate Scenarios
2.5. Management Types
2.6. Data Processing
3. Results
3.1. PVI Testing on Diverse Forest Stands Included in the Soil Protection Category
3.2. Influence of Management and Climate Scenarios on PVI and Its Indicators
3.3. Potential Effects of Climate Change and Management Strategies on Forests Included in the Soil Protection Category
4. Discussion
4.1. The PVI and Indicators Evolution in Diverse Forest Stands
4.2. Influence of Management and Climate Scenarios on PVI and Its Indicators
4.3. Potential Effects of Climate Change and Management Strategies on Forests Included in the Soil Protection Category
4.4. Limitations of PVI
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Thomas, J.; Brunette, M.; Leblois, A. The Determinants of Adapting Forest Management Practices to Climate Change: Lessons from a Survey of French Private Forest Owners. For. Policy Econ. 2022, 135, 102662. [Google Scholar] [CrossRef]
- Ma, W.; Zhou, X.; Liang, J.; Zhou, M. Coastal Alaska Forests under Climate Change: What to Expect? For. Ecol. Manag. 2019, 448, 432–444. [Google Scholar] [CrossRef]
- Senf, C.; Buras, A.; Zang, C.S.; Rammig, A.; Seidl, R. Excess Forest Mortality Is Consistently Linked to Drought across Europe. Nat. Commun. 2020, 11, 6200. [Google Scholar] [CrossRef] [PubMed]
- Albrich, K.; Rammer, W.; Seidl, R. Climate Change Causes Critical Transitions and Irreversible Alterations of Mountain Forests. Glob. Chang. Biol. 2020, 26, 4013–4027. [Google Scholar] [CrossRef]
- Duduman, M.-L.; Vasian, I. Effects of Volatile Emissions of Picea Abies Fresh Debris on Ips Duplicatus Response to Characteristic Synthetic Pheromone. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 2012, 40, 308–313. [Google Scholar] [CrossRef]
- Valdes-Correcher, E.; Moreira, X.; Augusto, L.; Barbaro, L.; Bouget, C.; Bouriaud, O.; Branco, M.; Centenaro, G.; Csoka, G.; Damestoy, T.; et al. Search for Top-down and Bottom-up Drivers of Latitudinal Trends in Insect Herbivory in Oak Trees in Europe. Glob. Ecol. Biogeogr. 2021, 30, 651–665. [Google Scholar] [CrossRef]
- Schuler, L.J.; Bugmann, H.; Snell, R.S. From Monocultures to Mixed-Species Forests: Is Tree Diversity Key for Providing Ecosystem Services at the Landscape Scale? Landsc. Ecol. 2017, 32, 1499–1516. [Google Scholar] [CrossRef]
- Thrippleton, T.; Lüscher, F.; Bugmann, H. Climate Change Impacts across a Large Forest Enterprise in the Northern Pre-Alps: Dynamic Forest Modelling as a Tool for Decision Support. Eur. J. For. Res. 2020, 139, 483–498. [Google Scholar] [CrossRef]
- Elkin, C.; Gutiérrez, A.G.; Leuzinger, S.; Manusch, C.; Temperli, C.; Rasche, L.; Bugmann, H. A 2 °C Warmer World Is Not Safe for Ecosystem Services in the European Alps. Glob. Chang. Biol. 2013, 19, 1827–1840. [Google Scholar] [CrossRef]
- Assessment, M.E. Ecosystems and Human Well-Being: Wetlands and Water; World Resources Institute: Washington, DC, USA, 2005; ISBN 1569735972. [Google Scholar]
- Terranova, O.; Antronico, L.; Coscarelli, R.; Iaquinta, P. Soil Erosion Risk Scenarios in the Mediterranean Environment Using RUSLE and GIS: An Application Model for Calabria (Southern Italy). Geomorphology 2009, 112, 228–245. [Google Scholar] [CrossRef]
- Dupire, S.; Bourrier, F.; Monnet, J.M.; Bigot, S.; Borgniet, L.; Berger, F.; Curt, T. The Protective Effect of Forests against Rockfalls across the French Alps: Influence of Forest Diversity. For. Ecol. Manag. 2016, 382, 269–279. [Google Scholar] [CrossRef]
- Zhao, C.; Yang, N.; Wang, Z.; Liu, S.; Dong, X.; Xin, W. Benefit Assessment of Soil and Water Conservation from Cropland to Forest in Hilly Loess Plateau at Qinghai. Springerplus 2013, 2, S7. [Google Scholar] [CrossRef] [PubMed]
- Blattert, C.; Lemm, R.; Thees, O.; Lexer, M.J.; Hanewinkel, M. Management of Ecosystem Services in Mountain Forests: Review of Indicators and Value Functions for Model Based Multi-Criteria Decision Analysis. Ecol. Indic. 2017, 79, 391–409. [Google Scholar] [CrossRef]
- Cordonnier, T.; Berger, F.; Elkin, C.; Lämås, T.; Martinez, M. Models and Linker Functions (Indicators) for Ecosystem Services. FP7-289437-ARANGE/D2.2, 2013. Available online: http://www.arange-project.eu/wpcontent/uploads/ARANGE-D2.2_linkerfunctions.pdf (accessed on 10 December 2021).
- Briner, S.; Elkin, C.; Huber, R. Evaluating the Relative Impact of Climate and Economic Changes on Forest and Agricultural Ecosystem Services in Mountain Regions. J. Environ. Manag. 2013, 129, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Zlatanov, T.; Elkin, C.; Irauschek, F.; Lexer, M.J. Impact of Climate Change on Vulnerability of Forests and Ecosystem Service Supply in Western Rhodopes Mountains. Reg. Environ. Chang. 2017, 17, 79–91. [Google Scholar] [CrossRef]
- Bangroo, S.A.; Najar, G.R.; Rasool, A. Effect of Altitude and Aspect on Soil Organic Carbon and Nitrogen Stocks in the Himalayan Mawer Forest Range. Catena 2017, 158, 63–68. [Google Scholar] [CrossRef]
- Song, Z.; Seitz, S.; Li, J.; Goebes, P.; Schmidt, K.; Kühn, P.; Shi, X.; Scholten, T. Tree Diversity Reduced Soil Erosion by Affecting Tree Canopy and Biological Soil Crust Development in a Subtropical Forest Experiment. For. Ecol. Manag. 2019, 444, 69–77. [Google Scholar] [CrossRef]
- Park, J.; Kim, H.S.; Jo, H.K.; Jung, B. The Influence of Tree Structural and Species Diversity on Temperate Forest Productivity and Stability in Korea. Forests 2019, 10, 1113. [Google Scholar] [CrossRef]
- Duduman, G.; Barnoaiea, I.; Avăcăriței, D.; Barbu, C.O.; Coșofreț, V.-C.; Dănilă, I.-C.; Măciucă, A.; Drăgoi, M. Aboveground Biomass of Living Trees Depends on Topographic Conditions and Tree Diversity in Temperate Montane Forests from Slătioara-Rarău Area (Romania). Forests 2021, 12, 1507. [Google Scholar] [CrossRef]
- Schwarz, M.; Preti, F.; Giadrossich, F.; Lehmann, P.; Or, D. Quantifying the Role of Vegetation in Slope Stability: A Case Study in Tuscany (Italy). Ecol. Eng. 2010, 36, 285–291. [Google Scholar] [CrossRef]
- Frehner, M.; Wasser, B.; Schwitter, R. Nachhaltigkeit Und Erfolgskontrolle Im Schutzwald. Wegleitung für Pflegemassnahmen Wäldern mit Schutzfunktion, Vollzug Umwelt; Bundesamt für Umwelt (BAFU): Ittigen, Switzerland, 2005. [Google Scholar]
- IFN Inventarul Forestier National Ciclul 2 (2013–2018). Available online: http://roifn.ro/site/ifn-ciclul-ii/ (accessed on 29 October 2020).
- Normele Tehnice Privind Elaborarea Amenajamentelor Silvice, Mmodificarea Prevederilor Acestora și Schimbarea Categoriei de Folosință a Terenurilor din Fondul Forestier. Monitorul Oficial nr. 730 din 23.08.2018. Available online: https://lege5.ro/Gratuit/gi4tcojugmyq/ordinul-nr-766-2018-pentru-aprobarea-normelor-tehnice-privind-elaborarea-amenajamentelor-silvice-modificarea-prevederilor-acestora-si-schimbarea-categoriei-de-folosinta-a-terenurilor-din-fondul-forest (accessed on 15 January 2022).
- RNP Regia Națională a Pădurilor (ROMSILVA) Aspecte Generale Fond Forestier. Available online: http://www.rosilva.ro/articole/prezentare_generala__p_178.htm (accessed on 29 October 2020).
- Alberdi, I.; Bender, S.; Riedel, T.; Avitable, V.; Boriaud, O.; Bosela, M.; Camia, A.; Cañellas, I.; Castro Rego, F.; Fischer, C.; et al. Assessing Forest Availability for Wood Supply in Europe. For. Policy Econ. 2020, 111, 102032. [Google Scholar] [CrossRef] [PubMed]
- Anonymous. Forest Management Plan of Râșca Forest District; ICAS: Suceava State Forest Administration, Romania, 2010. [Google Scholar]
- Anonymous. Forest Management Plan of Frasin Forest District; ICAS: Suceava State Forest Administration, Romania, 2010. [Google Scholar]
- Anonymous. Forest Management Plan of Pojorâta Forest District; ICAS: Suceava State Forest Administration, Romania, 2010. [Google Scholar]
- Anonymous. Forest Management Plan of Măneciu Forest District; ICAS: Prahova State Forest Administration, Romania , 2010. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Staudhammer, C.L.; LeMay, V.M. Introduction and Evaluation of Possible Indices of Stand Structural Diversity. Can. J. For. Res. 2001, 31, 1105–1115. [Google Scholar] [CrossRef]
- Clinovschi, F. Dendrologie; Editura Universităţii Suceava: Suceava, Romania, 2005; ISBN 973-666-157-1. [Google Scholar]
- Stănescu, V.; Șofletea, N.; Popescu, O. Woody Forest Flora of Romania; Editura Ceres: București, Romania, 1997. (In Romanian) [Google Scholar]
- Bugmann, H. A Review of Forest Gap Models. Clim. Chang. 2001, 51, 259–305. [Google Scholar] [CrossRef]
- Schumacher, S.; Bugmann, H.; Mladenoff, D.J. Improving the Formulation of Tree Growth and Succession in a Spatially Explicit Landscape Model. Ecol. Modell. 2004, 180, 175–194. [Google Scholar] [CrossRef]
- Schumacher, S.; Bugmann, H. The Relative Importance of Climatic Effects, Wildfires and Management for Future Forest Landscape Dynamics in the Swiss Alps. Glob. Chang. Biol. 2006, 12, 1435–1450. [Google Scholar] [CrossRef]
- Henne, P.D.; Elkin, C.M.; Reineking, B.; Bugmann, H.; Tinner, W. Did Soil Development Limit Spruce (Picea Abies) Expansion in the Central Alps during the Holocene? Testing a Palaeobotanical Hypothesis with a Dynamic Landscape Model. J. Biogeogr. 2011, 38, 933–949. [Google Scholar] [CrossRef]
- Schwörer, C.; Henne, P.D.; Tinner, W. A Model-Data Comparison of Holocene Timberline Changes in the Swiss Alps Reveals Past and Future Drivers of Mountain Forest Dynamics. Glob. Chang. Biol. 2014, 20, 1512–1526. [Google Scholar] [CrossRef]
- Thrippleton, T.; Dolos, K.; Perry, G.L.W.; Groeneveld, J.; Reineking, B. Simulating Long-Term Vegetation Dynamics Using a Forest Landscape Model: The Post-Taupo Succession on Mt Hauhungatahi, North Island, New Zealand. N. Z. J. Ecol. 2014, 38, 26–38. [Google Scholar]
- Elkin, C.; Reineking, B.; Bigler, C.; Bugmann, H. Do Small-Grain Processes Matter for Landscape Scale Questions? Sensitivity of a Forest Landscape Model to the Formulation of Tree Growth Rate. Landsc. Ecol. 2012, 27, 697–711. [Google Scholar] [CrossRef]
- Temperli, C.; Bugmann, H.; Elkin, C.M. Cross-Scale Interactions among Bark Beetles, Climate Change, and Wind Disturbances: A Landscape Modeling Approach. Ecol. Monogr. 2013, 83, 383–402. [Google Scholar] [CrossRef]
- Bouriaud, L.; Bouriaud, O.; Elkin, C.; Temperli, C.; Reyer, C.; Duduman, G.; Barnoaiea, I.; Nichiforel, L.; Zimmermann, N.; Bugmann, H. Age-Class Disequilibrium as an Opportunity for Adaptive Forest Management in the Carpathian Mountains, Romania. Reg. Environ. Chang. 2015, 15, 1557–1568. [Google Scholar] [CrossRef]
- Mladenoff, D.J. LANDIS and Forest Landscape Models. Ecol. Modell. 2004, 180, 7–19. [Google Scholar] [CrossRef]
- Baeten, L.; Verheyen, K.; Wirth, C.; Bruelheide, H.; Bussotti, F.; Finér, L.; Jaroszewicz, B.; Selvi, F.; Valladares, F.; Allan, E.; et al. A Novel Comparative Research Platform Designed to Determine the Functional Significance of Tree Species Diversity in European Forests. Perspect. Plant Ecol. Evol. Syst. 2013, 15, 281–291. [Google Scholar] [CrossRef]
- IPCC Climate Change 2007: Impacts, Adaptation and Vulnerability. In Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L.; Canziani, O.F.; Palutikof, J.P.; van der Linden, P.J.; Hanson, E.C. (Eds.) Cambridge University Press: Cambridge, UK, 2007; ISBN 9780080449104. [Google Scholar]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; ISBN 9291691437. [Google Scholar]
- Nichiforel, L.; Duduman, G.; Scriban, R.E.; Popa, B.; Barnoaiea, I.; Drăgoi, M. Forest Ecosystem Services in Romania: Orchestrating Regulatory and Voluntary Planning Documents. Ecosyst. Serv. 2021, 49, 101276. [Google Scholar] [CrossRef]
- Anonymous Normele Tehnice Pentru îngrijirea și Conducerea Arboretelor 2. 2000. Available online: http://bucuresti.gardaforestiera.ro/files/12495_Norm%202.pdf (accessed on 10 November 2021).
- Thrippleton, T.; Blattert, C.; Bont, L.G.; Mey, R.; Zell, J.; Thürig, E.; Schweier, J.; Mina, M. A Multi-Criteria Decision Support System for Strategic Planning at the Swiss Forest Enterprise Level: Coping With Climate Change and Shifting Demands in Ecosystem Service Provisioning. Front. For. Glob. Chang. 2021, 4, 113. [Google Scholar] [CrossRef]
- Coșofreț, C.; Bouriaud, L. Which silvicultural measures are recommended to adapt forests to climate change? A literature review. Ser. II For. Wood Ind. Agric. Food Eng. 2019, 12, 13–34. [Google Scholar] [CrossRef]
- R Core Team R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 20 May 2019).
- Mina, M.; Bugmann, H.; Cordonnier, T.; Irauschek, F.; Klopcic, M.; Pardos, M.; Cailleret, M. Future Ecosystem Services from European Mountain Forests under Climate Change. J. Appl. Ecol. 2017, 54, 389–401. [Google Scholar] [CrossRef]
- Thrippleton, T.; Cailleret, M.; Bugmann, H. Projecting Forest Dynamics Across Europe: Potentials and Pitfalls of Empirical Mortality Algorithms. Ecosystems 2020, 23, 188–203. [Google Scholar] [CrossRef]
- Williams, M.I.; Dumroese, R.K. Preparing for Climate Change: Forestry and Assisted Migration. J. For. 2013, 111, 287–297. [Google Scholar] [CrossRef]
- Botequim, B.; Bugalho, M.N.; Rodrigues, A.R.; Marques, S.; Marto, M.; Borges, J.G. Combining Tree Species Composition and Understory Coverage Indicators with Optimization Techniques to Address Concerns with Landscape-Level Biodiversity. Land 2021, 10, 126. [Google Scholar] [CrossRef]
- Huber, N. Towards Robust Projections of Future Forest Dynamics: Why There Is No Silver Bullet to Cope with Complexity. Ph.D. Thesis, ETH Zurich, Zürich, Switzerland, 2019. [Google Scholar]
- Hartl-Meier, C.; Zang, C.; Dittmar, C.; Esper, J.; Göttlein, A.; Rothe, A. Vulnerability of Norway Spruce to Climate Change in Mountain Forests of the European Alps. Clim. Res. 2014, 60, 119–132. [Google Scholar] [CrossRef]
- Briner, S.; Huber, R.; Bebi, P.; Elkin, C.; Schmatz, D.R.; Grêt-Regamey, A. Trade-Offs between Ecosystem Services in a Mountain Region. Ecol. Soc. 2013, 18, 35. [Google Scholar] [CrossRef]
- Cenuşă, R.; Barbu, I. Metodă Pentru Determinarea Gradului de Exercitare a Funcţiilor Ecoprotective În Păduri. Bucovina For. 2004, 12, 69–74. [Google Scholar]
- Gaspar, R. Caracterizarea Hidrologică a Bazinelor Hidrografice Forestiere Mici. Revista Pădurilor 2000, 115, 28–32. [Google Scholar]
- Temperli, C.; Zell, J.; Bugmann, H.; Elkin, C. Sensitivity of Ecosystem Goods and Services Projections of a Forest Landscape Model to Initialization Data. Landsc. Ecol. 2013, 28, 1337–1352. [Google Scholar] [CrossRef]
- Duduman, G.; Bouriaud, O.; Barnoaiea, I.; Drăgoi, M.; Bouriaud, L. Metodology and Preliminary Results of LANDCLIM Application in Mountainous Mixed Forests with Coniferous and Beech from Northern Romania–Draft. 2013, pp. 1–9. Available online: http://www.silvic.usv.ro/motive/preliminary_results_motive.pdf (accessed on 29 March 2022).
Forest District | Total Area (ha) | Soil Protection Category (ha) | Tree Species Composition of Soil Protection Forest Stands | Elevation Gradient (m) | ||||
---|---|---|---|---|---|---|---|---|
Norway Spruce | Norway Spruce–Silver Fir | Norway Spruce, Silver Fir and Beech | Silver Fir–Beech | Beech | ||||
Râșca | 13,521 | 998.6 | - | - | 14% | 79% | - | 439–1197 |
Frasin | 10,172 | 898.6 | - | 12% | 65% | 15% | - | 488–1162 |
Pojorâta | 13,306 | 1257.7 | 69% | 13% | 18% | - | - | 578–1670 |
Măneciu | 18,760 | 2244.1 | - | - | - | 25% | 66% | 605–1995 |
Indicators–Abbreviation | General Weight (gw) | Normalized Value (0–1) | |||
---|---|---|---|---|---|
Râșca FD | Frasin FD | Pojorâta FD | Măneciu FD | ||
Aspect–At | a1 | ||||
Slope–Se | a2 | ||||
Hspecies–Hsp | a3 | ||||
Hsize–Hsz | a4 | ||||
Root–Rt | a5 | ||||
Stems–St | a6 | ||||
Biomass–Bs | a7 | ||||
PVI |
Elevation Classes | 500 m | 800 m | 1100 m | ||||||
---|---|---|---|---|---|---|---|---|---|
Forest Districts | Area (ha) | Mean PVI | SD | Area (ha) | Mean PVI | SD | Area (ha) | Mean PVI | SD |
Râșca | 120.06 | 0.372 | 0.08 | 99.31 | 0.362 | 0.078 | 88.93 | 0.342 | 0.070 |
Frasin | 57.93 | 0.391 | 0.077 | 212.06 | 0.372 | 0.071 | 63.62 | 0.352 | 0.073 |
Pojorâta | - | - | - | 116 | 0.331 | 0.086 | 481.25 | 0.323 | 0.068 |
Măneciu | - | - | - | 432.13 | 0.363 | 0.060 | 809.37 | 0.365 | 0.057 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coșofreț, C.; Duduman, G.; Barnoaiea, I.; Bouriaud, O. Management or Climate and Which One Has the Greatest Impact on Forest Soil’s Protective Value? A Case Study in Romanian Mountains. Forests 2022, 13, 916. https://doi.org/10.3390/f13060916
Coșofreț C, Duduman G, Barnoaiea I, Bouriaud O. Management or Climate and Which One Has the Greatest Impact on Forest Soil’s Protective Value? A Case Study in Romanian Mountains. Forests. 2022; 13(6):916. https://doi.org/10.3390/f13060916
Chicago/Turabian StyleCoșofreț, Cosmin, Gabriel Duduman, Ionuț Barnoaiea, and Olivier Bouriaud. 2022. "Management or Climate and Which One Has the Greatest Impact on Forest Soil’s Protective Value? A Case Study in Romanian Mountains" Forests 13, no. 6: 916. https://doi.org/10.3390/f13060916